4-竖向荷载作用下框架内力计算

合集下载

土木工程毕业设计第六章竖向荷载作用下框架内力计算

土木工程毕业设计第六章竖向荷载作用下框架内力计算

⼟⽊⼯程毕业设计第六章竖向荷载作⽤下框架内⼒计算第六章竖向荷载(恒载+活载)作⽤下框架内⼒计算第⼀节框架在恒载作⽤下的内⼒计算本设计⽤分层法计算内⼒,具体步骤如下:①计算各杆件的固端弯矩②计算各节点弯矩分配系数③弯矩分配④调幅并绘弯矩图⑤计算跨中最⼤弯矩、剪⼒和轴⼒并绘图⼀、恒载作⽤下固端弯矩计算(⼀)恒载作⽤下固端弯矩恒载作⽤下固端弯矩计算(单位:KN·m) 表恒载作⽤下梁固端弯矩计算统计表(⼆)计算各节点弯矩分配系数⽤分层法计算竖向荷载,假定结构⽆侧移,计算时采⽤⼒矩分配法,其计算要点是:①计算各层梁上竖向荷载值和梁的固端弯矩。

②将框架分层,各层梁跨度及柱⾼与原结构相同,柱端假定为固端。

③计算梁、柱线刚度。

对于柱,假定分层后中间各层柱柱端固定与实际不符,因⽽,除底层外,上层柱各层线刚度均乘以修正。

有现浇楼⾯的梁,宜考虑楼板的作⽤。

每侧可取板厚的6倍作为楼板的有效作⽤宽度。

设计中,可近似按下式计算梁的截⾯惯性矩:⼀边有楼板:I=两边有楼板:I=按修正后的刚度计算各结点周围杆件的杆端分配系数。

所有上层柱的传递系数取1/3,底层柱的传递系数取1/2。

⑤按⼒矩分配法计算单层梁、柱弯矩。

⑥将分层计算得到的、但属于同⼀层柱的柱端弯矩叠加得到柱的弯矩。

(1)计算梁、柱相对线刚度图修正后梁柱相对线刚度(2)计算弯矩分配系数结构三层=÷+=①梁µB3C3µ=÷++=C3B3=÷++=µC3D3µ=÷+=D3C3=÷+=②柱µB3B2µ=÷++=C3C2µ=÷+=D3D2结构⼆层=÷++=①梁µB2C2µ=÷+++=C2B2=÷+++=µC2D2µ=÷++=D2C2B2B3=÷++=µB2B1=÷+++=µC2C3=÷+++=µC2C1=÷++=µD2D3µ=÷++=D2D1结构⼀层=÷+1+=①梁µB1C1=÷+1++=µC1B1=÷+1++=µC1D1=÷+1+=µD1C1=÷+1+=②柱µB1B2=1÷+1+=µB1B0=÷+1++=µC1C2=1÷+1++=µC1C0µµ=1÷+1+=D1D0(三)分层法算恒载作⽤下弯矩恒载作⽤下结构三层弯矩分配表B C D上柱偏⼼弯矩分配系数0固端弯矩分配传递分配传递分配传递分配传递分配传递分配传递分配传递合计⼀次分配⼆次分配恒载作⽤下结构⼆层弯矩分配表↑↑↑B C D偏⼼弯矩分配系数固端弯矩分配传递分配传递分配传递分配传递分配传递分配传递分配传递合计⼀次分配⼆次分配恒载作⽤下结构⼀层弯矩分配表↑↑↑B C D偏⼼弯矩固端弯矩分配传递分配传递分配传递分配传递分配传递分配传递分配传递合计⼀次⼆次图弯矩再分配后恒载作⽤下弯矩图(KN·m)(四)框架梁弯矩塑性调幅为了减少钢筋混凝⼟框架梁⽀座处的配筋数量,在竖向荷载作⽤下可以考虑竖向内⼒重分布,主要是降低⽀座负弯矩,以减⼩⽀座处的配筋,跨中则应相应增⼤弯矩。

框架在竖向荷载作用下内力计算

框架在竖向荷载作用下内力计算

Mik MiFk 2Mi'k Mk' i
…3.6.4

Mik MiFk Mi'k (Mi'k Mk' i ) …3.6.5
➢ 根据算得的各杆端弯矩值,作最后的弯矩图并求得 相应的剪力图和轴力图。
例题:
0.463
A2
结点B2与结点A2分配系数相同
(2)计算固端弯矩:
mA2B2
1 12
q2l 2
1 12
10
82
53.333kN
gm
mB2 A2
1 12
q2l 2
1 12
10 82
53.333kN gm
(3)循环过程B2
A2
4、还原-叠加、结点不平衡弯矩再分配一次
6、计算框架梁其他截面的弯矩 计算框架梁截面的剪力 计算框架柱的轴力
结点A1:
S A1A2 4(0.9ic2 ) S A1A0 4ic1
S A1B1 4ib
S 4(ic1 0.9ic2 ib ) 4 2.478
A1
A1A2
S A1A2 S
4 0.9 1 0.363 4 2.478
A1
A1A0
S A1A0 S
4 0.801 4 2.478
1 0.0133E 12
ic 2
EIc H2
1 1 0.0666E 4 12
1 0.0166E 12
ib
EIb L
1 1 0.1029E 8Βιβλιοθήκη 121 0.0129E 12
相对线刚度: 设:ic2 1
则 ic1 0.801
ib 0.777
2、把框架以按层拆为两个开口框架
H2=4000

第五章.竖向荷载作用下的框架内力计算

第五章.竖向荷载作用下的框架内力计算

第五章.竖向荷载作⽤下的框架内⼒计算5.1 计算单元的确定取6号轴线⼀榀框架进⾏计算,计算宽度为(6.6+6.6)/2=6.6m 。

如图下图所⽰横向框架荷载传递图5.2 荷载计算5.2.1 恒荷载的计算 1、五层、(1)q 、q 0、q 0′、q 0″分别为⼥⼉墙、边跨横梁(⾛道纵梁)、⾛道横梁、次梁⾃重(扣除板⾃重),为均布荷载形式;β为考虑梁粉刷⾃重时的放⼤系数,取β=1.05。

⼥⼉墙:q=3.47×0.9=3.12 kN/m 边跨横梁(⾛道纵梁):q 0=1.05×0.3×(0.6-0.1)×25=3.94kN/m ⾛道横梁:q 0′=1.05×0.3×(0.4-0.1)×25=2.36kN/m 次梁:q 0″=1.05×0.2×(0.5-0.1)×25=2.1kN/m(2)q 1、q 1′分别为屋⾯板⾃重传给横梁的梯形和三⾓形荷载等效为均布荷载值 q 1=[1-2×(3.3/6.6×2) 2+(3.3/6.6×2)3]×4.38×3.3/2=6.44kN/mq 1′=85×4.38×3.0/2=4.11kN/m(3)q 2、q 2′分别为屋⾯板⾃重传给纵梁上的梯形和三⾓形荷载等效为均布荷载值梯形:q 2=[1-2×(3.0/6.6×2) 2+(3.0/6.6×2)3]×4.38×3.0/2=5.96kN/m三⾓形:q 2′=85×4.38×3.3/2=4.52kN/mP 1为由板传给次梁及次梁⾃重传给纵梁的集中⼒ P 1= q 1×6.6+ q 0″×6.6/2=49.43kNP 2为由板传给外纵梁及外纵梁、⼥⼉墙⾃重传给柱⼦的集中⼒ P 2=( q 2′+ q 0+q )×3.3×2=76.42 kNP 3为由板传给内纵梁及内纵梁⾃重传给柱⼦的集中⼒。

框架结构竖向荷载作用下的内力计算

框架结构竖向荷载作用下的内力计算

第6章竖向荷载作用下内力计算§框架结构的荷载计算§6.1.1.板传荷载计算计算单元见下图所示:因为楼板为整体现浇,本板选用双向板,可沿四角点沿45°线将区格分为小块,每个板上的荷载传给与之相邻的梁,板传至梁上的三角形或梯形荷载可等效为均布荷载。

图6-1 框架结构计算单元图6-2 框架结构计算单元等效荷载一.B ~C, (D ~E)轴间框架梁:屋面板传荷载:恒载:2226.09KN/m 1.5m [1-2(1.5/6)(1.5/6)]2=17.128KN/m ⨯⨯+⨯活载:2222.0KN/m 1.5m [1-2(1.5/6)(1.5/6)]2=5.625KN/m ⨯⨯⨯+⨯楼面板传荷载:恒载:2223.83KN/m 1.5m [1-2(1.5/6)(1.5/6)]2=10.772KN/m ⨯⨯⨯+⨯活载:2222.0KN/m 1.5m [1-2(1.5/6)(1.5/6)]2=5.625KN/m ⨯⨯⨯+⨯梁自重:mB ~C, (D ~E)轴间框架梁均布荷载为:屋 面 梁:恒载=梁自重+板传荷载= KN/m+ KN/m= KN/m活载=板传荷载= KN/m楼面板传荷载:恒载=梁自重+板传荷载= KN/m+ KN/m= KN/m活载=板传荷载= KN/m二. C ~D 轴间框架梁:屋面板传荷载:恒载:2⨯⨯⨯6.09KN/m 1.2m5/82=9.135KN/m活载:22.0KN/m 1.5m5/82=3KN/m⨯⨯⨯楼面板传荷载:恒载:23.83KN/m 1.25/82=5.745KN/m⨯⨯⨯活载:2⨯⨯⨯2.0KN/m 1.2m5/82=3.75KN/m梁自重:mC~D轴间框架梁均布荷载为:屋面梁:恒载=梁自重+板传荷载= KN/m+ KN/m= KN/m活载=板传荷载=3 KN/m楼面板传荷载:恒载=梁自重+板传荷载= KN/m+m=m活载=板传荷载= KN/m三.B轴柱纵向集中荷载计算:顶层柱:女儿墙自重:(做法:墙高900㎜,100㎜的混凝土压顶)33⨯⨯+⨯⨯+m m kn m KN m m m0.240.918/25/0.10.24()⨯+⨯=m m m KN m1.220.240.5 5.806/顶层柱恒载=女儿墙+梁自重+板传荷载=5.806/6 3.975/(60.6)KN m KN m m m ⨯+⨯-⨯()()2212 1.5/6 1.5/66/42 6.09/ 1.55/832123.247KN m m KN ⎡⎤-⨯+⨯⨯+⨯⨯⨯⨯=⎣⎦顶层柱活载=板传荷载=()()222.0/ 1.512 1.5/6 1.5/66/42KN m m ⎡⎤⨯⨯-⨯+⨯⨯+⎣⎦2.0/ 1.55/83219.688KN m m KN ⨯⨯⨯⨯=标准层柱恒载=墙自重+梁自重+板荷载=7.794/(60.6) 3.975/(60.6) 3.83/ 1.55/832KN m KN m KN m m ⨯-+⨯-+⨯⨯⨯⨯ (2.332311.52)61/42 2.3325/61/42KN m ++⨯⨯⨯+⨯⨯⨯+()()223.83 1.512 1.5/6 1.5/66/42124.172m m KN ⎡⎤⨯⨯-⨯+⨯⨯=⎣⎦标准层柱活载=板传荷载=()()222.0 1.512 1.5/6 1.5/63 2.0 1.55/83219.688m m m m KN ⎡⎤⨯⨯-⨯+⨯+⨯⨯⨯⨯=⎣⎦基础顶面荷载=底层外纵墙自重+基础自重=9.738/(60.6) 2.5/(60.6)16.085KN m m m KN m m m KN ⨯-+⨯-=四.C 柱纵向集中力计算:顶层柱荷载=梁自重+板传梁荷载=3.975/(90.9) 2.349/(1.20.3) 6.09/ 1.55/832KN m m KN m m KN m m ⨯-+⨯-+⨯⨯⨯⨯ 6.09/ 1.25/8 1.22(2.3323/11.52/)61/42KN m m KN m KN m m +⨯⨯⨯⨯++⨯⨯⨯ 154.318KN =顶层柱活载=板传荷载=()()222.0 1.512 1.5/6 1.5/63m m ⎡⎤⨯⨯-⨯+⨯+⎣⎦()()222.0 1.212 1.2/6 1.2/63 2.0 1.2m m m m ⎡⎤⨯⨯-⨯+⨯+⨯⎣⎦5/8 1.22 2.0 1.55/83239.272m m KN ⨯⨯⨯+⨯⨯⨯⨯=标准柱恒载=墙+梁自重+板传荷载=11.52/(30.6)15.12/(30.6)15.12/(30.6)KN m m KN m m KN m m ⨯-+⨯-+⨯-+2.349/(1.20.3)3.975/(60.6) 6.09/ 1.55/832KN m m KN m m KN m m ⨯-+⨯-+⨯⨯⨯⨯+26.09/61/21/2 2.67/ 2.4/26 3.83/36200.173KN m m KN m m KN m m m KN ⨯⨯⨯+⨯⨯+⨯⨯=标准层活载=板传荷载=222.0/36 2.5/ 1.2654KN m m m KN m m m KN ⨯⨯+⨯⨯=基础顶面恒载=底层外纵墙自重+基础自重9.738/(60.6) 2.5/(60.6)66.085KN m m m KN m m m KN ⨯-+⨯-=(3).框架柱自重:柱自重: 底层:×0.6m ×0.6m ×253/KN m ×4.55m=其余柱:×0.6m ×0.6m ×253/KN m ×3.6m=§恒荷载作用下框架的内力§6.2.1.恒荷载作用下框架的弯矩计算一.恒荷载作用下框架可按下面公式求得:21/12ab M ql =- (61)-21/12ba M ql = (62)-故:2771/1221.03663.09.B C M KN m =-⨯⨯=-7763.09.C B M KN m =2771/1211.4846 5.512.C D M KN m =-⨯⨯=-77 5.512.C D M KN m =2661/1214.747644.241.B C M KN m =-⨯⨯=-6644.241.C B M KN m =2661/128.096 3.883.C D M KN m =-⨯⨯=-66 3.883.D C M KN m =恒荷载作用下框架的受荷简图如图6-3所示:注:1.图中各值的单位为KN2.图中数值均为标准值3.图中括号数值为活荷载图6-4:恒载作用下的受荷简图(2).根据梁,柱相对线刚度,算出各节点的弯矩分配系数ij μ:/()ij c b i i i μ=∑+∑ (63)-分配系数如图6-5 , 图6-6所示:图6-5 B 柱弯矩各层分配系数简图B 柱:底层:0.801/(0.8010.609 1.0)0.332i ++=下柱=1.0/(0.8010.609 1.0)0.415i ++=上柱=0.609/(0.8010.609 1.0)0.253i ++=左梁=标准层: 1.0/(0.609 1.0 1.0)0.383i ++=上柱=1.0/(0.609 1.0 1.0)0.383i ++=下柱=0.609/(0.609 1.0 1.0)0.234i ++=左梁=顶层: 1.0/(0.609 1.0)0.622i +=下柱=0.609/(0.609 1.0)0.622i +=左梁=图6-6 C 柱弯矩各层分配系数简图C 柱: 0.609/(0.609 1.00.2110.801)0.232i +++=右梁=1.0/(0.609 1.00.2110.801)0.382i +++=上柱= 0.801/(0.609 1.00.2110.801)0.306i +++=下柱= 0.211/(0.609 1.00.2110.801)0.081i +++=左梁=标准层: 1.0/(0.609 1.00.2110.801)0.355i +++=下柱=1.0/(0.609 1.00.2110.801)0.355i +++=上柱=0.609/(0.609 1.00.2110.801)0.216i +++=右梁=0.211/(0.609 1.00.2110.801)0.074i +++=左梁=顶层: 1.0/(0.609 1.00.211)0.549i ++=下柱=0.211/(0.609 1.00.211)0.116i ++=左梁=0.609/(0.609 1.00.211)0.335i ++=右梁=三.恒荷载作用下的弯矩剪力计算,根据简图(6-4)梁:A M 0∑= 21/2.0A B B M M ql Q l ---=/1/2B A B Q M M l ql =--B M 0∑= 21/2.0A B A M M ql Q l -+-=/1/2A A B Q M M l ql =-+ (6-4) 柱:C M 0∑= .0C D D M M Q h ---=()/D C D Q M M h =-+D M 0∑= .0C D C M M Q h ---=()/C C D Q M M h =-+ (6-5)四.恒荷载作用下的边跨框架的轴力计算,包括连梁传来的荷载及柱自重.7123.24721.1036/2186.556N KN=+⨯=67124.17214.7476/238.88393.849N N KN =++⨯+=56124.17214.7476/238.88601.142N N KN =++⨯+=45124.17214.7476/238.88808.435N N KN =++⨯+=34124.17214.7476/238.881015.728N N KN =++⨯+=23124.17214.7476/238.881223.021N N KN =++⨯+=12124.17214.7476/238.881382.487N N KN =++⨯+= 恒荷载作用下的中跨框架的轴力计算:7154.31811.484 2.4/2168.099N KN=+⨯=67200.1738.09 2.4/238.88416.88N N KN =++⨯+=56200.1738.09 2.4/238.88665.621N N KN =++⨯+=45200.1738.09 2.4/238.88808.435N N KN =++⨯+=34200.1738.09 2.4/238.881015.728N N KN =++⨯+=23200.1738.09 2.4/238.881223.021N N KN =++⨯+=12200.1738.09 2.4/238.881382.487N N KN =++⨯+=图6-5 恒荷载作用下的计算简图五.弯矩分配及传递弯矩二次分配法比分层法作了更进一步的简化。

框架结构在竖向荷载作用下的内力计算

框架结构在竖向荷载作用下的内力计算

框架结构在竖向荷载作用下的内力计算
框架结构在竖向荷载作用下的内力计算可近似地采用分层法.
在进行竖向荷载作用下的内力分析时,可假定:(1)作用在某一层框架梁上的竖向荷载对其他楼层的框架梁的影响不计,而仅在本楼层的框架梁以及与本层框架梁相连的框架柱产生弯矩和剪力.(2)在竖向荷载作用下,不考虑框架的侧移.
计算过程可如下:
(1)分层:分层框架柱子的上下端均假定为固定端支承,
(2)计算各个独立刚架单元:用弯矩分配法或迭代法进行计算各个独立刚架单元.而分层计算所得的各层梁的内力,即为原框架结构中相应层次的梁的内力.
(3)叠加:在求得各独立刚架中的结构内力以后,则可将相邻两个独立刚架中同层同柱号的柱内力叠加,作为原框架结构中柱的内力.
叠加后为原框架的近似弯距图,由于框架柱节点处的弯矩为柱上下两层之和因此叠加后的弯距图,在框架节点处常常不平衡.这是由于分层计算单元与实际结构不符所带来的误差.若欲提高精度,可对节点,特别是边节点不平衡弯矩再作一次分配,予以修正.。

框架结构内力与位移计算

框架结构内力与位移计算

《高层建筑结构与抗震》辅导材料四框架结构内力与位移计算学习目标1、熟悉框架结构在竖向荷载和水平荷载作用下的弯矩图形、剪力图形和轴力图形;2、熟悉框架结构内力与位移计算的简化假定及计算简图的确定;3、掌握竖向荷载作用下框架内力的计算方法——分层法;4、掌握水平荷载作用下框架内力的计算方法——反弯点法和D值法,掌握框架结构的侧移计算方法。

学习重点1、竖向荷载作用下框架结构的内力计算;2、水平荷载作用下框架结构的内力及侧移计算。

框架在结构力学中称为刚架,刚架的内力和位移计算方法很多,可分为精确算法和近似算法。

精确法是采用较少的计算假定,较为接近实际情况地考虑建筑结构的内力、位移和外荷载的关系,一般需建立大型的代数方程组,并用电子计算机求解;近似算法对建筑结构引入较多的假定,进行简化计算。

由于近似计算简单、易于掌握,又能反映刚架受力和变形的基本特点,因此近似的计算方法仍为工程师们所常用。

本章内容主要介绍框架结构在荷载作用下内力与位移的近似计算方法。

其中分层法用于框架结构在竖向荷载作用下的内力计算,反弯点法和D值法用于框架结构在水平荷载作用下的内力计算。

既然是近似计算,就需要熟悉框架结构的计算简图和各种计算方法的简化假定。

一、框架结构计算简图的确定一般情况下,框架结构是一个空间受力体系,可以按照第四章所述的平面结构假定的简化原则,忽略结构纵向和横向之间的空间联系,忽略各构件的抗扭作用,将框架结构简化为沿横方向和纵方向的平面框架,承受竖向荷载和水平荷载,进行内力和位移计算。

结构设计时一般取中间有代表性的一榀横向框架进行分析,若作用于纵向框架上的荷载各不相同,则必要时应分别进行计算。

框架结构的节点一般总是三向受力的,但当按平面框架进行结构分析时,则节点也相应地简化。

在常见的现浇钢筋混凝土结构中,梁和柱内的纵向受力钢筋都将穿过节点或锚入节点区,这时节点应简化为刚接节点;对于现浇钢筋混凝土柱与基础的连接形式,一般也设计成固定支座,即为刚性连接。

在竖向荷载作用下框架结构内力计算的独立柱法

在竖向荷载作用下框架结构内力计算的独立柱法

在竖向荷载作用下框架结构内力计算的独立
柱法
独立柱法(Independent column method)是一种用于计算框架结
构内力的方法。

该方法假定每个柱子自行承担着水平力和垂直力,而
不会在柱与梁交接处转移或者共同承担力。

这种假设是为了简化计算、降低复杂度,以及实现直观清晰的用图。

在竖向荷载作用下,独立柱法的基本流程如下:
1. 选择独立柱:首先,需要找到框架结构中具有独立性的柱子。

这些柱子不会受到其他柱子影响,而是自行承担全部荷载。

一般而言,独立柱一般位于框架结构的边缘或角落处。

2. 画高度分块图:将框架结构按水平方向分成若干段,并在每段
上标注高度分块图。

高度分块图指的是每段内荷载分别作用的高度分
布情况。

3. 分别计算每段内的内力:对于每个高度分块,需要按照作用在
该块上的荷载大小和作用位置,结合高度分块的边界条件计算出该段
内的各个柱子和梁的内力。

4. 检查结构的均衡性:根据计算结果,检查整个框架结构是否处
于静态均衡状态,即荷载是否平衡、荷载反力大小是否与荷载大小等
比例,以及结构中每个柱子和梁是否都满足受力平衡。

5. 进行调整和修正:如有必要,可通过对独立柱、高度分块等参
数进行调整和修正,重新计算内力直到满足均衡条件。

总之,独立柱法是一种通过分析框架结构内各部分的受力情况,
来计算出结构整体受力状态的方法。

虽然存在简化和理论假设的缺陷,但该方法依然具有较高的实用价值。

4_竖向荷载作用下框架内力计算

4_竖向荷载作用下框架内力计算

4_竖向荷载作用下框架内力计算在结构设计过程中,框架结构是一种常见的结构形式。

在实际工程中,框架结构会受到各种荷载的作用。

竖向荷载是一种重要的荷载形式,常见的竖向荷载包括自重、活荷载和附加荷载等。

在框架结构内力计算中,需要首先确定结构的几何特征,包括框架的截面形状、材料参数和受力情况等。

然后根据几何特征和力学原理,分析结构的受力平衡和变形情况,最终得到内力的计算结果。

下面将以一个简单的框架结构为例,介绍竖向荷载作用下框架内力计算的基本步骤。

1.框架结构的受力分析首先,需要绘制框架的受力图。

在竖向荷载作用下,框架的受力主要包括竖向荷载的作用力、支座反力和框架内部的轴力、剪力和弯矩等。

通过受力分析,可以将框架结构简化为若干个矩形梁和柱,以便进行进一步的计算。

2.框架结构的力学模型化将框架结构进行力学模型化,即将结构划分为若干个杆件和节点,并确定节点的受力情况。

杆件的长度、截面形状和材料参数等需要根据实际情况进行设定,以便计算杆件的受力。

3.杆件的受力计算根据竖向荷载作用下杆件的受力平衡和变形情况,可以得到杆件的轴力、剪力和弯矩等。

对于轴力,可以利用静力平衡原理进行计算。

对于剪力和弯矩,可以根据杆件的受力分布和形状进行计算,常用的方法包括截面法和弯矩传递法等。

4.框架结构的内力计算根据杆件的受力计算结果,可以得到框架结构内各个节点的内力情况。

根据节点的受力平衡条件,可以计算出节点上的轴力、剪力和弯矩等。

此外,还需要考虑支座反力的作用,以及与其他荷载(如横向荷载)的叠加效应。

5.内力的承载能力和设计校核根据内力计算结果,可以对框架结构的承载能力进行评估和校核。

根据设计规范和材料参数,结合强度和稳定性要求,进行构件的截面尺寸校核。

如果结构的承载能力满足要求,则结构设计合理;否则,需要进行后续的调整和优化。

总的来说,竖向荷载作用下框架内力计算是结构设计中的重要环节。

通过合理的受力分析和计算,能够得到准确的内力计算结果,从而为结构设计和施工提供科学的依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 竖向荷载作用下框架内力计算4.1横向框架计算单元竖向荷载作用下,一般选取平面结构单元,按平面计算简图进行内力分析,根据结构布置和楼面荷载分布情况,本设计取6轴线横向框架进行计算,本设计中所有板均为双向板,为了简化计算,对板下部斜向塑性绞线与板边的夹角可近似取45°角,由于框架柱的间距不相等,通过主梁和次梁对板的划分不同,计算单元宽度应按照各个板的实际传荷情况而确定,如图4-1。

图中横向阴影所示荷载传给横梁,纵向阴影所示荷载传给纵梁。

图4-1 标准层横向框架计算单元4.2恒荷载计算由于本设计次梁较多,在计算框架梁上荷载时应该先计算次梁自重和次梁传递的荷载,再将次梁自重和次梁传递的荷载,次梁传给主梁的荷载可近似地看成一个集中力,因此在框架节点处还应作用有集中力矩。

4.2.1 标准层次梁恒荷载计算1、5或7轴线次梁上线荷载1)AB 跨的次梁上的荷载分布如图4-2所示。

图4-1 AB 跨的次梁上的荷载分布次梁自重:m kN m m m kN q /13.350.025.0/253=⨯⨯=次;根据《实用建筑结构静力计算手册》(第二版),对于双向板楼面荷载传递按45°塑性绞线方向分为三角形荷载和梯形荷载,三角形荷载和梯形荷载均折算成等效均布面荷载。

三角形荷载:q 85,梯形荷载:()q αα⋅+-3221,其中,0l a α=。

对于BC 跨中有三角形荷载和梯形荷载同时在同一跨中出现,按理应该按照结构力学的方法进行求解,但为了简化计算,本设计中的三角形荷载和梯形荷载按上述方法计算,且按上述方法计算的荷载也能满足工程精度要求。

44.04800/21001==mm mm α;()()223231211/18.3/54.444.044.02121m kN m kN q ααq =⨯+⨯-=⋅+-='; m kN m m kN l q q /68.61.2/18.32011=⨯=⋅'=; m kN m kN m kN q q q AB /49.162/68.6/13.31=⨯+=+=次;2)BC 跨的次梁上的荷载分布如图4-2所示。

图4-2 BC 跨的次梁上的荷载分布31.02400/7502==mm mm α;()()2232322/79.3/54.431.031.02121m kN m kN q ααq =⨯+⨯-=⋅+-='; m kN m m kN l q q /84.275.0/79.32022=⨯=⋅'=; 25.03000/7503==mm mm α;()()2232323/04.4/54.425.025.02121m kN m kN q ααq =⨯+⨯-=⋅+-='; m kN m m kN l q q /03.375.0/04.42033=⨯=⋅'=;()m kN m kN m kN m kN q q q q BC /87.142/03.3/84.2/13.332=⨯++=++=次;3)CD 跨的次梁上的荷载分布如图4-3所示。

图4-2 CD 跨的次梁上的荷载分布36.05400/19504==mm mm α;()()2232324/57.3/54.436.036.02121m kN m kN q ααq =⨯+⨯-=⋅+-='; m kN m m kN l q q /28.42.1/57.32054=⨯=⋅'=; m kN m kN m kN q q q CD /69.112/28.4/13.34=⨯+=+=次。

2、卫生间小次梁上线荷载小次梁(横梁)自重:m kN m m m kN q /00.24.02.0/253=⨯⨯=小次31.02400/7501==mm mm 小次左α;()()2232321/79.3/54.431.031.02121m kN m kN q ααq =⨯+⨯-=⋅+-=='小次左; m kN m m kN l q q /68.5275.0/79.32011=⨯⨯=⋅'=小次左小次左; 25.03000/7502==mm mm 小次左α;()()2232322/04.4/54.425.025.02121m kN m kN q ααq =⨯+⨯-=⋅+-='小次左; m kN m m kN l q q /06.6275.0/04.42022=⨯⨯=⋅'=小次左小次左; m kN m kN q q /68.102/54.8858521=⨯⨯=⨯=小次右;50.02400/12002==mm mm 小次右α;()()2232322/34.5/54.850.050.02121m kN m kN q ααq =⨯+⨯-=⋅+-='小次右; m kN m m kN l q q /82.1222.1/34.52022=⨯⨯=⋅'=小次右小次右 mkN m kN m kN m kN m kN m kN q q q q q q BC /24.37/82.12/68.10/06.6/68.5/00.22121=++++=++++=小次右小次右小次左小次左小次次。

对于卫生间小次梁(纵梁)应折算成集中荷载,作用在小次梁(纵梁)与框架梁相交部位。

m kN m kN q q /68.102/54.885852=⨯⨯=⨯=小次横3、次梁传给主梁的荷载转化成集中力kN m m kN l q P AB A 32.649.3/49.166=⨯=⋅=-;kN m m kN m m kN m m kN l q l q l q P BC BC AB B 68.2114.2/24.379.3/87.149.3/49.166=⨯+⨯+⨯='⋅+⋅+⋅=-次;kNm m kN m m kN m m kN l q l q l q P BC CD BC C 96.1924.2/24.379.3/69.119.3/87.146=⨯+⨯+⨯='⋅⋅+⋅+⋅=-次;kN m m kN l q P CD D 60.459.3/69.116=⨯=⋅=-。

kN m m kN l q P 63.254.2/68.10=⨯=⋅=小次横左小次横。

4.2.2标准层主梁恒荷载计算恒荷载作用下各层框架梁上的荷载分布情况,如图4-4所示。

图4-4 恒荷载作用下各层框架梁上的荷载分布对于主梁,主梁板传荷载与次梁板传荷载相同,只是梁自重有所差别,故根据次梁的板传荷载计算可知主梁的恒荷载。

主梁自重:m kN m m m kN q /50.46.03.0/253=⨯⨯=主;各跨主梁线荷载:m kN m kN m kN q q q AB /86.17/50.42/68.61=+⨯=+=主主;mkN m kN m kN m kN m kN m kN q q q q q q BC /74.39/50.4/82.12/68.10/06.6/68.52121=++++=++++=主小次右小次右小次左小次左主; m kN m kN m kN q q q CD CD /19.16/50.4/69.11=+=+=主主4.2.3标准层主次梁间荷载计算根据表2-2可知,将主、次梁的梁间荷载叠加到主梁或框架柱上,以集中力的形式来计算横向框架。

主、次梁隔墙上的荷载为:kN kN P 71.232/42.47==主隔;kN kN P 16.202/32.401==次隔; kN kN P 15.192/30.385~2==次隔;kN kN P 60.52/20.111==小次纵隔; kN kN P 77.32/54.75~2==小次纵隔;kN kN P 36.72/72.141==小次横隔; kN kN P 98.62/95.135~2==小次横隔;kN kN P A 89.92/78.19==纵梁;kN kN P B 24.92/48.18==纵梁;kN kN P C 77.32/54.7==纵梁;kN kN P D 35.72/69.14==纵梁。

将次梁所有荷载以及主梁上的梁间荷载通过集中力的形式传递给框架柱或者主梁上。

kN kN kN kN kN P P mm m mP P P AA 71.10089.915.1931.071.2332.644.54.58.48.45~261=++⨯+=++++⨯+=-纵梁次隔主隔; kN kN kN kN kN P P m m m mP P P BB 11.23124.989.135.071.2368.21124.54.58.44.55~262=++⨯+=++++⨯+=-纵梁小次横隔主隔; kN kN kN kN kN P P m m m mP P P CC 92.20677.389.135.071.2396.19224.54.58.44.55~263=++⨯+=++++⨯+=-纵梁小次横隔主隔; kN kN kN kN kN P P mm m mP P P DD 45.8935.715.1935.071.2360.454.54.58.44.55~264=++⨯+=++++⨯+=-纵梁次隔主隔; kN kNkN P 12.29298.663.25=+=小次。

4.2.4屋顶层次梁恒荷载计算屋面层无卫生间小次梁,除卫生间外,其余部位板传荷方式相同。

屋面层横向框架计算单元如图4-5所示。

图4-5 屋顶层横向框架计算单元AB 跨:44.04800/21001==mm mm α;()()223231211/54.4/48.644.044.02121m kN m kN q ααq =⨯+⨯-=⋅+-='; m kN m m kN l q q /54.91.2/54.42011=⨯=⋅'=; m kN m kN m kN q q q AB /20.222/54.9/13.31=⨯+=+=次;BC 、CD 跨:39.05400/21001==mm mm α;()()223231211/90.4/48.644.044.02121m kN m kN q ααq =⨯+⨯-=⋅+-='; m kN m m kN l q q /29.101.2/90.42011=⨯=⋅'=; m kN m kN m kN q q q q CD BC /71.232/29.10/13.31=⨯+=+==次;次梁传给主梁的荷载转化成集中力kN m m kN l q P AB A58.869.3/20.226=⨯=⋅='-; kN m m kN m m kN l q l q l q P BC BC AB B 04.1799.3/71.239.3/20.226=⨯+⨯='⋅+⋅+⋅=-次;kN m m kN m m kN l q l q P CD BC C 94.1849.3/71.239.3/71.236=⨯+⨯=⋅+⋅=-; kN m m kN l q P CD D46.929.3/71.236=⨯=⋅='- 4.2.5屋顶层主梁恒荷载计算对于屋顶层主梁,屋顶层主梁板传荷载与屋顶层次梁板传荷载相同,只是梁自重有所差别,故根据次梁的板传荷载计算可知主梁的恒荷载。

相关文档
最新文档