框架结构竖向荷载作用下的内力计算

合集下载

12.4多层框架结构在竖向荷载下的内力计算方法

12.4多层框架结构在竖向荷载下的内力计算方法

12.4竖向荷载作用下的内力近似计算
第十二章 多层框架结构房屋
2.计算模型的确定 在计算简图中,框架节点多为刚接,柱子下端在基础顶面,也按刚接 考虑。杆件用轴线表示,梁柱的连接区用节点表示。等截面轴线取截面形 心位置,当上下柱截面尺寸不同时,则取上层柱形心线作为柱轴线。跨度 取柱轴线间的距离。计算简图中的柱高,对楼层取层高;对底层柱,现浇 楼板取基础顶面与二层楼板顶面之间的高度。 当各跨跨度不等但相差不超过10%时,可当作具有平静跨度的等跨框架。
12.4竖向荷载作用下的内力近似计算
第十二章 多层框架结构房屋
4.荷载计算
作用在多、高层建筑结构上的荷载有竖向荷载和水平荷载。竖向 荷载包括恒载和楼(屋)面活荷载、雪荷载,水平荷载包括风荷载和 水平地震作用。 活荷载大小见《建筑结构荷载规范》GB50009-2012第5.1.1条。
12.4竖向荷载作用下的内力近似计算
12.4竖向荷载作用下的内力近似计算
第十二章 多层框架结构房屋
由于计算时假定柱的远端为固定端,实际上除底层柱在基础处为固定 端外,其余各住的远端均有转角而非固定端。为减少由此引起的误差,除 底层柱外,其他各层柱的线刚度均乘以折减系数0.9,并取传递系数为1/3; 底层柱及梁的传递系数仍为1/2。 例12-2 用分层法计算例12-1框架的弯矩,并绘制弯矩图。
1转动刚度第十二章多层框架结构房屋124竖向荷载作用下的内力近似计算2分配系数第十二章多层框架结构房屋124竖向荷载作用下的内力近似计算3传递系数第十二章多层框架结构房屋124竖向荷载作用下的内力近似计算4杆端弯矩第十二章多层框架结构房屋124竖向荷载作用下的内力近似计算例121三跨二层钢筋混凝土框架各层框架梁所承受的竖向荷载设计值如图所示图中括号内数值为各杆件的相对线刚度

框架在竖向荷载作用下内力计算

框架在竖向荷载作用下内力计算

A2
q1=10kN/m
B2
ic2 1
ib 0.777 ic2 1
A1
B1
8000
A 2
B 2
ic2 1
ic2 1
q 1 = 8 k N / m
A 1
B 1
ib 0.777
ic1 0.801
ic1 0.801
A 0
8 0 0 0
B 0
3、用力矩分配法计算第二层开口框架
(1)计算分配系数:
➢ 根据算得的各杆端弯矩值,作最后的弯矩图并求得 相应的剪力图和轴力图。
例题:
1882 12
42.667kNgm
(3)循环过程:A1
B1
用力矩分配法计算顶层开口框架
(1)计算分配系数:
A 2结 点
S A 2 A1 4 (0 .9 ic 2 )
S A 2 B 2 4 ib
S 4 (0 .9 ic 2 ib ) 4 1 .6 7 7
A2
A 2 A 1
S A 2 A1 S
6、计算梁跨中弯矩,计算梁剪力,绘制框架M、V图
例题:
用分层法计算 图示框架的内力
1、计算梁柱线刚度
Ic
bh3 12
1 12
0.4 0.553
1 12
0.0666
Ib
bh3 12
1 12
0.3
0 .7 3
1 12
0 .1 0 2 9
ic1
EIc H1
1 1 5 12
0.0666 E
1 12
1 2
,以作校核;
' ik
1 2
iik iik
(i)
➢ 计算荷载作用下各杆端产生的固端弯矩MFik,并写在相 应的各杆端部,求出汇交于每一节点的各杆固端弯矩之 和MFi,把它写在该节点的内框中;

第四章 框架结构内力计算

第四章 框架结构内力计算

4、计算和确定梁、柱弯矩分配系数。 按修正后的刚度计算各结点周围杆件的杆 端分配系数。 5、按力矩分配法计算单层梁、柱弯矩。 6、将每个单层框架的计算结果按相应部分迭 加起来便得到原框架的计算结果,即柱的弯矩 取相邻两个单元中同一柱对应弯矩之和,而梁 的弯矩直接采用。
四、计算例题
作业2
3.2 水平荷载下内力的近似计算—反弯点法
d
i 1
m
V pj
ij
4、柱端弯矩的确定 M j V jY j 柱下端弯矩 柱上端弯矩 M j V j (h j Yj )
5、梁端弯矩的确定 M ml (M mt M m1b ) 对于边柱 ibl 对于中柱
M ml ( M mt M m1b ) M mr ibl ibr ibr ( M mt M m1b ) ibl ibr
第3章 框架结构的内力和位移计算
3.1 竖向荷载下内力的近似计算—分层法 3.2 水平荷载下内力的近似计算—反弯点法 3.3 水平荷载下内力的近似计算—D值法 3.4 水平荷载作用下侧移的近似计算
3.1 竖向荷载下内力近似计算—分层法
一、竖向荷载 自重、活荷、雪荷载及施工检修荷载等。 二、分层法的基本假设 1、忽略侧移的影响; 2、忽略每层梁的竖向荷载对其它各层梁 的影响。 三、分层法计算要点 1、将N层框架划分成N个单层框架,柱 端假定为固端, 用力矩分配法计算。
三、柱的侧移刚度D 12ic D 2 h
—为柱侧移刚度修正系数,表示梁柱刚 度比对柱侧移刚度的影响。

四、剪力计算 有了D值后,与反弯点法类似,计算各柱分 配的剪力 Dij Vij V pj Dij 五、确定柱反弯点高度比 影响柱反弯点高度的主要因素是柱上下端的 约束条件。

框架结构内力与位移计算

框架结构内力与位移计算

《高层建筑结构与抗震》辅导材料四框架结构内力与位移计算学习目标1、熟悉框架结构在竖向荷载和水平荷载作用下的弯矩图形、剪力图形和轴力图形;2、熟悉框架结构内力与位移计算的简化假定及计算简图的确定;3、掌握竖向荷载作用下框架内力的计算方法——分层法;4、掌握水平荷载作用下框架内力的计算方法——反弯点法和D值法,掌握框架结构的侧移计算方法。

学习重点1、竖向荷载作用下框架结构的内力计算;2、水平荷载作用下框架结构的内力及侧移计算。

框架在结构力学中称为刚架,刚架的内力和位移计算方法很多,可分为精确算法和近似算法。

精确法是采用较少的计算假定,较为接近实际情况地考虑建筑结构的内力、位移和外荷载的关系,一般需建立大型的代数方程组,并用电子计算机求解;近似算法对建筑结构引入较多的假定,进行简化计算。

由于近似计算简单、易于掌握,又能反映刚架受力和变形的基本特点,因此近似的计算方法仍为工程师们所常用。

本章内容主要介绍框架结构在荷载作用下内力与位移的近似计算方法。

其中分层法用于框架结构在竖向荷载作用下的内力计算,反弯点法和D值法用于框架结构在水平荷载作用下的内力计算。

既然是近似计算,就需要熟悉框架结构的计算简图和各种计算方法的简化假定。

一、框架结构计算简图的确定一般情况下,框架结构是一个空间受力体系,可以按照第四章所述的平面结构假定的简化原则,忽略结构纵向和横向之间的空间联系,忽略各构件的抗扭作用,将框架结构简化为沿横方向和纵方向的平面框架,承受竖向荷载和水平荷载,进行内力和位移计算。

结构设计时一般取中间有代表性的一榀横向框架进行分析,若作用于纵向框架上的荷载各不相同,则必要时应分别进行计算。

框架结构的节点一般总是三向受力的,但当按平面框架进行结构分析时,则节点也相应地简化。

在常见的现浇钢筋混凝土结构中,梁和柱内的纵向受力钢筋都将穿过节点或锚入节点区,这时节点应简化为刚接节点;对于现浇钢筋混凝土柱与基础的连接形式,一般也设计成固定支座,即为刚性连接。

4_竖向荷载作用下框架内力计算

4_竖向荷载作用下框架内力计算

4_竖向荷载作用下框架内力计算在结构设计过程中,框架结构是一种常见的结构形式。

在实际工程中,框架结构会受到各种荷载的作用。

竖向荷载是一种重要的荷载形式,常见的竖向荷载包括自重、活荷载和附加荷载等。

在框架结构内力计算中,需要首先确定结构的几何特征,包括框架的截面形状、材料参数和受力情况等。

然后根据几何特征和力学原理,分析结构的受力平衡和变形情况,最终得到内力的计算结果。

下面将以一个简单的框架结构为例,介绍竖向荷载作用下框架内力计算的基本步骤。

1.框架结构的受力分析首先,需要绘制框架的受力图。

在竖向荷载作用下,框架的受力主要包括竖向荷载的作用力、支座反力和框架内部的轴力、剪力和弯矩等。

通过受力分析,可以将框架结构简化为若干个矩形梁和柱,以便进行进一步的计算。

2.框架结构的力学模型化将框架结构进行力学模型化,即将结构划分为若干个杆件和节点,并确定节点的受力情况。

杆件的长度、截面形状和材料参数等需要根据实际情况进行设定,以便计算杆件的受力。

3.杆件的受力计算根据竖向荷载作用下杆件的受力平衡和变形情况,可以得到杆件的轴力、剪力和弯矩等。

对于轴力,可以利用静力平衡原理进行计算。

对于剪力和弯矩,可以根据杆件的受力分布和形状进行计算,常用的方法包括截面法和弯矩传递法等。

4.框架结构的内力计算根据杆件的受力计算结果,可以得到框架结构内各个节点的内力情况。

根据节点的受力平衡条件,可以计算出节点上的轴力、剪力和弯矩等。

此外,还需要考虑支座反力的作用,以及与其他荷载(如横向荷载)的叠加效应。

5.内力的承载能力和设计校核根据内力计算结果,可以对框架结构的承载能力进行评估和校核。

根据设计规范和材料参数,结合强度和稳定性要求,进行构件的截面尺寸校核。

如果结构的承载能力满足要求,则结构设计合理;否则,需要进行后续的调整和优化。

总的来说,竖向荷载作用下框架内力计算是结构设计中的重要环节。

通过合理的受力分析和计算,能够得到准确的内力计算结果,从而为结构设计和施工提供科学的依据。

框架结构竖向荷载作用下的内力计算

框架结构竖向荷载作用下的内力计算

框架结构竖向荷载作用下的内力计算框架结构是由梁柱等构件组成的,在受到竖向荷载作用下,会引起构件内力的产生。

了解框架结构竖向荷载作用下的内力计算对于结构的设计和分析非常重要。

下面将详细介绍框架结构竖向荷载作用下的内力计算方法。

首先,通过建立结构模型来描述框架结构。

结构模型中包括构件、节点和连接关系。

构件可以是梁或柱,节点是构件之间的连接点,连接关系表示构件之间的刚性约束。

在竖向荷载作用下,框架结构的内力主要有两种情况:梁内力和柱内力。

1.梁内力计算:在竖向荷载作用下,梁会产生弯矩和剪力。

根据梁的基本理论,可以得出计算弯矩和剪力的公式。

-弯矩计算:弯矩是由竖向荷载作用在梁上引起的。

根据弯矩的定义,弯矩M等于施加在梁上的力乘以力臂。

当梁需要承受重力荷载时,弯矩的计算公式为M=w*l^2/8,其中w为荷载大小,l为梁的跨度。

-剪力计算:剪力是由竖向荷载作用在梁上引起的。

根据剪力的定义,剪力V等于施加在梁上的力。

当梁需要承受重力荷载时,剪力的计算公式为V=w*l/2,其中w为荷载大小,l为梁的跨度。

2.柱内力计算:在竖向荷载作用下,柱会产生压力和拉力。

根据柱的基本理论,可以得出计算压力和拉力的公式。

-压力计算:压力是由竖向荷载作用在柱上引起的。

根据力学平衡原理,压力P等于施加在柱上的荷载之和。

当柱需要承受多个重力荷载时,压力的计算公式为P=∑w,其中w为荷载大小。

-拉力计算:拉力是由竖向荷载作用在柱上引起的。

和压力类似,拉力T等于施加在柱上的荷载之和。

在实际计算过程中,需要考虑梁和柱的截面形状和材料性质,以及节点和连接部位的刚性约束等因素。

同时,还需要考虑结构的整体平衡条件和节点处的力的平衡条件。

在计算过程中,可以使用静力平衡原理和弹性力学理论来进行分析。

通过平衡方程和应变-位移关系等基本原理,可以建立结构方程组,并通过求解方程组得到内力的值。

总结起来,框架结构竖向荷载作用下的内力计算是一个复杂的过程,需要考虑多个因素和使用多种方法。

第七章 竖向荷载作用下框架内力计算

第七章 竖向荷载作用下框架内力计算

第七章 竖向荷载作用下横向框架结构的内力计算7.1 计算单元取3轴线横向框架进行计算,计算单元宽度为7.5m ,如图所示,由于房间内直接传给该框架的楼面荷载如图中的水平阴影线所示,计算单元内的其余楼面荷载则通过纵向框架梁以集中力的形式传给横向框架,作用于各节点上。

7.2 荷载计算节点集中荷载1P : 边纵梁传来:(a)屋面自重(三角形部分):N k 78.56298.423.3.26.3=⨯⨯⨯(b)边纵梁自重: 5.709⨯6.0=43.73kN 女儿墙自重: kN 87.330.6312.3=⨯合计: 1P = 154.32kN节点集中荷载2P :纵梁传来(a )屋面自重(三角形部分):KN 12.27298.40.326.3=⨯⨯⨯(b )走道屋面板自重0.5⨯(6.0+6.0-3)⨯1.5⨯4.98=58.79KN纵梁自重: 5.709⨯6.0=43.73kN合计: 2P = 170.55kN对于1~4层,计算的方法基本与第五层相同,计算过程如下: 1 5.709/q kN m =1q '=3.46/kN/mm KN q /99.103.333.32=⨯= m KN q /99.74.233.32=⨯=节点集中荷载1P :纵梁自重: 5.709⨯6.0=43.73kN外墙自重:()88.76KN 68.37.03.3225.00.6=⨯-⨯⨯-)( 来纵梁传楼面自重(三角形部分): (0.5 3.60.5 3.6 3.33)221.58kN ⨯⨯⨯⨯⨯= 扣窗面积墙重加窗重: 2 2.4 2.0 3.682 2.1631.01kN -⨯⨯⨯+⨯=-合计: 174.24kN节点集中荷载2P :纵梁自重: 5.709⨯7.2=41.10kN 内墙自重: 71.50kN 纵梁传来(a)楼面自重(三角形部分):()KN5.0=⨯0.3⨯⨯5.0⨯⨯66.233.3780.3(b)走道楼面板自重(梯形部分)()KN⨯5.0=⨯5.7⨯+-48.9333.30.38.15.7扣窗面积墙重加窗重: 2.412 3.6820.4816.10kN-⨯⨯⨯+⨯=-合计: 152.58kN 7.2.2活荷载计算:活荷载作用下各层框架梁上的荷载分布如图:合计: 7.99KNP:节点集中荷载2屋面活载(三角形部分):2⨯(0.5⨯3.0⨯0.5⨯3.0⨯0.5)=2.72KN走道传来屋面荷载(梯形部分): ()KN 05.45.05.14.20.60.621=⨯⨯-+合计: 12.04KN 对于1~4层,m KN /6.60.30.2q 2=⨯= m KN q /64.25.2'2=⨯= 节点集中荷载1P : 楼面活载(三角形部分):2⨯(0.5⨯3.30.5⨯3.3⨯2)=10.89KN合计: 31.97KN中节点集中荷载2P : 楼面活载(三角形部分):2⨯(0.5⨯3.30.5⨯3.3⨯2)=10.89KN走道传来屋面荷载(梯形部分):()KN 25.205.25.14.20.60.621=⨯⨯-+ 纵梁传来的屋面活载(梯形部分):()KN 08.2128.10.35.75.75.0=⨯⨯-+⨯ 合计: 52.22KN7.2.3.屋面雪荷载标准值:同理,在屋面雪荷载作用下KN/m 16.10.335.0q 2=⨯= m KN q /84.04.235.0'2=⨯=节点集中荷载1P : 屋面雪载(三角形部分):2⨯(0.5⨯3.3⨯0.5⨯3.3⨯0.35)=2.08KN纵梁传来的屋面雪载(梯形部分)()KN 69.335.08.16.35.75.75.0=⨯⨯-+⨯ 合计: 5.77KN中节点集中荷载2P : 屋面雪载(三角形部分):2⨯(0.5⨯3.3⨯0.5⨯3.3⨯0.35)=2.08KN走道传来屋面雪载(梯形部分): ()KN 835.235.05.14.25.75.721=⨯⨯-+纵梁传来的屋面雪载(梯形部分): 3.97KN 合计: 8.72KN 1~4层,雪荷载作用下的节点集中力同屋面活荷载作用下的。

毕业设计--框架竖向荷载作用下内力计算0415

毕业设计--框架竖向荷载作用下内力计算0415

2018/3/21
30
2018/3/21
5
第三部分 框架结构 竖向荷载作用下的内力计算
上下柱尺 寸变,形 心偏心距e
2018/3/21
第三部分 框架结构 竖向荷载作用下的内力计算
上柱下端轴力N
2018/3/21
第三部分 框架结构 竖向荷载作用下的内力计算
梁中至柱中距≦相 应柱边长/4,节点 附加弯矩忽略
节点附加弯矩M=N*e 参于节点不平衡弯矩
节点附加弯矩 M=N*e 参于节点不平 衡弯矩
2018/3/21
第三部分 框架结构 竖向荷载作用下的内力计算
一、 弯矩二次分配法计算过程 1、确定梁柱弯矩分配系数 2、求出荷载作用下梁端弯矩 3、求出节点不平衡弯矩(含纵向框架传来弯矩) 4、第一次分配 5、同时向远端传递 6、 第二次分配 7、叠加得最终弯矩
第三部分 框架结构 竖向荷载作用下的内力计算
2018/3/21
第三部分 框架结构 竖向荷载作用下的内力计算
2018/3/21
第三部分 框架结构 竖向荷载作用下的内力计算
2018/3/21
第三部分 框架结构 竖向荷载作用下的内力计算
四、固端弯矩计算 TSSD、材料力学均可 五、梁端剪力计算
TSSD、材料力学均可
求分配系数 第三部分 框架结构 竖向荷载作用下的内力计算 求固端弯矩 先对各节点的不平衡弯 矩进行第一次分配
向远端传递(传递系数为 1/2);
再将传递弯矩产生的新 的不平衡弯矩进行第二次 分配
最终弯矩
第三部分 框架结构 竖向荷载作用下的内力计算
二、梁端的弯矩调幅
由于钢筋混凝土结构具有塑性内力重分布性能,在竖向荷 载作用下可以考虑适当降低梁端弯矩,即进行弯矩调幅。调 幅系数β如下: (1)现浇框架结构: β=0.8-0.9 (2)装配整体式框架: β=0.7-0.8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章竖向荷载作用下内力计算§6.1 框架结构的荷载计算§6.1.1.板传荷载计算计算单元见下图所示:因为楼板为整体现浇,本板选用双向板,可沿四角点沿45°线将区格分为小块,每个板上的荷载传给与之相邻的梁,板传至梁上的三角形或梯形荷载可等效为均布荷载。

图6-1 框架结构计算单元图6-2 框架结构计算单元等效荷载一.B ~C, (D ~E)轴间框架梁:屋面板传荷载:恒载:2226.09KN/m 1.5m [1-2(1.5/6)(1.5/6)]2=17.128KN/m ⨯⨯+⨯活载:2222.0KN/m 1.5m [1-2(1.5/6)(1.5/6)]2=5.625KN/m ⨯⨯⨯+⨯楼面板传荷载:恒载:2223.83KN/m 1.5m [1-2(1.5/6)(1.5/6)]2=10.772KN/m ⨯⨯⨯+⨯活载:2222.0KN/m 1.5m [1-2(1.5/6)(1.5/6)]2=5.625KN/m ⨯⨯⨯+⨯梁自重:3.95KN/mB ~C, (D ~E)轴间框架梁均布荷载为:屋 面 梁:恒载=梁自重+板传荷载=17.128 KN/m+3.95 KN/m=21.103 KN/m活载=板传荷载=5.625 KN/m楼面板传荷载:恒载=梁自重+板传荷载=3.95 KN/m+10.772 KN/m=14.747 KN/m活载=板传荷载=5.625 KN/m二. C ~D 轴间框架梁:屋面板传荷载:恒载:26.09KN/m 1.2m 5/82=9.135KN/m ⨯⨯⨯活载:22.0KN/m 1.5m 5/82=3KN/m ⨯⨯⨯楼面板传荷载:恒载:23.83KN/m 1.25/82=5.745KN/m ⨯⨯⨯活载:22.0KN/m 1.2m 5/82=3.75KN/m ⨯⨯⨯梁自重:3.95KN/mC ~D 轴间框架梁均布荷载为:屋 面 梁:恒载=梁自重+板传荷载=2.349 KN/m+9.135 KN/m=11.484 KN/m活载=板传荷载=3 KN/m楼面板传荷载:恒载=梁自重+板传荷载=2.349 KN/m+5.745KN/m=8.09KN/m活载=板传荷载=3.75 KN/m三.B 轴柱纵向集中荷载计算:顶层柱:女儿墙自重:(做法:墙高900㎜,100㎜的混凝土压顶)330.240.918/25/0.10.24m m kn m KN m m m ⨯⨯+⨯⨯+()1.220.240.5 5.806/m m m KN m ⨯+⨯=顶层柱恒载=女儿墙+梁自重+板传荷载=5.806/6 3.975/(60.6)KN m KN m m m ⨯+⨯-⨯()()2212 1.5/6 1.5/66/42 6.09/ 1.55/832123.247KN m m KN ⎡⎤-⨯+⨯⨯+⨯⨯⨯⨯=⎣⎦顶层柱活载=板传荷载=()()222.0/ 1.512 1.5/6 1.5/66/42KN m m ⎡⎤⨯⨯-⨯+⨯⨯+⎣⎦2.0/ 1.55/83219.688KN m m KN ⨯⨯⨯⨯=标准层柱恒载=墙自重+梁自重+板荷载=7.794/(60.6) 3.975/(60.6) 3.83/ 1.55/832KN m KN m KN m m ⨯-+⨯-+⨯⨯⨯⨯(2.332311.52)61/42 2.3325/61/42KN m ++⨯⨯⨯+⨯⨯⨯+()()223.83 1.512 1.5/6 1.5/66/42124.172m m KN ⎡⎤⨯⨯-⨯+⨯⨯=⎣⎦标准层柱活载=板传荷载=()()222.0 1.512 1.5/6 1.5/63 2.0 1.55/83219.688m m m m KN ⎡⎤⨯⨯-⨯+⨯+⨯⨯⨯⨯=⎣⎦基础顶面荷载=底层外纵墙自重+基础自重=9.738/(60.6) 2.5/(60.6)16.085KN m m m KN m m m KN ⨯-+⨯-=四.C 柱纵向集中力计算:顶层柱荷载=梁自重+板传梁荷载=3.975/(90.9) 2.349/(1.20.3) 6.09/ 1.55/832KN m m KN m m KN m m ⨯-+⨯-+⨯⨯⨯⨯ 6.09/ 1.25/8 1.22(2.3323/11.52/)61/42KN m m KN m KN m m +⨯⨯⨯⨯++⨯⨯⨯154.318KN =顶层柱活载=板传荷载=()()222.0 1.512 1.5/6 1.5/63m m ⎡⎤⨯⨯-⨯+⨯+⎣⎦()()222.0 1.212 1.2/6 1.2/63 2.0 1.2m m m m ⎡⎤⨯⨯-⨯+⨯+⨯⎣⎦5/8 1.22 2.0 1.55/83239.272m m KN ⨯⨯⨯+⨯⨯⨯⨯=标准柱恒载=墙+梁自重+板传荷载=11.52/(30.6)15.12/(30.6)15.12/(30.6)KN m m KN m m KN m m ⨯-+⨯-+⨯-+2.349/(1.20.3)3.975/(60.6) 6.09/ 1.55/832KN m m KN m m KN m m ⨯-+⨯-+⨯⨯⨯⨯+26.09/61/21/2 2.67/ 2.4/26 3.83/36200.173KN m m KN m m KN m m m KN ⨯⨯⨯+⨯⨯+⨯⨯=标准层活载=板传荷载=222.0/36 2.5/ 1.2654KN m m m KN m m m KN ⨯⨯+⨯⨯=基础顶面恒载=底层外纵墙自重+基础自重9.738/(60.6) 2.5/(60.6)66.085KN m m m KN m m m KN ⨯-+⨯-=(3).框架柱自重:柱自重: 底层:1.2×0.6m ×0.6m ×253/KN m ×4.55m=49.14KN其余柱:1.2×0.6m ×0.6m ×253/KN m ×3.6m=38.88KN§6.2恒荷载作用下框架的内力§6.2.1.恒荷载作用下框架的弯矩计算一.恒荷载作用下框架可按下面公式求得:21/12ab M ql =- (61)-21/12ba M ql = (62)-故:2771/1221.03663.09.B C M KN m =-⨯⨯=-7763.09.C B M KN m =2771/1211.4846 5.512.C D M KN m =-⨯⨯=-77 5.512.C D M KN m =2661/1214.747644.241.B C M KN m =-⨯⨯=-6644.241.C B M KN m =2661/128.096 3.883.C D M KN m =-⨯⨯=-66 3.883.D C M KN m =恒荷载作用下框架的受荷简图如图6-3所示:图6-3竖向受荷总图:注:1.图中各值的单位为KN2.图中数值均为标准值3.图中括号数值为活荷载图6-4:恒载作用下的受荷简图(2).根据梁,柱相对线刚度,算出各节点的弯矩分配系数ij μ:/()ij c b i i i μ=∑+∑ (63)-分配系数如图6-5 , 图6-6所示:图6-5 B 柱弯矩各层分配系数简图B 柱:底层:0.801/(0.8010.609 1.0)0.332i ++=下柱=1.0/(0.8010.609 1.0)0.415i ++=上柱=0.609/(0.8010.609 1.0)0.253i ++=左梁=标准层: 1.0/(0.609 1.0 1.0)0.383i ++=上柱=1.0/(0.609 1.0 1.0)0.383i ++=下柱=0.609/(0.609 1.0 1.0)0.234i ++=左梁=顶层: 1.0/(0.609 1.0)0.622i +=下柱=0.609/(0.609 1.0)0.622i +=左梁=图6-6 C 柱弯矩各层分配系数简图C 柱: 0.609/(0.609 1.00.2110.801)0.232i +++=右梁=1.0/(0.609 1.00.2110.801)0.382i +++=上柱= 0.801/(0.609 1.00.2110.801)0.306i +++=下柱=0.211/(0.609 1.00.2110.801)0.081i +++=左梁=标准层: 1.0/(0.609 1.00.2110.801)0.355i +++=下柱=1.0/(0.609 1.00.2110.801)0.355i +++=上柱=0.609/(0.609 1.00.2110.801)0.216i +++=右梁=0.211/(0.609 1.00.2110.801)0.074i +++=左梁=顶层: 1.0/(0.609 1.00.211)0.549i ++=下柱=0.211/(0.609 1.00.211)0.116i ++=左梁=0.609/(0.609 1.00.211)0.335i ++=右梁=三.恒荷载作用下的弯矩剪力计算,根据简图(6-4)梁:A M 0∑= 21/2.0A B B M M ql Q l ---=/1/2B A B Q M M l ql =--B M 0∑= 21/2.0A B A M M ql Q l -+-=/1/2A A B Q M M l ql =-+ (6-4)柱:C M 0∑= .0C D D M M Q h ---=()/D C D Q M M h =-+D M 0∑= .0C D C M M Q h ---=()/C C D Q M M h =-+ (6-5)四.恒荷载作用下的边跨框架的轴力计算,包括连梁传来的荷载及柱自重.7123.24721.1036/2186.556N KN =+⨯=67124.17214.7476/238.88393.849N N KN =++⨯+=56124.17214.7476/238.88601.142N N KN =++⨯+=45124.17214.7476/238.88808.435N N KN =++⨯+=34124.17214.7476/238.881015.728N N KN =++⨯+=23124.17214.7476/238.881223.021N N KN =++⨯+=12124.17214.7476/238.881382.487N N KN =++⨯+=恒荷载作用下的中跨框架的轴力计算:7154.31811.484 2.4/2168.099N KN =+⨯=67200.1738.09 2.4/238.88416.88N N KN =++⨯+=56200.1738.09 2.4/238.88665.621N N KN =++⨯+=45200.1738.09 2.4/238.88808.435N N KN =++⨯+=34200.1738.09 2.4/238.881015.728N N KN =++⨯+=23200.1738.09 2.4/238.881223.021N N KN =++⨯+=12200.1738.09 2.4/238.881382.487N N KN=++⨯+=图6-5 恒荷载作用下的计算简图五.弯矩分配及传递弯矩二次分配法比分层法作了更进一步的简化。

相关文档
最新文档