河南新密2019保送生考试试题-数学
河南省2019年3月普通高中自主招生数学试卷含答案解析

2019年河南省普通高中自主招生数学试卷(3月份)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣8的相反数是()A.﹣8B.C.8D.﹣2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1073.如图所示的几何体的主视图是()A.B.C.D.4.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+15.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.806.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.7.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.28.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.10.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.计算:=.12.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:13.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为.14.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.15.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE 沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.17.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?18.如图所示,半圆O的直径AB=4,=,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=时,四边形AODC是菱形;(3)当AD=时,四边形AEDF是正方形.19.某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.21.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?22.问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A 逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC 边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.23.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2019年河南省普通高中自主招生数学试卷(3月份)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣8的相反数是()A.﹣8B.C.8D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=m3,符合题意;C、原式=8m3,不符合题意;D、原式=m2+2m+1,不符合题意,故选:B.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.80【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B.【点评】考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)﹣(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【解答】解:设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.2【分析】根据根的判别式即可求出a的范围.【解答】解:由题意可知:△>0,∴1﹣4(﹣a+)>0,解得:a>1故满足条件的最小整数a的值是2,故选:D.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.8.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°【分析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.【解答】解:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选:C.【点评】本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.【分析】如图,过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标.【解答】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣x)2=x2+12,∴x=,又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3﹣=,∴,即,∴DF=,AF=,∴OF=﹣1=,∴D的坐标为(﹣,).故选:A.【点评】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.10.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.【分析】根据题意易知道当P在BD上由B向D运动时,△BPQ的高PQ和底BQ都随着t的增大而增大,那么S△BPQ就是PQ和BQ两个一次函数相乘再乘以二分之一,结果是一个二次函数,然后根据它们的斜率乘积的正负性判别抛物线开口方向;当P在DE上有D向E运动时,高PQ不变,底BQ随着t的增大而增大,则S△BPQ是一个一次函数,然后根据斜率的正负性判别图象上升还是下降;当P在EC上由E向C 运动时高PQ逐渐减小,底BQ逐渐增大,S△BPQ的图象会是一二次函数,再根据PQ和BQ两个一次函数的斜率乘积的正负性来判断抛物线开口方向.【解答】解:∵PQ⊥BQ∴在P、Q运动过程中△BPQ始终是直角三角形.=PQ•BQ∴S△BPQ①当点P在BD上,Q在BC上时(即0s≤t≤2s)BP=t,BQ=PQ•cos60°=t,PQ=BP•sin60°=tS=PQ•BQ=•t•t=t2△BPQ此时S的图象是关于t(0s≤t≤2s)的二次函数.△BPQ∵>0∴抛物线开口向上;②当P在DE上,Q在BC上时(即2s<t≤4s)PQ=BD•sin60°=×2=,BQ=BD•cos60°+(t﹣2)=t﹣1S=PQ•BQ=••(t﹣1)=t﹣△BPQ此时S的图象是关于t(2s<t≤4s)的一次函数.△BPQ∵斜率>0∴S随t的增大而增大,直线由左向右依次上升.△BPQ③当P在DE上,P在EC上时(即4s<t≤s)PQ=[CE﹣(t﹣4)]•sin45°=﹣t(4s<t≤s),BQ=BC﹣CQ=BC﹣[CE﹣(t﹣4)]•cos45°=﹣(﹣t)=t+S=PQ•BQ△BPQ由于展开二次项系数a=k1•k2=•(﹣)•()=﹣抛物线开口向下,故选:D.【点评】本道题考查了图形动点分析能力与分段函数分析能力.充分体现了数形结合的思想.二、填空题(本大题共5小题,每小题3分,共15分)11.计算:=﹣1.【分析】原式利用负整数指数幂法则,以及立方根定义计算即可求出值.【解答】解:原式=1﹣2=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:y=﹣5x2﹣50x ﹣128【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【解答】解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,即y=﹣5x2﹣50x﹣128,故答案为y=﹣5x2﹣50x﹣128.【点评】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便.13.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为.【分析】先画树状图展示所有16种等可能的结果数,再找出两人摸到的球颜色不同的结果数,然后根据概率公式求解.【解答】解:列表如下:由表格可知,共有16种等可能的结果,其中两人摸到的球颜色不同的情况有10种,所以两人摸到的球颜色不同的概率为=,故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.14.如图,在▱ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA与⊙A 相交于点F .若的长为,则图中阴影部分的面积为.【分析】求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的.很显然图中阴影部分的面积=△ACD 的面积﹣扇形ACE 的面积,然后按各图形的面积公式计算即可. 【解答】解:连接AC , ∵DC 是⊙A 的切线, ∴AC ⊥CD , 又∵AB =AC =CD ,∴△ACD 是等腰直角三角形, ∴∠CAD =45°,又∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠CAD =∠ACB =45°, 又∵AB =AC , ∴∠ACB =∠B =45°, ∴∠FAD =∠B =45°,∵的长为,∴,解得:r =2,∴S 阴影=S △ACD ﹣S 扇形ACE =.故答案为:.【点评】本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差.15.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为或1.【分析】分两种情况进行讨论:当∠CFE=90°时,△ECF是直角三角形;当∠CEF=90°时,△ECF是直角三角形,分别根据直角三角形的勾股定理列方程求解即可.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.【点评】本题考查了折叠问题,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质以及勾股定理.解题时注意:折叠前后两图形全等,即对应线段相等;对应角相等.本题有两种情况,需要分类讨论,避免漏解.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.【分析】根据平方差公式、单项式乘多项式和完全平方公式可以化简题目中的式子,再将x、y的值代入化简后的式子即可解答本题.【解答】解:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2=x2﹣y2+xy+2y2﹣x2+2xy﹣y2=3xy,当x=2+,y=2﹣时,原式=3×(2+)(2﹣)=3.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.17.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了100名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为36°;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?【分析】(1)用“戏曲”的人数除以其所占百分比可得;(2)用总人数乘以“民乐”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“戏曲”人数所占百分比即可得;(4)用总人数乘以样本中“书法”人数所占百分比可得.【解答】解:(1)学校本次调查的学生人数为10÷10%=100名,故答案为:100;(2)“民乐”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为360°×10%=36°,故答案为:36°;(4)估计该校喜欢书法的学生人数为2000×25%=500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.18.如图所示,半圆O的直径AB=4,=,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=2时,四边形AODC是菱形;(3)当AD=2时,四边形AEDF是正方形.【分析】(1)根据角平分线的性质,可得DF与DE的关系,根据圆周角定理,可得DC与DB的关系,根据HL,证明即可;(2)根据菱形的性质,可得OD与CD,OD与BD的关系,根据等边三角形的性质,得到∠DBA的度数,根据正弦的定义计算即可;(3)根据圆周角定理,可得OD⊥AB,根据勾股定理,可得答案.【解答】(1)证明:∵=,∴∠CAD=∠BAD,又DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵=,∴BD=CD,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL);(2)四边形AODC是菱形时,OD=CD=DB=OB,∴∠DBA=60°,∴AD=AB cos∠DBA=4sin60°=2,故答案为:2;(3)当OD⊥AB,即OD与OE重合时,四边形AEDF是正方形,由勾股定理,得AD==2,故答案为:2.【点评】本题考查的是角平分线的性质、圆周角定理、全等三角形的判定和性质以及等边三角形的判定和性质、正方形的判定,掌握全等三角形的判定定理和性质定理、圆周角定理是解题的关键.19.某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan ∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.【点评】本题考查了解直角三角形的应用﹣方向角问题,作出辅助线构造直角三角形是解题的关键.20.如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.21.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:,解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.=1.5×+2.8×∴w总额=0.1x+×2.8=0.1x+1680﹣0.14x=﹣0.04x+1680,又≥60,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=﹣0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【点评】本题考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.22.问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A 逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC 边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.23.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)设交点式y=a(x+1)(x﹣3),展开得到﹣2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=﹣x+b,把C点坐标代入求出b得到直线PC的解析式为y=﹣x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣x+b,把C(0,3)代入得b=3,。
2019年河南省中招考试数学试卷及答案(解析版)

(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为;
(2)请补全条形统计图;
(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;
(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200× =108”,请你判断这种说法是否正确,并说明理由.
补全条形统计图如图所示。
(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为
1200× =160(人):………………………………………………………7分
(4)这种说法不正确.理由如下:
小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人。………9分
解:(1)过点B、D作x轴的的垂线,垂足分别为点M、N.
∵A (5.0)、B(2,6),∴OM=BC=2,BM=OC=6,AM=3.
∵DN∥BM,∴△AND∽△ABM.
∴
∴DN =2,AN=1, ∴ON=4
∴点D的坐标为(4,2).…………………………3分
又∵ 双曲线y= (x>0)经过点D,
∴k=2×4=8
3.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为 ( )
(A) .350(B). 450(C) .550(D). 650
答案:C
解析:根据角的平分线的性质及直角的性质,即可求解.
∠CON=900-350=550,故选C.
4.下列各式计算正确的是 ( )
(A)a +2a =3a2(B)(-a3)2=a6
2019年育才高中保送生考试数学模拟试卷答题卷

温馨寄语:请仔细审题,细心答题,相信你一定会有出色的表现!
参考公式:二次函数 的顶点坐标是 。
试卷Ⅰ
一、选择题(本题有10个小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)
题号
1
2
3
4
5
6
7
8
9
10
答案
试卷Ⅱ
二、填空题:(本题有8个小题,每小题4分,共32分)
11.;12.;13.;
14.;15.;16.;
17..18.
三、解答题(本题有8小题,共计6+6+7+8+9+12=48分,各小题都必须写出解答过程)
19.(1)
(2)
20.(1)第四个月销量占总销量的百分比是;
(2)在图2中补全表示B品牌电视机月销量的折线;
(3)
(4)
21.①
②
2(1)
(2)
(3)
24.(1)
(2)
(3)
2019年初中毕业升学考试(河南卷)数学【含答案及解析】

2019年初中毕业升学考试(河南卷)数学【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 的相反数是()(A)(B)(C)(D)2. 某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为()(A)(B)(C)(D)3. 下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()4. 下列计算正确的是()(A)(B)(C)(D)5. 如图,过反比例函数的图像上一点A作AB⊥轴于点B,连接AO,若S△AOB=2,则的值为()(A)2 (B)3 (C)4 (D)56. 如图,在△ABC中,∠ACB=90°,AC=8,AB=10. DE垂直平分AC交AB于点E,则DE的长为()(A)6 (B)5 (C)4 (D)37. 下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:8. 甲乙丙丁平均数(cm)185180185180方差3. 63.67.48.1td二、单选题9. 如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为A. (1,﹣1)B. (﹣1,﹣1)C. (,0)D. (0,)三、填空题10. 计算:11. 如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是_________.12. 若关于的一元二次方程有两个不相等的实数根,则的取值范围__________________.13. 在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,则该班小明和小亮被分在同一组的概率是_________.14. 已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________.15. 如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C. 若OA=2,则阴影部分的面积为___________.16. 如图,已知AD∥BC,AB⊥BC,AB=3.点E为射线 BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为__________ .四、解答题17. 先化简,再求值:,其中的值从不等式组的整数解中选取。
2019年河南省普通高中招生考试试卷数学(word版,含答案)

普通高中招生考试试卷数 学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.52-的相反数是 (A )52- (B )52 (C )25- (D )25 2.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为(A )210147.2⨯ (B )3102147.0⨯ (C )1010147.2⨯ (D )11102147.0⨯3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是(A )厉 (B )害 (C )了 (D )我4.下列运算正确的是(A )532)x x -=-( (B )532x x x =+ (C )743x x x =• (D )1233=-x x 5.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3.%,14.5%,17.1%,关于这组数据,下列说法正确的是(A )中位数是12.7% (B )众数是15.3%(C )平均数是15.98% (D )方差是06.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问合伙人数,羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为(A )⎩⎨⎧+=+=37455x y x y (B )⎩⎨⎧+=-=37455x y x y (C )⎩⎨⎧-=+=37455x y x y (D )⎩⎨⎧-=-=37455x y x y 7.下列一元二次方程中,有两个不相等实数根的是(A )0962=++x x (B )x x =2 (C )x x 232=+ (D )01)12=+-x (8.现有4张卡片,其中3张卡上正面上的图案是“”,一张卡片正面上的图案是“”,他们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是(A )169 (B )43 (C )83 (D )21 9.如图,已知□AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上.按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于21DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G ,则点G 的坐标为(A ))(2,15- (B ))(2,5 (C ))(2,53- (D ))(2,25-10.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B.图2是点F 运动时,△FBC 的面积y (2cm )随时间x (s )变化的关系图象,则a 的值为(A )5 (B )2 (C )25 (D )52 二、填空题(每小题3分,共15分) 11.计算:95--=__________.12.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.13.不等式组⎩⎨⎧≥-+3425x x ,>的最小整数解是__________.14.如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A 'B 'C ',其中点B 的运动路径为弧'BB ,则图中阴影部分的面积为__________.15. 如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A 'BC 与△ABC 关于BC 所在直线对称.点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A 'B 所在直线于点F ,连接A 'E.当△A 'EF 为直角三角形时,AB 的长为__________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:11112-÷⎪⎭⎫ ⎝⎛-+x x x ,其中x=12+.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代.漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示), E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有__________人.(2)扇形统计图中,扇形E 的圆心角度数是__________.(3)请补全条形统计图.(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数xk y (x >0)的图象过格点(网格线的交点)P . (1)求反比例函数的解析式.(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O ,点P ;②矩形的面积等于k 的值.19.(9分)如图,AB 是○O 的直径,DO ⊥AB 于点O ,连接DA 交○O 于点C ,过点C 作○O 的切线交DO 于点E ,连接BC 交DO 于点F.(1)求证:CE=EF.(2)连接AF 并延长,交○O 于点G.填空:①当∠D 的度数为__________时,四边形ECFG 为菱形;②当∠D 的度数为__________时,四边形ECOG 为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A ,B 两点间的距离为90cm ,低杠上点C 到直线AB 的距离CE 的长为155cm ,高杠上点D 到直线AB 的距离DF 的长为234cm ,已知低杠的支架AC 与直线AB 的夹角∠CAE 为82.4°,高杠的支架BD 与直线AB 的夹角∠DBF 为80.3°,求高、低杠间的水平距离CH 的长.(结果精确到1cm ,参考数据:sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值.(2)根据以上信息,填空:该产品的成本单价是__________元.当销售单价x=__________元时,日销售利润w 最大,最大值是__________元.(3)公司计划开展科技创新,以降低该产品的成本.预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M.填空:①BDAC 的值为__________. ②∠AMB 的度数为__________.(2)类比探究如图2,在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M.请判断BDAC 的值及∠AMB 的度数,并说明理由.(3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M.若OD=1,OB=7,请直接写出当点C 与点M 重合时AC 的长.23.(11分)如图,抛物线c x ax y ++=62交x 轴于A ,B 两点,交y 轴于点C.直线y=x -5经过点B ,C.(1)求抛物线的解析式.(2)过点A 的直线交直线BC 于点M.①当AM ⊥BC 时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标.②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标.。
2019年3月河南省普通高中自主招生数学试卷(含答案解析)

2019年河南省普通高中自主招生数学试卷(3月份)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣8的相反数是()A.﹣8B.C.8D.﹣2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1073.如图所示的几何体的主视图是()A.B.C.D.4.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+15.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.806.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y 两,根据题意得()A.B.C.D.7.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.28.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO 的度数为()A.85°B.70°C.75°D.60°9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.10.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.计算:=.12.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:13.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为.14.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.15.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.17.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?18.如图所示,半圆O的直径AB=4,=,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=时,四边形AODC是菱形;(3)当AD=时,四边形AEDF是正方形.19.某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.21.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?22.问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A 逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC 边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.23.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2019年河南省普通高中自主招生数学试卷(3月份)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣8的相反数是()A.﹣8B.C.8D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=m3,符合题意;C、原式=8m3,不符合题意;D、原式=m2+2m+1,不符合题意,故选:B.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.80【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B.【点评】考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y 两,根据题意得()A.B.C.D.【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)﹣(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【解答】解:设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.2【分析】根据根的判别式即可求出a的范围.【解答】解:由题意可知:△>0,∴1﹣4(﹣a+)>0,解得:a>1故满足条件的最小整数a的值是2,故选:D.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.8.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO 的度数为()A.85°B.70°C.75°D.60°【分析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.【解答】解:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选:C.【点评】本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.【分析】如图,过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标.【解答】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣x)2=x2+12,∴x=,又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3﹣=,∴,即,∴DF=,AF=,∴OF=﹣1=,∴D的坐标为(﹣,).故选:A.【点评】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.10.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.【分析】根据题意易知道当P在BD上由B向D运动时,△BPQ的高PQ和底BQ都随着t的增大而增大,那么S△BPQ就是PQ和BQ两个一次函数相乘再乘以二分之一,结果是一个二次函数,然后根据它们的斜率乘积的正负性判别抛物线开口方向;当P在DE上有D向E运动时,高PQ不变,底BQ随着t的增大而增大,则S△BPQ是一个一次函数,然后根据斜率的正负性判别图象上升还是下降;当P在EC上由E向C运动时高PQ逐渐减小,底BQ逐渐增大,S△BPQ的图象会是一二次函数,再根据PQ和BQ两个一次函数的斜率乘积的正负性来判断抛物线开口方向.【解答】解:∵PQ⊥BQ∴在P、Q运动过程中△BPQ始终是直角三角形.=PQ•BQ∴S△BPQ①当点P在BD上,Q在BC上时(即0s≤t≤2s)BP=t,BQ=PQ•cos60°=t,PQ=BP•sin60°=tS=PQ•BQ=•t•t=t2△BPQ的图象是关于t(0s≤t≤2s)的二次函数.此时S△BPQ∵>0∴抛物线开口向上;②当P在DE上,Q在BC上时(即2s<t≤4s)PQ=BD•sin60°=×2=,BQ=BD•cos60°+(t﹣2)=t﹣1S=PQ•BQ=••(t﹣1)=t﹣△BPQ的图象是关于t(2s<t≤4s)的一次函数.此时S△BPQ∵斜率>0∴S随t的增大而增大,直线由左向右依次上升.△BPQ③当P在DE上,P在EC上时(即4s<t≤s)PQ=[CE﹣(t﹣4)]•sin45°=﹣t(4s<t≤s),BQ=BC﹣CQ=BC﹣[CE﹣(t﹣4)]•cos45°=﹣(﹣t)=t+S=PQ•BQ△BPQ由于展开二次项系数a=k1•k2=•(﹣)•()=﹣抛物线开口向下,故选:D.【点评】本道题考查了图形动点分析能力与分段函数分析能力.充分体现了数形结合的思想.二、填空题(本大题共5小题,每小题3分,共15分)11.计算:=﹣1.【分析】原式利用负整数指数幂法则,以及立方根定义计算即可求出值.【解答】解:原式=1﹣2=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:y=﹣5x2﹣50x﹣128【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【解答】解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,即y=﹣5x2﹣50x﹣128,故答案为y=﹣5x2﹣50x﹣128.【点评】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便.13.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为.【分析】先画树状图展示所有16种等可能的结果数,再找出两人摸到的球颜色不同的结果数,然后根据概率公式求解.【解答】解:列表如下:由表格可知,共有16种等可能的结果,其中两人摸到的球颜色不同的情况有10种,所以两人摸到的球颜色不同的概率为=,故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.14.如图,在▱ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙A 相交于点F .若的长为,则图中阴影部分的面积为.【分析】求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的.很显然图中阴影部分的面积=△ACD 的面积﹣扇形ACE 的面积,然后按各图形的面积公式计算即可. 【解答】解:连接AC , ∵DC 是⊙A 的切线, ∴AC ⊥CD , 又∵AB =AC =CD ,∴△ACD 是等腰直角三角形, ∴∠CAD =45°,又∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠CAD =∠ACB =45°, 又∵AB =AC , ∴∠ACB =∠B =45°, ∴∠FAD =∠B =45°,∵的长为,∴,解得:r =2,∴S 阴影=S △ACD ﹣S 扇形ACE =.故答案为:.【点评】本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差.15.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为或1.【分析】分两种情况进行讨论:当∠CFE=90°时,△ECF是直角三角形;当∠CEF=90°时,△ECF是直角三角形,分别根据直角三角形的勾股定理列方程求解即可.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF =90°时,△ECF 是直角三角形,过F 作FH ⊥AB 于H ,作FQ ⊥AD 于Q ,则∠FQE =∠D =90°, 又∵∠FEQ +∠CED =90°=∠ECD +∠CED , ∴∠FEQ =∠ECD , ∴△FEQ ∽△ECD ,∴==,即==,解得FQ =,QE =,∴AQ =HF =,AH =,设AP =FP =x ,则HP =﹣x ,∵Rt △PFH 中,HP 2+HF 2=PF 2,即(﹣x )2+()2=x 2, 解得x =1,即AP =1.综上所述,AP 的长为1或.【点评】本题考查了折叠问题,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质以及勾股定理.解题时注意:折叠前后两图形全等,即对应线段相等;对应角相等.本题有两种情况,需要分类讨论,避免漏解.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.先化简,再求值:(x +y )(x ﹣y )+y (x +2y )﹣(x ﹣y )2,其中x =2+,y =2﹣.【分析】根据平方差公式、单项式乘多项式和完全平方公式可以化简题目中的式子,再将x 、y 的值代入化简后的式子即可解答本题.【解答】解:(x +y )(x ﹣y )+y (x +2y )﹣(x ﹣y )2 =x 2﹣y 2+xy +2y 2﹣x 2+2xy ﹣y 2 =3xy ,当x=2+,y=2﹣时,原式=3×(2+)(2﹣)=3.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.17.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了100名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为36°;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?【分析】(1)用“戏曲”的人数除以其所占百分比可得;(2)用总人数乘以“民乐”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“戏曲”人数所占百分比即可得;(4)用总人数乘以样本中“书法”人数所占百分比可得.【解答】解:(1)学校本次调查的学生人数为10÷10%=100名,故答案为:100;(2)“民乐”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为360°×10%=36°,故答案为:36°;(4)估计该校喜欢书法的学生人数为2000×25%=500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.18.如图所示,半圆O的直径AB=4,=,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=2时,四边形AODC是菱形;(3)当AD=2时,四边形AEDF是正方形.【分析】(1)根据角平分线的性质,可得DF与DE的关系,根据圆周角定理,可得DC与DB的关系,根据HL,证明即可;(2)根据菱形的性质,可得OD与CD,OD与BD的关系,根据等边三角形的性质,得到∠DBA的度数,根据正弦的定义计算即可;(3)根据圆周角定理,可得OD⊥AB,根据勾股定理,可得答案.【解答】(1)证明:∵=,∴∠CAD=∠BAD,又DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵=,∴BD=CD,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL);(2)四边形AODC是菱形时,OD=CD=DB=OB,∴∠DBA=60°,∴AD=AB cos∠DBA=4sin60°=2,故答案为:2;(3)当OD⊥AB,即OD与OE重合时,四边形AEDF是正方形,由勾股定理,得AD==2,故答案为:2.【点评】本题考查的是角平分线的性质、圆周角定理、全等三角形的判定和性质以及等边三角形的判定和性质、正方形的判定,掌握全等三角形的判定定理和性质定理、圆周角定理是解题的关键.19.某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan ∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.【点评】本题考查了解直角三角形的应用﹣方向角问题,作出辅助线构造直角三角形是解题的关键.20.如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.21.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:,解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.=1.5×+2.8×∴w总额=0.1x+×2.8=0.1x+1680﹣0.14x=﹣0.04x+1680,又≥60,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=﹣0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【点评】本题考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.22.问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A 逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC 边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.23.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)设交点式y=a(x+1)(x﹣3),展开得到﹣2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=﹣x+b,把C点坐标代入求出b得到直线PC的解析式为y=﹣x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣x+b,。
2019年重点高中提前招生选拔考试数学试卷及答案

重点高中提前招生选拔考试数学试卷(本卷满分100分,时间120分钟)一、选择题(每题4分,共40分) 1.下列运算正确的是( )A.a 5.a 6= a 30B. (a 5)6= a 30C.a 5+a 6= a 11D.a 5÷a 6=65 2.抛物线2)8x (y 2+--=的顶点坐标是( )A .(2,8)B .(8,2)C .(—8,2)D .(—8,—2)3.在平面内有线段AB 和直线L,点A 、B 到直线L 的距离分别是4㎝、6㎝.则线段AB 的中点C到直线l 的距离是 ( )A .1或5B .3或5C .4D .54.已知:3223222⨯=+; 8338332⨯=+;154415442⨯=+;245524552⨯=+,……;809980992⨯=+,若ab10a b 102⨯=+(a,b 为正整数)则a+b 的值不可能是( ) A .109 B .218 C .326 D .4365.无论m 为何实数,直线y=2x+3m 与y=-x+5的交点不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知a 、b 、c 为△ABC 的三条边,且满足a 2+ab -ac -bc=0,b 2+bc -ba -ca=0,则 △ABC 是( )A .等边三角形 B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.若关于x 的不等式组 x ≥3a -2 无解,则函数y=(a -3)x 2-x -41的图象与 x<a+4 x 轴的交点个数为( )A.0B.1C.2D.1或28.将任意一张凸四边形的纸片对折,使它的两个不相邻的顶点重合,然后剪去纸片 的不重合部分,展开纸片,再一次对折,使另外的两个顶点重合,再剪去不重合 的部分后展开,此时纸片的形状是( )A.正方形B.长方形C.菱形D.等腰梯形9.如图,点M 是正方形ABCD 的CD 边上的中点, 点P 按A →B →C →M 的顺序在正方形的边上运动, 设AB=1,点P 经过的路程为x ,△APM 的面积为y ,CP则y 关于x 的函数是( )10.为了迎接2010年亚运会的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表:胜一场 平一场 负一场 积分 3 1 0 奖金(元/人)1500700当比赛进行到12轮结束(每队均需比赛12场)时,A 队共积19分,若每 赛一场每名参赛队员均得出场费500元,设A 队其中一名参赛队员所得的奖金与 出场费的和为W (元),试求W 的最大值是( ) .16300 B. 16900 C. 15700 D. 17500二、填空题(每题5分,共30分)11.一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 .12.某校七年级2班的男生人数是女生人数的1.8倍,在一次数学测试中,全班成绩 的平均分是75分,其中女生的平均分比男生的平均分高20%,则女生的平均分是 ___________分。
河南省郑州市新密高级中学2019-2020学年高三数学理月考试题含解析

河南省郑州市新密高级中学2019-2020学年高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f ′(x)>1,则不等式e x·f(x)>e x+1的解集为( )A.{x|x>0} B.{x|x<0} C.{x|x<-1,或x>1} D.{x|x<-1,或0<x<1}参考答案:A3.若sin=,则cosa=A.-B.-C.D.参考答案:C3. 若满足条件C=60°,AB=,BC=a的△ABC有两个,那么a的取值范围是( )A.(1,) B.(,) C.(,2) D.(1,2)参考答案:C略4. 过双曲线的右焦点F作圆的切线FM(切点为M),交y轴于点P。
若M为线段FP的中点,则双曲线的离心率是()A.2 B.C. D.参考答案:B5. 已知等比数列{a n}的前n项和S n,且a1+a3=,a2+a4=,则=()A.4n﹣1 B.4n﹣1 C.2n﹣1 D.2n﹣1参考答案:D【考点】等比数列的性质;等比数列的前n项和.【分析】利用等比数列{a n}的前n项和S n,且a1+a3=,a2+a4=,求出q=,a1=2,可得a n、S n,即可得出结论.【解答】解:∵等比数列{a n}的前n项和S n,且a1+a3=,a2+a4=,∴两式相除可得公比q=,∴a1=2,∴a n==,S n==4(1﹣),∴=2n﹣1,故选:D.6. (5分)一个几何体的三视图如图所示,其中主(正)视图是边长为2的正三角形,俯视图是正方形,那么该几何体的左(侧)视图的面积是()A.2B.C. 4 D.2参考答案:B考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由题意可知左视图与主视图形状完全一样是正三角形,可得结论.解答:解:由题意可知左视图与主视图形状完全一样是正三角形,因为主(正)视图是边长为2的正三角形,所以几何体的左(侧)视图的面积S==故选:B.点评:本题考查由三视图求面积、体积,求解的关键是根据所给的三视图判断出几何体的几何特征.7.在抽查某产品尺寸过程中,将其尺寸分成若干组,[a,b]是其中一组,已知该组上的直方图高为h,则该组频率为()A. B. C. D.参考答案:答案:D8. 已知函数是定义域为的偶函数,且在上单调递增,则不等式的解集为()A. B.C. D.参考答案:D9. 已知为抛物线的焦点,点A,B在该抛物线上且位于x轴的两侧,(其中O为坐标原点),则△AFO与△BFO面积之和的最小值是()A. B. C. D.参考答案:B略10. 已知下列命题:①设m为直线,为平面,且m,则“m//”是“”的充要条件;②的展开式中含x3的项的系数为60;③设随机变量~N(0,1),若P(≥2)=p,则P(-2<<0)=;④若不等式|x+3|+|x-2|≥2m+1恒成立,则m的取值范围是(,2);⑤已知奇函数满足,且0<x<时,则函数在[,]上有5个零点.其中所有真命题的序号是()A.③④B.③C.④⑤D.②④参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 如图,将菱形ABCD的每条边1,2,3,…,n,…等分,并按图1, 图2,图3,;图4,…的方式连结等分点,将每个点依图示规律填上1,2,3,4,5,6,,…,例如图3中菱形ABCD的四个顶点上所填数字之和为34.[来(1).图5中,菱形ABCD的四个顶点上所填数字之和是;(2).图n中,菱形ABCD的四个顶点上所填数字之和是.参考答案:⑴ 74;⑵ 2n2+4n+4略12. 已知函数与,它们的图像有一个横坐标为的交点,则的值是.参考答案:13. 己知数列{a n}满足,,则a n =_____参考答案:【分析】由递推公式得,又能得到,再求出几项,这样可以猜想数列的通项公式,再由数学归纳法证明.【详解】由,可得,且,两式作差得,,猜想,现用数学归纳法证明:当时,显然成立;假设当时成立,即当时,,即时,也成立,综上.14. 已知,若是函数的零点,则四个数按从小到大的顺序是(用符号连接起来).参考答案:15. 如图,用四种不同颜色给三棱柱的六个顶点涂色,要求四种颜色全都用上,每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法的种数为_________(用数字做答).参考答案:21616. 等差数列{a n}中,a3=8,a7=20,若数列{}的前n项和为,则n的值为.参考答案:16【考点】等差数列的前n项和.【分析】由等差数列通项公式列出方程组,求出a1=2,d=3,从而==(),进而得到数列{}的前n项和为S n=(),由此利用数列{}的前n项和为,能求出n的值.【解答】解:∵等差数列{a n}中,a3=8,a7=20,∴,解得a1=2,d=3,∴a n=2+(n﹣1)×3=3n﹣1,∴==(),∴数列{}的前n项和为:S n=()=(),∵数列{}的前n项和为,∴=,解得n=16.故答案为:16.17. 已知是奇函数. 若且.,则_______ .参考答案:3三、解答题:本大题共5小题,共72分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南新密2019保送生考试试题-数学本卷须知1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2、选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3、请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
数学试题本卷须知1.本试卷共8页,三个大题,总分值120分,考试时间100分钟,请用蓝、黑色钢笔或圆珠笔直接答在试卷上2.答卷前,将密封线内的项目填写清楚。
【一】选择题〔每题3分,共18分.以下各题均有四个答案,其中只有一个答案是正确的.〕 1.2-的倒数是〔〕〔A 〕2〔B 〕21〔C 〕-2〔D 〕21-2.以下事件中,属于必然事件的是〔〕〔A 〕抛掷一枚一元硬币后,有国徽的一面朝下〔B 〕打开电视机选择河南卫视频道,正在播出河南新闻〔C 〕到一条线段两个端点距离相等的点在该线段的垂直平分线上〔D 〕某种彩票的中奖率是10%,即购买该种彩票10张以上一定中奖3.如右图是由4个相同的小正方体组成的立体图形的主视图和左视图,那么原立体图形不可能是〔〕4.在一次对九年级的视力检查中,随机检查了8位学生的视力,其中右眼视力的结果如下:4.0、4.5、4.3、4.5、4.4、4.5、4.7、4.4,那么以下说法正确的选项是〔〕〔A 〕这组数据的平均数是4.5〔B 〕这组数据的众数是4.4〔C 〕这组数据的中位数是4.45〔D 〕这组数据的极差是4.75.河南省2017年GDP 总量为22000亿元,预计到2018年比上一年增长10%,那么河南省2018年GDP 总量用科学计数法保留两个有效数字约为〔〕〔A 〕11102.2⨯元〔B 〕12102.2⨯元〔C 〕2.41110⨯元〔D 〕2.4⨯1210元6.如图,∆ABC 和△111C B A 关于点那么点E 坐标是〔〕〔A 〕〔-3,-1〕〔B 〕〔-3,-3〔C 〕〔-3,0〕〔D 〕〔-4,-1〕【二】填空题〔每题3分,共27分〕7.假设X 为整数,且20-《X 《310-,那么X =________________.8.下图是一个运算程序,假设输入的数X =-1,那么输入的值为__________.9.关于X 的不等式-2X +A ≤2那么A 10.如图,AB ∥CD ,AD ⊥AC ,∠ADC =32º,那么∠CAB 的度数是____________..11.甲盒中有红球2只,白球1只.乙盒有白球2红球112.如图,两个同心圆的圆心都是O ,AD 大圆的弦AB ,BE 分别与小圆相切于点C ,F ,连接那么∠ABE +2∠D =___________.13.如图,在平面直角坐标系中,⊙A 与Y ,弦MN ∥X 轴,假设点M 的坐标为〔-4,-2〕____________.14.将直径为60CM 侧面〔接缝处不计〕15.如图,菱形ABCD 的边长为4,∠BAD =60º,点合〕,点F 是CD 上一动点,且AE +CF =4,那么△DEF ______.【三】解答题〔共8个小题,总分值75分〕16.〔8分〕化简:a b ab a ab a b b a a 22222)(++÷---当B =-2时,请你为A 选择一个适当的值并代入求值.17.〔9分〕如图,AD ∥FE ,点B 、C 在AD 上,∠1=∠2,BF =BC⑴求证:四边形BCEF 是菱形;⑵假设AB =BC =CD ,求证:△ACF ≌△BDE 。
18.〔9分〕教数学的王老师对所教班级同学们的上学方式进行了一次调查,图1和图2是他采集数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下面的问题. 〔1〕求该班的总人数;〔2〕把直方图补充完整; 〔3〕求扇形统计图中骑车部分的圆心角;〔4〕如果全年级共有600名同学,从步行同学中随机选择10名,步行上学的小明被选中的概率是多少?19.〔9分〕设计斜坡的倾斜角为18°,垂直距离BC =1米,32O FA B D C E 1 2〔1〕为保证斜坡倾斜角为18°,应在地面上距点B 多远的A 处开始斜坡的施工?〔精确到0.1米〕〔2〕如果一辆高2.5米的小货车要进入地下停车场,能否进入?为什么? 〔参考数据:SIN18°=0.31,COS18°=0.95,TAN18°=0.32〕20.〔9分〕:反比例函数x y 2=和x y 8=在平面直角坐标系XOY 中第一象限内的图像如下图,点A 在x y 8=的图像上,AB ∥Y 轴且与x y 2=的图像交于点B ,AC 和BD 均与X 轴平行,且分别与x y 2=和x y 8=的图像交于点C 和点D. 〔1〕假设点A 的横坐标为2,求梯形ACBD 的对角线交点F 的坐标;〔2〕假设点A 的横坐标为M ,比较△OBC 与△ABC 的面积大小,并说明理由. 〔3〕假设△ABC 与以A 、B 、D 为顶点的三角形相似,请直接写出点A 的坐标.21.〔10分〕如图,在等腰梯形ABCD 中,AD ∥BC ,DE ⊥BC 于E ,且DE =34,AD =18,∠C =60°.〔1〕BC =_________________;〔2〕假设动点P 从点D 出发,速度为2个单位/秒,沿DA 向点A 运动,同时,动点Q 从点B 出发,速度为3个单位/秒,沿BC 向点C 运动,当一个动点到达端点时,另一个动点同时停止运动.设运动的时间为T 秒.①T =_________秒时,四边形PQED 是矩形;②T 为何值时,线段PQ 与梯形ABCD 的边构成平行四边形?③是否存在T 值,使②中的平行四边形是菱形?假设存在,请求出T 值;假设不存在,请说明理由.22.〔10间内完成。
〔1所需时间比规定时间多12么要误期2〔2〕在实际工作中,甲、乙两组合做这项工程的6后,工程队又承包了其他路段的工程,需抽调一组过去,从按时完成任务的角度考虑,你认为留下哪一组最好?请说明理由。
23.〔11分〕,在RT △OAB 中,∠OAB =90º,∠BOA =30°,AB =2,以O 为原点,OA 所在直线为X 轴,建立如下图的平面直角坐标系,点B 在第一象限内,将RT △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处.〔1〕求点C 的坐标和过O 、C 、A 三点的抛物线的解析式;〔2〕P 是此抛物线的对称轴上一动点,当以P 、O 、C 为顶点的三角形是等腰三角形时,请直接写出点P 的坐标;〔3〕M 〔X ,Y 〕是此抛物线上一个动点,当△MOB 的面积等于△OAB 面积时,求M 的坐标.2018年初中毕业班质量检测数学试题评分意见本试卷由河南省新密市兴华公学李治学制作【一】选择题1.B ;2.C ;3.C ;4.C ;5.D ;6.A.【二】填空题7.-3,-4;8.5;9.0;10.58°;11.9412.180°;13.3;14.10CM ;15.3.【三】解答题16.解:原式=222)()(b a a b a a b a +∙------3分 =2)()())((b a a b a a b a b a +∙-+-----------5分 =b a +1---------------------------6分 A 值正确〔A ≠0,±2〕1分,计算结果正确1分.------8分17.〔1〕证明:∵FE ∥AD ,∴∠FBE =∠2.∵∠1=∠2,∴BF =BC.又BF =BC ,∴FE =FC.∴四边形BCFE 是平行四边形.∵BF =BC ,∴四边形BCFE 是菱形.---5分〔2〕∵EF ∥BC ,EF =BC =AB =CD∴FA =EB ,FC =FD.又∵AC =2BC =BD ,∴△ACF ≌△BDE ---------------9分18.〔1〕该班学生的总人数为60人;----------------2分 〔2〕步行的同学是12人,正确补全条形统计图;----------4分 〔3〕骑车部分的圆心角为360°×35%=126°;--------6分〔4〕小明同学被选中的概率是12112010=--------------9分19.〔1〕BD =CD -CB =1.8〔米〕AB =6.532.08.118tan 0≈=BD 〔米〕---------------3分答:在地面上距点B 约5.6米的A 处开始斜坡的施工.---------4分〔2〕过C 作CD ⊥AD ,垂足为E ,那么∠DCE =18°.---------------6分在RT △CDE 中,CE =CDCOS18°=2.8×0.95≈2.7〔米〕--------8分 ∵2.5《2.7,∴货车能进入地下停车场.-------9分20.〔1〕当点A 的横坐标为2时,点A 、B 、C 、D 坐标分别为A 〔2,4〕、B 〔2,1〕、C 〔)4,21、D 〔8,1〕解法一:设直线CD 解析式为Y =KX +B⎪⎩⎪⎨⎧=+=+18421b k b k 解得⎪⎪⎩⎪⎪⎨⎧=-=52152b k 52152+-=x y∵AB ∥Y 轴,F 为梯形ABCD 的对角线的交点,而当X =2时,517521252=+⨯-=y∴点F 的坐标为)517,2(------3分 〔2〕过点B 作BM ⊥X 轴于点M ,过点C 作CN ⊥X 轴于点,当点A 的横坐标为M 时,点A )8,(m m 、B )2,(m m 、C 〔)8,4m m 、D )2,4(m m496432121=⨯⨯=⨯=∆m m AB AC S ABC41543)28(21=⋅+==-+=∆∆∆m m m S S S S S CNMB OBM OCN CNMB OBCA 梯形梯形 ∴OBC S ∆》ABC S ∆.------------7分〔3〕点A 的坐标为〔2,4〕.-----9分21、〔1〕BC =26.-------------2分〔2〕①522----------3分②有两种情况当AP =BQ 时,四边形ABQP 是平行四边形,可得18-2T =3T.解得518=t ----------5分当DP =CQ 时,四边形PQCD 是平行四边形,可得2T =26-3T.解得526=t --------7分 ∴当518=t 秒或526秒时线段PQ 与梯形ABCD 的边构成平行四边形. ③不存在-----------8分 当518=t 时,四边形ABQP 是平行四边形,此时BQ =3T =554又AB =8,∴PQ ≠AB ;∴四边形ABQP 不是菱形. 当526=t 时,四边形PQCD 是平行四边形,此时CQ =26-3T =5108又CD =8,∴CQ ≠CD∴;平行四边形QPCD 不可能是菱形.---------10分22.〔1〕设规定的时间是X 天,根据题意,得11220322=++++x x x -------3分解得X =28.经检验X =28是原方程的根.-------5分答:规定的时间是28天.----6分〔2〕设甲、乙两组合作完成这项工程的65用了Y 天. 那么65)1228132281(=+++y .解得Y =20.------8分 假设甲组单独做剩下的工程所需时间为1032281)651(=+÷-〔天〕------9分∵20+10=30》28∴甲组单独做剩下的工程不能在规定的时间内完成. 假设乙组单独做剩下的工程所需时间为32012281)651(=+÷-〔天〕 ∵20+3226320=《28∴乙组单独做剩下的工程能在规定的时间内完成.,---10分23.〔1〕由条件,可知OC =OA =3230tan 0=OB ,∠COA =60°.C 点的坐标为〔)3,3.--1分设过O 、A 、C 三点的抛物线的解析式为c bx ax y ++=2 那么⎪⎩⎪⎨⎧=++=++=333032120c b a c b a c ,解得⎪⎩⎪⎨⎧==-=0321c b a 所求抛物线的解析式为x x y 322+-=--3分 〔2〕P 点的坐标是),)或(,或(或32333233)3,3(),1,3(+-----5分〔3〕过点M 作MN ⊥X 轴于N ,交OB 于点QQM =x x x x x 335333222+-=-+-,32)335(21212⋅+-=⋅=∆x x OA QM S OMB 又3221=⋅=∆AB OA S OAB 由题意,得.023352=+-x x 解得332,321==x x 分别代入x x y 322+-=,得38,321==y y ,此时 )38,332(),3,3(21M M ----------------8分当点M 在OB 的下方时,同理得)3,33(),0,32(43--M M ----11分。