五年级奥数题追及问题A

合集下载

五年级数学(上)奥数思维拓展《追及问题》测试题(含答案)

五年级数学(上)奥数思维拓展《追及问题》测试题(含答案)

五年级数学(上)奥数思维拓展《追及问题》测试题(含答案)一.填空题(共14小题)1.姐姐每分钟步行70米,妹妹每分钟步行60米.在妹妹出发半小时后,姐姐去追,小时后就能追上.2.如图,甲、乙两人沿着边长为70米的边,按逆时针的方向行走,甲从A以65米/分的速度行走,乙从B以72米/分的速度行走,当乙第一次追上甲时,是在正方形的边(AB、BC、CD或DA)上.3.小明以每小时8千米的速度沿着一条长28千米的环形公路练习长跑.他出发1小时后,小亮有一封急信要交给他,小亮以每小时12千米的速度骑自行车,最快要小时能把急信交到小明手中.4.猫追老鼠,开始猫与老鼠相距30米,追了48米后,与老鼠的距离还有6米,还需要追米才能追上。

5.体育场的环形跑道长400米,小美和乐乐的在跑道的同一起跑线上,同时同向而跑,小美每分钟跑157米,乐乐每分钟跑141米,分钟后小美第一次追上乐乐。

6.小明和小红同时从学校出发,沿着直线行走,小明走了+48米,小红走了﹣52米。

已知小红每分钟比小明多走5米,这时小红转身去追小明,分钟后可以追上小明?7.小林和小磊沿着同一条100米的跑道赛跑,小林由起跑线上起跑,小磊在小林后8米处同时起跑,当小林离终点还有12米时,小磊追上他.那么当小磊跑到终点时,小林离终点还有米.8.甲每秒跑7m,乙每秒跑6.5m,若同地出发甲让乙先跑1s后追乙,则甲用s便可追上乙.若甲让乙先跑1m,则甲用s便可追上乙.9.甲、乙、丙三人同时同向骑车,各自的速度都保持不变,乙在甲、丙的正中间,甲20分钟追上乙,又过10分钟追上丙,再过分钟乙追上丙.10.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟,如果父亲比儿子早5分钟离家,那么儿子用分钟可赶上父亲.11.甲、乙二人同地同方向出发,甲每小时走7千米,乙每小时走5千米.乙先走2小时后,甲才开始走,甲追上乙需要小时.12.面包车的速度是每小时60千米,在面包车开出30分钟后,一辆小轿车以每小时84千米的速度从同一地点追赶面包车,小时后追上.13.解放军某部队在一次演习中,摩托车每小时行60千米,汽车每小时行40千米,汽车出发1.5小时后,摩托车沿同路追赶汽车,需小时追上.14.环形跑道长400米,甲、乙两人同时从同一地点顺时针出发,甲每分钟跑110米,乙每分钟跑90米,分钟后两人相遇.二.应用题(共7小题)15.已知一艘船顺水行48千米需4小时,逆水行48千米需6小时。

五年级思维奥数追及问题

五年级思维奥数追及问题

第十二讲追及问题会求解知识提纲:追及问题是指两个物体在直线上或封闭道路上同向运动,由于各自行驶或运行的速度不同,后者追上前者的问题,本讲我们来学习这方面的知识。

解答追及问题的关键是抓住“追及路程”和“速度差”,并结合物体的运动地点,运动方向来具体分析求解,必要时可画线段图来帮助分析题意。

名师点拨追及问题的基本数量关系式速度差×追及时间=追及路程追及路程÷追及时间=速度差追及路程÷速度差=追及时间【典型例题1】甲、乙两人分别从西村和东村同时向东而行,甲骑自行车每小时行14千米,乙步行每小时行五千米。

两小时后,甲追上乙。

求东、西两村的距离。

【分析】此题属于追及问题中已知追及时间和速度差来求追及路程的基础题。

由题意可知两车的速度差是:14-5=9(千米/时),显然甲比乙多走的路程就是东、西两村的距离。

解答:【随堂练习1】兄弟两人都从家骑自行车去海边看风景,弟弟每小时行20千米,一小时后,哥哥骑自行车出发,每小时行20千米,结果两人同一时间到达同一海滩,问从他们家到海滩有多少千米的路程?【典型例题2】甲车以每小时50千米的速度从A地驶往B地,出发一小时后,乙车以每小时60千米的速度也从A地驶往B地,结果比甲车早2小时到达B地。

求A、B两地间的路程。

【分析】这类题需要我们挖掘题目中的条件,并将其转化为基本的追及问题来解。

出发1小时后,乙车追上甲车并比甲车早2小时到,可知追及路程为50×(2+1)=150(千米),两车速度差为:60-50=10(千米/时),求出追及时间后便可求出A、B间的路程。

解答:【随堂练习2】小红和小梅两人由学校到市图书城看书,小红每分钟行50米,小梅每分钟行45米,小梅比小红早出发4分钟,结果小红比小梅早4分钟到达图书城。

求学校到图书城的距离。

【典型例题3】小淘气步行上学,每分钟行60米,小淘气离家10分钟后,妈妈发现小淘气的文具盒忘在家中,妈妈带上文具盒,立即骑自行车以每分钟210米的速度去追小淘气。

小学生追及问题奥数练习题(三篇)

小学生追及问题奥数练习题(三篇)

【导语】奥数题中常常出现⼀些数量关系⾮常特殊的题⽬,⽤普通的⽅法很难列式解答,有时根本列不出相应的算式来。

我们可以⽤枚举法,根据题⽬的要求,⼀⼀列举基本符合要求的数据,然后从中挑选出符合要求的答案。

以下是©⽆忧考⽹整理的《⼩学⽣追及问题奥数练习题(三篇)》相关资料,希望帮助到您。

⼩学⽣追及问题奥数练习题篇⼀ 1、甲、⼄两地相距56千⽶,汽车⾏完全程要1.4⼩时,乐乐步⾏全程要14⼩时。

乐乐由甲地出发,步⾏3.6⼩时后改乘汽车,他到达⼄地共要⼏⼩时? 2、甲、⼄两城相距340千⽶,⼀辆⼩轿车从甲城开往⼄城,每⼩时⾏52千⽶,1⼩时后,⼀辆中巴车从⼄城开往甲城,每⼩时⾏44千⽶。

⼩轿车开出⼏⼩时后与中巴车相遇? 3、甲、⼄两⼈同时从两地相对出发,甲骑⾃⾏车每⼩时⾏15千⽶,⼄骑摩托车每⼩时⾏34千⽶,甲在离出发地37。

5千⽶处与⼄相遇。

两地相距多少千⽶? 4、甲、⼄两车同时从两地相向⽽⾏,甲每⼩时⾏83千⽶;⼄每⼩时⾏95千⽶,两车在距中点24千⽶处相遇。

求两地间的距离。

5、两列⽕车相对⾏驶,在两地的中点相遇,甲车每⼩时⾏驶76千⽶,相遇时⾏了5⼩时。

⼄车每⼩时⾏驶95千⽶,⼄车⽐甲车迟出发了⼏⼩时? 6、甲、⼄⼆⼈在⼀个长400⽶的环形跑道上从同⼀点,同时反向⽽⾏,甲每分钟⾛45⽶,⼄每分钟⾛35⽶。

多少分钟后两⼈第⼀次相遇? 7、甲、⼄两车分别从A,B两城同时相对开出,7⼩时后相遇,然后⼜各⾃向前⾏驶了2⼩时,这时甲车距B城还有240千⽶,⼄车距A城还有360千⽶。

A,B两城相距多少千⽶? 8、兄妹⼆⼈同时从家上学,哥哥每分钟⾛90⽶,妹妹每分钟⾛60⽶。

哥哥到校门⼝时发现忘记带课本,⽴即沿原路回家去取,⾏⾄离学校180⽶处和妹妹相遇。

他们家离学校有多远? 9、甲、⼄、丙三⼈中,甲每分钟⾛50⽶,⼄每分钟⾛60⽶,丙每分钟⾛70⽶。

甲、⼄两⼈从东镇,丙⼀⼈从西镇同时相向出发,丙遇到⼄后2分钟遇到甲。

五年级奥数追及问题应用题

五年级奥数追及问题应用题

五年级奥数追及问题应用题一、追及问题应用题20题。

1. 甲、乙两人分别从相距18千米的A村和B村同时向东而行,甲骑车每小时行14千米,乙步行每小时走5千米。

几小时后甲可以追上乙?- 解析:甲、乙两人的路程差是18千米,甲每小时比乙多行14 - 5=9千米(速度差)。

根据追及时间 = 路程差÷速度差,可得追及时间为18÷(14 - 5)=2小时。

2. 一辆汽车和一辆摩托车同时从甲、乙两地出发,向同一个方向前进,摩托车在前,每小时行28千米,汽车在后,每小时行65千米,经过4小时汽车追上摩托车,甲乙两地相距多少千米?- 解析:汽车每小时比摩托车多行65 - 28 = 37千米,经过4小时追上,那么4小时汽车比摩托车多行驶的路程就是甲乙两地的距离,即37×4 = 148千米。

3. 甲、乙两人相距4千米,乙在前,甲在后,两人同时同向出发,2小时后甲追上乙,乙每小时行6千米,甲每小时行多少千米?- 解析:甲2小时比乙多走了4千米,那么甲每小时比乙多走4÷2 = 2千米。

乙每小时行6千米,所以甲每小时行6+2 = 8千米。

4. 甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?- 解析:- 开始飞行4小时后,乙机每小时比甲机多行340 - 300 = 40千米,4小时后相隔40×4 = 160千米。

- 甲机要在2小时内追上乙机,这2小时内乙机又飞行了340×2 = 680千米,甲机总共要比乙机多飞行160千米,所以甲机2小时要飞行680 + 160=840千米,那么甲机每小时要飞行840÷2 = 420千米。

5. 小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小强骑自行车的速度。

五年级奥数追及问题(肖翠君)

五年级奥数追及问题(肖翠君)
五年级奥数追及问题(肖翠君)
追及问题的基本特点是: 一 两个物体同向运动。 二 慢走在前,快走在后面。 三 它们之间的距离不断缩短,直到快者追上慢者。
【数量关系】 追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间
追及问题中的各数量关系是:
基本公式: 路程差=速度差×追及时间;
解 手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路 程跑步恰准时到学校,说明后段路程跑比走少用了 (10-5)分钟。如果从家一开始就跑步,可比 步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。
步行1千米所用时间为 1÷[9-(10-5)]
速度和 速度差 快车的速度 慢车的速度
240÷3=80(千米) 240÷15=16(千米) (80-16) ÷2=32(千米) 32+16=48(千米)
疯狂操练3
3、小明骑摩托车,小军骑自行车分别从甲乙两地同时出发,相向而行,5小时相遇。小军从 甲地到乙地要15小时,小明从乙地到甲地要几小时?
解:小明5小时的路程小军要走15-5=10(小时), 10÷5=2(倍) 15÷[(15-5)÷5]=7.5(小时) 答:小明从乙地到甲地要7.5小时。
列成综合算式 75×12÷(120-75)=900÷45=20(天)
答:好马20天能追上劣马。
例1.甲骑自行车,乙骑摩托车,两人都要从东城到西城,自行车每小时行18千米,摩托车每小时 行54千米,甲先出发1.5小时,乙沿着同一条路线去追赶甲,多少时间能赶上甲?
路程差 速度差
18×1.5=27(千米) 54-18=36(千米)
解 敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是 [10×(22-6)]千米,甲乙两地相距60千米。由此推知

小学奥数趣味学习《追及问题》典型例题及解答

小学奥数趣味学习《追及问题》典型例题及解答

小学奥数趣味学习《追及问题》典型例题及解答两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。

这类应用题就叫做追及问题。

数量关系:追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间解题思路和方法:简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。

例题1:某警官发现前方100米处有一匪徒,匪徒正以每秒2米的速度逃跑。

警官赶紧以每秒3米的速度追,()秒后警官可以追上这个匪徒。

解:1、从警官追开始到追上匪徒,这就是一个追及过程。

根据公式:路程差÷速度差=追及时间。

2、路程差为100米,警官每秒比匪徒多跑3-2=1(米),即速度差为1米/秒。

所以追及的时间为100÷1=100(秒)。

例题2:甲乙二人同时从400米的环形跑道的起跑线出发,甲每秒跑6米,乙每秒跑8米,同向出发。

那么甲乙二人出发后()秒第一次相遇?解:1、由题可知,甲乙同时出发后,乙领先,甲落后,那么两人第一次相遇时,乙从后方追上甲,所以,乙的路程=甲的路程+一周跑道长度,即追及路程为400米。

2、由追及时间=总路程÷速度差可得:经过400÷(8-6)=200(秒)两人第一次相遇。

例题3:小轿车、面包车和大客车的速度分别为60千米/时、48千米/时和42千米/时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车。

那么甲、乙两地相距多远?解:1、根据题意,将较复杂的综合问题分解为若干个单一问题。

首先是小轿车和面包车的相遇问题;其次是面包车和大客车的相遇问题;然后是小轿车与大客车的追及问题。

最后通过小轿车与面包车共行甲、乙两地的一个单程,由相遇问题可求出甲、乙两地距离。

五年级奥数题:追及问题(A).doc

五年级奥数题:追及问题(A).doc

十六追及问题(A)年级班姓名得分一、填空题1.当甲在60米赛跑中冲过终点线时,比乙领先10米、比丙领先20米,如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比丙领先米.2.一只兔子奔跑时,每一步都跑0.5米;一只狗奔跑时,每一步都跑1.5米.狗跑一步时,兔子能跑三步.如果让狗和兔子在100米跑道上赛跑,那么获胜的一定是 .3.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟.那么需要分钟,电车追上骑车人.4.亮亮从家步行去学校,每小时走5千米.回家时,骑自行车,每小时走13千米.骑自行车比步行的时间少4小时,亮亮家到学校的距离是 .5.从时针指向4点开始,再经过分钟,时钟与分针第一次重合.6.甲、乙两人在400米长的环形跑道上跑步.甲以每分钟300米的速度从起点跑出1分钟时,乙从起点同向跑出,从这时起甲用5分钟赶上乙.乙每分钟跑米.7.一只蚂蚁沿等边三角形的三条边由A点开始爬行一周.在三条边上爬行的速度分别为每分50厘米、每分20厘米、每分30厘米(如右图).它爬行一周的平均速度是 .308.甲、乙两人同时从A点背向出发沿400米环行跑道行走,甲每分钟走80米,乙每分钟走50米,这二人最少用分钟再在A点相遇.9.在400米环形跑道上,A、B两点相距100米(如图).甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟.那么,甲追上乙需要的时间是秒.•10.甲、乙两人以匀速绕圆形跑道按相反方向跑步,出发点在直径的两个端点.如果他们同时出发,并在乙跑完100米时第一次相遇,甲跑一圈还差60米时第二次相遇,那么跑道的长是 米.二、解答题11.在周长为200米的圆形跑道的一条直径的两端,甲、乙二人骑自行车分别以6米/秒和5米/秒的速度同时、相向出发(即一个顺时针一个逆时针),沿跑道行驶.问:16分钟内,甲乙相遇多少次?12.如右上图,A ,B ,C 三个原料加工厂分别停着甲、乙、丙三辆汽车,各车速度依次是60,48,36千米/时,各厂间的距离如图所示(单位:千米),如果甲、丙车按箭头方向行驶,乙车反向行驶,每到一厂甲车停2分,乙车停3分,丙车停5分.那么,三车同时开动后何时何处首次同时相遇.13.一座下底面是边长为10米的正方形石台,它的一个顶点A 处有一个虫子巢穴,虫甲每分钟爬6厘米,虫乙每分钟爬10厘米,甲沿正方形的边由A B CD A不停的爬行,甲先爬2厘米后,乙沿甲爬行过的路线追赶甲,当乙遇到甲后,乙就立即沿原路返回巢穴,然后乙再沿甲爬行过的路线追赶甲,…….在甲爬行的一圈内,乙最后一次追上甲时,乙爬行了多长时间?14.甲、乙二人在400米圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为每秒8米,乙的速度为每秒6米.当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距终点多少米?———————————————答 案——————————————————————1. 12解法一 依题意,画出线段图如下:在同样时间内,甲跑60米,乙跑50米,丙跑40米,也就是在相同单位时间内甲跑6米,乙跑5米,丙跑4米.所以,由上图看出,当乙跑10米到达终点时,丙又跑了8米,此时丙距终点60-40-8=12(米)8 · · · · · 丙 乙 甲 起点 10 20 30 40 50 60解法二 相同时间内,乙跑50米,丙跑40米,所以丙速是乙速的54.因此当乙到达终点时,丙的行程为60⨯54=48(米) 此时丙距终点60-48=12(米)解法三 由于乙、丙两人速度不变,又丙与乙在第一段时间内的路程差(50-40)=10米是乙的路程的10÷50=51,所以当乙跑完后10米时,丙在第二段时间与乙的路程差为10⨯51=2(米) 两次路程差和10+2=12(米),就是乙比丙领先的路程.2. 兔子.从题面上看,狗和兔子的速度是一样的,但因为当狗跑了66步后,狗共跑了99米,剩下1米,这时它也得再花一步的时间,这相当于狗要往反100.5米,而当狗跑了66步后,兔子跑了(3⨯66)=198步,再花2步的时间,即到达终点.所以狗较慢.兔子一定获胜.3. 15.5电车追及距离为2100米.电车每分钟行500米,骑车人每分钟行300米,1分钟追上(500-300)=200米,追上2100米要用(2100÷200)=10.5(分钟).但电车行10.5分钟要停两站,共花(1⨯2)=2分钟,电车停2分钟,骑车人又要前行(300⨯2)=600米,电车追上这600米,又要多用(600÷200)=3分钟.所以,电车追上骑车人共要用10.5+2+3=15.5(分钟)4. 32.5此题可看成同向而行问题:有两人从亮亮家出发去学校.一人步行,每小时走5千米;一人骑自行车,每小时行13千米.那么,当骑自行车的人到学校时,步行的人离学校还有(骑车人比步行人早到4小时):5⨯4=20(千米)又骑车比步行每小时快13-5=8(千米)所以,亮亮家到学校的距离是(20÷8)⨯13=32.5(千米) 5. 21119. 设钟面一周的长度为1,则在4点时,分针落后于时针是钟面周长的124=31;同时分钟和时针的速度之差为钟面周长的720117201601=- 由追及问题的基本关系知,两针第一次重合需要11921720160131=⎪⎭⎫ ⎝⎛-÷(分钟) 6. 280甲以每分钟300米的速度从起点跑出1分钟,这时甲离乙400-300⨯1=100(米)甲用5分钟比乙多跑100米,则甲每分钟比乙多跑100÷5=20(米)所以,乙每分钟跑300-20=280(米)7. 每分钟31129厘米. 设边长为300厘米,则爬行一周需31303002030050300=++(分钟), 平均速度为(300⨯3)÷31=31129(厘米/分). 8. 40甲第一次回到A 点要用400÷80=5分钟,以后每隔5分钟回到A 点一次;乙第一次回到A 点要用400÷50=8分钟,以后每隔8分钟回到A 点一次.而5与8的最小公倍数是40.所以,甲、乙两人再在A 点相遇最少要用40分钟.9. 140假设甲乙都不停地跑,那么甲追上乙的时间是100÷(5-4)=100(秒),甲、乙每跑100米停10秒,等于甲跑100÷5=20(秒)休息10秒,乙跑100÷4=25(秒)休息10秒.跑100秒甲要停100÷20-1=4(次)共用100+10⨯4=140(秒),此时甲已跑的路程为500米;在第130秒时乙已跑路程为400米(他此时已休息3次,花30秒),并在该处休息到第140秒,甲刚好在乙准备动身时赶到,他们确实碰到一块了.所以甲追上乙需要的时间是140秒.10. 480依题意作出示意图(如下图),从出发到第一次相遇甲乙两人共跑了半圈,其中乙跑了100米.从出发到第二次相遇甲乙两人共跑了三个半圈,其中甲跑的路程比一圈少60米,乙跑的路程比半圈多60米.因为他们以匀速跑步,所以乙总共跑了三个100米,3⨯100-60=240(米)所以,跑道的长是2⨯240=480(米)11. 甲、乙二人第一次相遇时,一共走过的路程是2200=100米,所 以需要的时间是1110065100=+秒.以后,两人每隔1120065200=+秒相遇一次. 所以,16分钟内二人相遇的次数是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⨯11200111001660+1=121526412120011960+⎥⎦⎤⎢⎣⎡-=+⎥⎦⎤⎢⎣⎡-⨯=⎥⎦⎤⎢⎣⎡10520+1[]13.52+=52+1=53(次)这里的中括号[ ]不是普通的括号,[x ]表示x 的整数部分,如[]25.225==⎥⎦⎤⎢⎣⎡,[]33=,[]06.0=. 12. 甲车绕一圈后再到B 厂,共用60⨯[(6+8+10+6)÷60]+2⨯3=36 (分); 乙车绕一圈后再到B 厂,共用60⨯[(8+10+6)÷48]+3⨯2=36(分);丙车从C 厂到B 厂,共用60⨯[(10+6)÷36]+5=3231(分). 因为丙车到B 厂要停5分,所以三车同时开出后36分在B 厂同时相遇.13. 见下表,其中5次追上,此时,乙共爬行0.5+2.5+10+40+160=213(分)14. 甲追乙1圈时,甲跑了8⨯[400÷(8-6)]=1600(米),此时甲、乙的速度分别变为6米/秒和5.5米/秒.甲追上乙2圈时,甲跑了1600+6⨯[400÷(6-5.5)]=6400(米),此时甲、乙的速度分别变为4米/秒和5米/秒.乙第一次追上甲时,甲跑了6400+4⨯[400÷(5-4)]=8000(米),乙跑了 8000-400=7600(米).此时,甲、乙的速度分别变为4.5米/秒和5.5米/秒.乙跑到终点还需(10000-7600)÷5.5=114800(秒), 乙到达终点时,甲距终点(10000-8000)-4.5⨯114800=XXXX-114361171963=(米).。

五年级奥数追及问题

五年级奥数追及问题

追及问题:追及路程=追及时间×速度差追及时间=追及路程÷速度差1、甲乙两人从相距150米的两地同时同向行走,甲在前面每分钟走65米,乙在后面每分钟走75米,几分钟后乙可以追上甲?2、甲乙两车从相距140千米的两地同时同向而行,甲车在前,每小时行驶45千米,乙车在后,每小时行驶65千米,乙车追上甲车需要几小时?3、两辆汽车相距1500千米,甲车在乙车前面,甲车每分钟行610米,乙车每分钟行660米,乙车追上甲车需要几分钟?4、学校离游泳馆1200米,小强和小华由学校到游泳馆,小强每分钟行100米,小华每分钟行80米,当小华走2分钟后,小强才出发,当小强追上小华是,距离游泳馆有多远?5、老王和老张从甲地到乙地开会,老张骑自行车的速度是15千米/小时,先出发2小时后,老王后出发,老王用了3小时追上老张,求老王的骑车速度。

6、龟兔赛跑,它们同时出发,全程7000米,乌龟以每分钟30米的速度爬行,兔子每分钟跑330米,兔子跑了10分钟就停下来睡了200分钟,醒来后发现乌龟已经超过它,立即以原来的速度向前追赶,当兔子追上乌龟时离终点多少米?7、甲乙两人以一定的速度在周长为400米的环形跑道上跑步,两人同时出发,出发时甲在乙后面,出发后6分钟甲第一次超过乙,22分钟后甲第二次超过乙,出发时,甲在乙后面多少米处?8、小张和小王分别以一定的速度在周长为500米的环形跑道上跑步,小王的速度是每分钟200米,(1)小张和小王从同一地点出发反向跑步,1分钟后两人第一次相遇,小张的速度是多少?(2)小张和小王从同一地点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?9、甲乙两人骑车同时从A、B两地相向而行,第一次相遇在距离A地95千米处,相遇后两人继续前进到达目的地后又立即返回,第二次在离B地25千米处相遇,求:A、B两地间的距离是多少千米?填写九宫格口诀:1居上行正中央,依次斜填切莫忘,上出框界往下写,右出框时左边放,重复便在下格填,出角重复一个样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十六 追及问题(A )
年级 班 姓名 得分
一、填空题
1.当甲在60米赛跑中冲过终点线时,比乙领先10米、比丙领先20米,如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比丙领先 米.
2.一只兔子奔跑时,每一步都跑0.5米;一只狗奔跑时,每一步都跑1.5米.狗跑一步时,兔子能跑三步.如果让狗和兔子在100米跑道上赛跑,那么获胜的一定是 .
3.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟.那么需要 分钟,电车追上骑车人.
4.亮亮从家步行去学校,每小时走5千米.回家时,骑自行车,每小时走13千米.骑自行车比步行的时间少4小时,亮亮家到学校的距离是 .
5.从时针指向4点开始,再经过 分钟,时钟与分针第一次重合.
6.甲、乙两人在400米长的环形跑道上跑步.甲以每分钟300米的速度从起点跑出1分钟时,乙从起点同向跑出,从这时起甲用5分钟赶上乙.乙每分钟跑 米.
7.一只蚂蚁沿等边三角形的三条边由A 点开始爬行一周.在三条边上爬行的速度分别为每分50厘米、每分20厘米、每分30厘米(如右图).它爬行一周的平均速度是 .
8.甲、乙两人同时从A
点背向出发沿400米环行跑道行走,甲每分钟走80米,乙每分钟走50米,这二人最少用 分钟再在A 点相遇.
9.在400米环形跑道上,A 、B 两点相距100米(如图).甲、乙两人分别从A 、B 两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟.那么,甲追上乙需要的时间是
秒.
10.甲、乙两人以匀速绕圆形跑道按相反方向跑步,出发点在直径的两个端点.如果他们同时出发,并在乙跑完100米时第一次相遇,甲跑一圈还差60米时第二次相遇,那么跑道的长是 米.
二、解答题
11.在周长为200米的圆形跑道的一条直径的两端,甲、乙二人骑自行车分别以6米/秒和5米/秒的速度同时、相向出发(即一个顺时针一个逆时针),沿跑道行驶.问:16分钟内,甲乙相遇多少次
12.如右上图,A ,B ,C 三个原料加工厂分别停着甲、乙、丙三辆汽车,各车速度依次是60,48,36千米/时,各厂间的距离如图所示(单位:千米),如果甲、丙车按箭头方向行驶,乙车反向行驶,每到一厂甲车停2分,乙车停3分,丙车停5分.那么,三车同时开动后何时何处首次同时相遇.
30 ?
13.一座下底面是边长为10米的正方形石台,它的一个顶点A 处有一个虫子巢穴,虫甲每分钟爬6厘米,虫乙每分钟爬10厘米,甲沿正方形的边由A B C D A 不停的爬行,甲先爬2厘米后,乙沿甲爬行过的路线追赶甲,当乙遇到甲后,乙就立即沿原路返回巢穴,然后乙再沿甲爬行过的路线追赶甲,…….在甲爬行的一圈内,乙最后一次追上甲时,乙爬行了多长时间
14.甲、乙二人在400米圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为每秒8米,乙的速度为每秒6米.当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距终点多少米
———————————————答 案——————————————————————
1. 12
解法一 依题意,画出线段图如下:
在同样时间内,甲跑60米,乙跑50米,丙跑40米,也就是在相同单位时间内甲跑6米,乙跑5米,丙跑4米.所以,由上图看出,当乙跑10米到达终点时,丙又跑了8米,此时丙距终点
60-40-8=12(米)
解法二 相同时间内,乙跑50米,丙跑40米,所以丙速是乙速的5
4.因此当乙到达终点时,丙的行程为
60?5
4=48(米) 此时丙距终点
60-48=12(米)
解法三 由于乙、丙两人速度不变,又丙与乙在第一段时间内的路程差(50-40)=10米是乙的路程
的10?50=5
1,所以当乙跑完后10米时,丙在第二段时间与乙的路程差为 10?5
1=2(米) 两次路程差和10+2=12(米),就是乙比丙领先的路程.
2. 兔子.
从题面上看,狗和兔子的速度是一样的,但因为当狗跑了66步后,狗共跑了99米,剩下1米,这时它也得再花一步的时间,这相当于狗要往反100.5米,而当狗跑了66步后,兔子跑了(3?66)=198步,再花2步的时间,即到达终点.所以狗较慢.兔子一定获胜.
3. 15.5
电车追及距离为2100米.电车每分钟行500米,骑车人每分钟行300米,1分钟追上(500-300)=200米,追上2100米要用(2100?200)=(分钟).但电车行分钟要停两站,共花(1?2)=2分钟,电车停2分钟,骑车人又要前行(300?2)=600米,电车追上这600米,又要多用(600?200)=3分钟.所以,电车追上骑车· · · · · 丙 乙 甲 起点 10 20 30 40 50 60
人共要用
+2+3=(分钟)
4. 32.5
此题可看成同向而行问题:
有两人从亮亮家出发去学校.一人步行,每小时走5千米;一人骑自行车,每小时行13千米.那么,当骑自行车的人到学校时,步行的人离学校还有(骑车人比步行人早到4小时):5?4=20(千米)
又骑车比步行每小时快
13-5=8(千米)
所以,亮亮家到学校的距离是
(20?8)?13=(千米) 5. 2111
9. 设钟面一周的长度为1,则在4点时,分针落后于时针是钟面周长的124=3
1;同时分钟和时针的速度之差为钟面周长的
720
117201601=- 由追及问题的基本关系知,两针第一次重合需要
11
921720160131=⎪⎭⎫ ⎝⎛-÷(分钟) 6. 280
甲以每分钟300米的速度从起点跑出1分钟,这时甲离乙
400-300?1=100(米)
甲用5分钟比乙多跑100米,则甲每分钟比乙多跑100?5=20(米)
所以,乙每分钟跑300-20=280(米)
7. 每分钟31
129厘米. 设边长为300厘米,则爬行一周需3130
3002030050300=++(分钟), 平均速度为(300?3)?31=31
129(厘米/分). 8. 40
甲第一次回到A 点要用400?80=5分钟,以后每隔5分钟回到A 点一次;乙第一次回到A 点要用400?50=8分钟,以后每隔8分钟回到A 点一次.而5与8的最小公倍数是40.所以,甲、乙两人再在A 点相遇最少要用40分钟.
9. 140
假设甲乙都不停地跑,那么甲追上乙的时间是100?(5-4)=100(秒),甲、乙每跑100米停10秒,等于甲跑100?5=20(秒)休息10秒,乙跑100?4=25(秒)休息10秒.跑100秒甲要停100?20-1=4(次)共用100+10?4=140(秒),此时甲已跑的路程为500米;在第130秒时乙已跑路程为400米(他此时已休息3次,花30秒),并在该处休息到第140秒,甲刚好在乙准备动身时赶到,他们确实碰到一块了.所以甲追上乙需要的时间是140秒.
10. 480
依题意作出示意图(如下图),从出发到第一次相遇甲乙两人共跑了半圈,其中乙跑了100米.从出发到第二次相遇甲乙两人共跑了三个半圈,其中甲跑的路程比一圈少60米,乙跑的路程比半圈多60米.
100米,从而半圈的长度为
3?100-60=240(米)
所以,跑道的长是2?240=480(米)
11. 甲、乙二人第一次相遇时,一共走过的路程是
2200=100米,所 以需要的时间是
1110065100=+秒.
以后,两人每隔
11
20065200=+秒相遇一次. 所以,16分钟内二人相遇的次数是
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⨯11200111001660+1=121526412120011960+⎥⎦⎤⎢⎣⎡-=+⎥⎦⎤⎢⎣⎡-⨯=⎥⎦⎤⎢⎣⎡10520+1[]13.52+=52+1=53(次) 这里的中括号[ ]不是普通的括号,[x ]表示x 的整数部分,如[]25.225==⎥⎦
⎤⎢⎣⎡,[]33=,[]06.0=. 12. 甲车绕一圈后再到B 厂,共用60?[(6+8+10+6)?60]+2?3=36 (分); 乙车绕一圈后再到B 厂,共用60?[(8+10+6)?48]+3?2=36(分);
丙车从C 厂到B 厂,共用60?[(10+6)?36]+5=3
231(分). 因为丙车到B 厂要停5分,所以三车同时开出后36分在B 厂同时相遇.
13. 见下表,其中
5次追上,此时,乙共爬行++10+40+160=213(分)
14. 甲追乙1圈时,甲跑了
8?[400?(8-6)]=1600(米),
此时甲、乙的速度分别变为6米/秒和5.5米/秒.甲追上乙2圈时,甲跑了
1600+6?[400?]=6400(米),
此时甲、乙的速度分别变为4米/秒和5米/秒.乙第一次追上甲时,甲跑了
6400+4?[400?(5-4)]=8000(米),
乙跑了 8000-400=7600(米).此时,甲、乙的速度分别变为4.5米/秒和5.5米/秒.乙跑到终点还需
(10000-7600)?=114800(秒), 乙到达终点时,甲距终点
(10000-8000)?114800=2000-11
4361171963=(米).。

相关文档
最新文档