行程问题五年级奥数题及答案

合集下载

五年级奥数行程问题(一)、(二)、(三)、(四)

五年级奥数行程问题(一)、(二)、(三)、(四)

行程问题(一)邹玉芳例1:甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?思路导航:两车在距中点32千米处相遇,由于甲车的速度大于乙车的速度,所以相遇时,甲车应行了全程的一半多32千米,乙车行了全程的一半少32千米,因此,两车相遇时,甲车比乙车共多行了32=64(千米)。

两车同时出发,又相遇了,两车所行的时间是一样的,为什么甲车会比乙车多行64千米?因为甲车每小时比乙车多行56-48=8(千米)。

64=8(时),所以两车各行了8小时,求东西两地的路程只要用(56+48)8=832(千米)练习:1.甲、乙两汽车同时从两地出发,相向而行。

甲汽车每小时行50千米,乙汽车每小时行55千米,两车在距中点15千米相遇。

求两地之间的路程是多少千米?2、一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行60千米,摩托车每小时行70千米,当摩托车行到两城中点处时,与汽车还相距30千米,求A、B两城之间的距离?3、下午放学时,小红从学校回家,每分钟走100米,同时,妈发也从家里出发到学校去接小红,每分钟走120米,两人在距中点100米的地方相遇,小红家到学校有多少米?例2:快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?思路导航:快车3小时行驶403=120(千米),这时快车已驶过中点25千米,说明甲乙两地间路程的一半是120-25=95(千米)。

此时,慢车行了95-25-7=63(千米),因此慢车每小时行633=21(千米)练习:1、兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?2、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?3、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。

【奥数专题】精编人教版小学数学五年级上册 行程问题(试题)含答案与解析

【奥数专题】精编人教版小学数学五年级上册 行程问题(试题)含答案与解析

经典奥数:行程问题(专项试题)一.选择题(共6小题)1.汽车3.5分钟可行驶7千米,照这样的速度,汽车1小时可行驶多少千米?下面算式中,错误的是()A.7÷3.5×60B.3.5÷7×60C.60÷3.5×7D.60÷(3.5÷7)2.李叔叔骑电动车上班,每小时行18km,0.35小时到达。

如果他骑自行车上班,每小时行10.5km,半小时能到吗?()A.能B.不能C.无法确定3.两辆汽车同时从两地相对开出,一辆车的速度是85千米/时,另一辆车的速度是75千米/时,出发后4.8小时相遇。

两地之间的公路长多少千米,计算错误的是()A.85+75×4.8B.85×4.8+75×4.8C.(85+75)×4.84.两人同时从相距10.5千米的两地相对而行,小明每小时行3.8千米,小军每小时行3.2千米,算式:3.2×[10.5÷(3.8+3.2)]求的是()A.经过几小时相遇B.相遇时小明行的路程C.相遇时小军行的路程D.小明和小军的平均速度5.一辆汽车1.5小时行驶90km,照这样计算,行驶652km要多少小时?下面正确的算式是()A.652÷(90÷1.5)B.652÷90÷1.5C.652÷(90×1.5)6.两地相距S千米,甲、乙两车同时分别从两地相向而行,甲车每小时行a千米,乙车每小时行b千米,经过()小时两车相遇。

A.(a+b)÷S B.(a+b)×S C.S÷(a+b)二.填空题(共6小题)7.小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又迅速返回,两人第一次相遇在距甲地400米处,第二次相遇在距乙地150米.甲、乙两地的距离是米.8.小明从家到学校上课,开始时以每分钟50米的速度走了2分钟,这时他想:若根据以往上学的经验,再按这个速度走下去,肯定要迟到8分钟.于是他立即加快速度,每分钟多走10米,结果小明早到了5分钟.小明家到学校的路程是米.9.有两列火车,一车长130m,速度为23m/s;另一列火车长250m,速度为15m/s.现在两车相向而行,从相遇到离开需要s.10.小明和小红同时从相距5千米的甲、乙两地相对而行,小明到达乙地后立刻返回继续跑,小红到达甲地后也立刻返回继续跑,已知小明每分跑320米,小红每分跑305米,从出发到第二次相遇共用分钟.11.小明和爸爸在同一圆形跑道上跑步,小明每15分跑一圈,爸爸每10分跑一圈.他们早上7:00从同一地点起跑,那么他们第二次在起点相遇时是.如跑道一圈为400m,相遇时,小明跑了m.12.甲、乙两人分别从边长为21米的正方形围墙对角顶点(如图)同时出发按逆时针方向跑,甲每秒跑7米,乙每秒跑5米,经过秒,甲可以看见乙.三.应用题(共9小题)13.两地相距540千米,甲、乙两列火车同时从两地相对开出,经过4时相遇,已知甲车的速度是乙车的1.5倍,甲、乙两列火车每时各行多少千米?14.同样时间里,兔子能跑3步,狗能跑2步,兔子一步跑1米,狗一步跑1.5米,若兔子和狗在50米长的跑道上进行往返跑,它们同时出发,求兔子折返几次后刚好比狗快6米?15.某市出租车收费标准是:3千米以内起步价9元,超过3千米的部分每千米2.4元。

行程问题奥数题

行程问题奥数题

行程问题奥数题(共5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例题:1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。

请问A、B两地相距多少千米2.两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。

两城市相距()千米绕圈问题:3.在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要()A.24分钟B.26分钟C.28分钟D.30分钟有甲,乙同时行走,一个走得快,一个走得慢,当走的慢的走在前,走得快的过一段时间就能追上。

这就产生了“追及问题”。

实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人都的速度差。

如果假设甲走得快,乙走得慢,在相同时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=速度差×追及时间核心就是“速度差”的问题。

1.一列快车长170米,每秒行23米,一列慢车长130米,每秒行18米。

快车从后面追上慢车到超过慢车,共需()秒钟2.甲、乙两地相距100千米,一辆汽车和一台拖拉机都从甲开往乙地,汽车出发时,拖拉机已开出15千米;当汽车到达乙地时,拖拉机距乙地还有10千米。

那么汽车是在距乙地多少千米处追上拖拉机的千米千米千米千米3.环形跑道周长是500米,甲、乙两人按顺时针沿环形跑道同时、同地起跑,甲每分钟跑50米,乙每分钟跑40米,甲、乙两人每跑200米均要停下来休息1分钟,那么甲首次追上乙需要多少分钟甲乙二人分别从A、B两地同时出发,并在两地间往返行走。

五年级行程问题试题及答案

五年级行程问题试题及答案

五年级行程问题试题及答案五年级行程问题试题及答案(一)一、相遇问题1、一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过6小时相遇,相遇后快车继续行驶3小时后到达乙站。

已知慢车每小时行45千米,甲、乙两站相距多少千米?答案810千米2、甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距多少千米?答案19.2千米3.一列快车从甲城开往乙城,每小时行65千米,一列客车同时从乙城开往甲城,每小时行60千米,两列火车在距中点20千米处相遇,相遇时两车各行了多少千米?答案500千米4、兄弟两人同时从家里出发到学校,路程是1400米。

哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。

从出发到相遇,弟弟走了多少米?相遇处距学校有多少米?答案800米。

600米。

5、有两只蜗牛同时从一个等腰三角形的顶点A出发(如图),分别沿着两腰爬行。

一只蜗牛每分钟行2.5米,另一只蜗牛每分钟行2米,8分钟后在离C点6米处的P点相遇,BP的长度是多少米?6、甲、乙两人同时从A、B两地相向而行,相遇时距A地120米,相遇后,他们继续前进,到达目的地后立即返回,在距A地150米处再次相遇,AB两地的距离是多少米?7、A、B两地相距38千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行8千米,乙每小时行11千米,甲到达B地后立即返回A地,乙到达A地后立即返回B地,几小时后两人在途中相遇?相遇时距A地多远?8、如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发,相向行走,他们在距A点80米处的C点第一次相遇,接着又在距B点60米处的D点第二次相遇。

求这个圆的周长。

9.如图,两只小爬虫从A点出发,沿长方形ABCD的边,按箭头方向爬行,在距C点32厘米的E点它们第一次相遇,在距D点16厘米的F点第二次相遇,在距A点16厘米的G点第三次相遇,求长方形的边AB的长。

行程问题的奥数题及答案

行程问题的奥数题及答案

行程问题的奥数题及答案
2016关于行程问题的奥数题及答案
导语:下面是小编为大家整理的五年级关于行程问题的奥数题,希望对大家有所帮助,欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网!
小学五年级奥数题:
甲、乙两人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙.问:两人每秒各跑多少米?
答案与解析:
10÷5=2(米/秒)(甲比乙每秒多跑2米)
2+4=6(秒)(第二种情况下甲追上乙时,乙跑的.时间)
6÷4=1.5(甲的速度是乙的1.5倍)
2相当于0.5倍
2÷0.5=4(米/秒)(1倍)乙的速度
4+2=6(米/秒)甲的速度
小学五年级奥数题:
甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。

问:甲、乙两班谁将获胜?
答案与解析:
快速行走的路程越长,所用时间越短。

甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。

(完整)五年级奥数行程问题五大专题

(完整)五年级奥数行程问题五大专题

行程问题---多人相遇问题及练习板块一多人从两端出发——相遇问题【例1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?【例2】(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少km?【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】甲、乙两车的速度分别为52千米/时和40千米/时,它们同时从A地出发到B地去,出发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。

求这辆卡车的速度。

【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.【例3】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。

此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B 两地相距多少米?【例4】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。

已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?【例5】一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。

五年级奥数——行程问题练习题

五年级奥数——行程问题练习题

五年级数学兴趣小组练习题——行程问题(2013.10)班别___________ 姓名___________ 评分____________1. 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。

此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。

(40×3-25×2-7)÷3=21(千米)答:慢车每小时行21千米。

2. 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东、西两村相距多少千米?分析与解答二人相遇时,甲比乙多行15×2=30(千米),说明二人已行30÷6=5(小时),上午8时至中午12时是4小时,所以甲的速度是15÷(5-4)=15(千米)。

因此,东西两村的距离是15×(5-1)=60(千米)上午8时至中午12时是4小时。

15×2÷6=5(小时)15÷(5-4)=15(千米)15×(5-1)=60(千米)3. 甲、乙两车早上8时分别从A、B两地同时相向出发,到10时两车相距112.5千米。

两车继续行驶到下午1时,两车相距还是112.5千米。

A、B两地间的距离是多少千米?分析从10时到下午1时共经过3小时,3小时里,甲、乙两车从相距112.5千米到又相距112.5千米,共行112.5×2=225千米。

两车的速度和是225÷3=75千米。

从早上8时到10时共经过2小时,2小时共行75×2=150千米,因此,A、B两间的距离是150+112.5=262.5千米。

五年级奥数:行程问题

五年级奥数:行程问题

1.某商场一二层有一个自动扶梯。

1)一共有60级台阶,电梯的速度是2级/秒.若小明在扶梯上匀速的每秒走1级,那么多久能到达地面?2)一共60级台阶,电梯每秒向上走2级,若小明逆着扶梯走,走了1分钟才走下扶梯,求小明的速度是多少?3)在乘电动扶梯的同时小明继续向上走需12秒到达楼上,如果小明站着不动乘电动扶梯向上走需15秒到达楼上,那么电动扶梯不动时,小明徒步沿扶梯上楼等多少秒?2.在地铁车站中,从站台到地面架设有向上的自动扶梯,小强从下到上,如果每秒向上迈两级台阶,那么50秒后到达站台:如果每秒向上迈三级台阶,那么走过40秒到达站台。

自动扶梯有多少级台阶?3.从A地到B地的公交站,每10分钟发一趟公交车,每辆公交车的速度是600米/分。

1)小明在某车站5点10分看见一辆公交经过,那么他看到下一辆公交经过会是几点?2)在A地B地之间,相同方向行驶的两车之间的距离是客少?3) 小明在途中跑步,速度是200米/分,那么,他每隔客久会迎面通到- -辆公交车?4.某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车,他发现每隔15分钟有一辆公共汽车追上他,每隔10分钟有一辆公共汽车迎面驶来擦身而过,问公共汽车每隔多少分钟发车一辆?小刚以每分钟50米的速度离家上学,走了2分钟后,他发现这样走下去就要迟到8分钟;于是改为每分钟60米的速度前进,结果提早5分钟到校.问小刚家到学校的路程()米.答案:如果在准时到达的时间内,用每分钟50米的速度将会少行50×8=400米;如果前2分钟也按每小时60米的速度行走,将会多行(60-50)×2+60×5=320米,两次相差320+400=720米;速度差为:60-50=10米;那么原来准时到达的时间为:720÷10=72(分钟);小刚从家到学校要走:50×(72+8)=4000(米);据此解答.解:(60-50)×2+60×5=320(米),(50×8+320)÷(60-50),=720÷10,=72(分钟);50×(72+8)=4000(米);答:小刚家到学校的路程4000米.故答案为:4000.相遇问题(1)艾迪和薇儿两人分别以每小时6千米和每小时4千米的速度行走,若他们从A、B两地同时出发,相向而行,5小时后相遇,则A. B两地相距多少千米?(2)甲车和乙车分别以每小时70千米,每小时50千米的速度从相距480干米的两地向对方的出发地前进,多久后他们会相遇?(3)八戒和悟空两家相距255干米,两人同时骑车,从家出发相对而行,3小时后相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

銆€銆€琛岀▼闂
銆€銆€鐢层€佷箼浜屼汉娌块搧璺浉鍚戣€岃锛岄€熷害鐩稿悓锛屼竴鍒楃伀杞︿粠鐢茶韩杈瑰紑杩囩敤浜?绉掗挓锛岀鐢插悗5鍒嗛挓鍙堥亣涔欙紝浠庝箼韬竟寮€杩囷紝鍙敤浜?绉掗挓锛岄棶浠庝箼涓庣伀杞︾浉閬囧紑濮嬪啀杩囧嚑鍒嗛挓鐢蹭箼浜屼汉鐩搁亣锛?br />
銆€銆€瑙o細瑕佹眰杩囧嚑鍒嗛挓鐢层€佷箼浜屼汉鐩搁亣锛屽氨蹇呴』姹傚嚭鐢层€佷箼浜屼汉杩欐椂鐨勮窛绂讳笌浠栦滑閫熷害鐨勫叧绯伙紝鑰屼笌姝ょ浉鍏宠仈鐨勬槸鐏溅鐨勮繍鍔紝鍙湁閫氳繃鐏溅鐨勮繍鍔ㄦ墠鑳芥眰鍑虹敳銆佷箼浜屼汉鐨勮窛绂?鐏溅鐨勮繍琛屾椂闂存槸宸茬煡鐨勶紝鍥犳蹇呴』姹傚嚭鍏堕€熷害锛岃嚦灏戝簲姹傚嚭瀹冨拰鐢层€佷箼浜屼汉鐨勯€熷害鐨勬瘮渚嬪叧绯?鐢变簬鏈棶棰樿緝闅撅紝鏁呭垎姝ヨ瑙e涓嬶細
銆€銆€鈶犳眰鍑虹伀杞﹂€熷害V杞︿笌鐢层€佷箼浜屼汉閫熷害V浜虹殑鍏崇郴锛岃鐏溅杞﹂暱涓簂锛屽垯锛?br />
銆€銆€锛坕锛夌伀杞﹀紑杩囩敳韬竟鐢?绉掗挓锛岃繖涓繃绋嬩负杩藉強闂锛氭晠l锛濓紙V杞?V 浜猴級×8锛涳紙1锛?br />
銆€銆€锛坕i锛夌伀杞﹀紑杩囦箼韬竟鐢?绉掗挓锛岃繖涓繃绋嬩负鐩搁亣闂锛氭晠l=锛圴杞?V 浜猴級×7.锛?锛?br />
銆€銆€鐢憋紙1锛夈€侊紙2锛夊彲寰楋細8锛圴杞?V浜猴級锛?锛圴杞?V浜猴級锛?br />
銆€銆€鎵€浠ワ紝V杞?l5V浜恒€?br />
銆€銆€鈶$伀杞﹀ご閬囧埌鐢插涓庣伀杞﹀ご閬囧
埌涔欏涔嬮棿鐨勮窛绂绘槸锛?br />
銆€銆€锛?+5×6O锛?times;锛圴杞?V浜猴級
=308×16V浜?4928V浜恒€?br />
銆€銆€鈶㈡眰鐏溅澶撮亣鍒颁箼鏃剁敳銆佷箼浜屼汉涔嬮棿鐨勮窛绂汇€?br />
銆€銆€鐏溅澶撮亣鐢插悗锛屽張缁忚繃锛?+5×60锛夌鍚庯紝鐏溅澶存墠閬囦箼锛屾墍浠ワ紝鐏溅澶撮亣鍒颁箼鏃讹紝鐢层€佷箼浜屼汉涔嬮棿鐨勮窛绂讳负锛?928V浜?2锛?锛?×60锛塚浜?4312V浜恒€?br />
銆€銆€鈶f眰鐢层€佷箼浜屼汉杩囧嚑鍒嗛挓鐩搁亣锛?/p>。

相关文档
最新文档