2013年五年级奥数题练习及答案(55题)

合集下载

小学五年级奥数练习题及答案【五篇】

小学五年级奥数练习题及答案【五篇】

小学五年级奥数练习题及答案【五篇】教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.芬芳袭人花枝俏,喜气盈门捷报到。

心花怒放看通知,梦想实现今日事,喜笑颜开忆往昔,勤学苦读最美丽。

在学习中学会复习,在运用中培养能力,在总结中不断提高。

以下是小编为大家整理的《小学五年级奥数练习题及答案【五篇】》供您查阅。

【第一篇:工地做工】有两个人在一家工地做工,由于一个是学徒,一个是技工,所以他们的薪水是不一样的。

技工的薪水比学徒的薪水多_美元,但两人的薪水之差是_美元。

你觉得他俩的薪水各是多少?答案与解析:假设技工和学徒的比较标准是以1美元为准的。

那么技工的薪水是_美元50美分,学徒的薪水是50美分。

与1美元相比,技工的薪水就是正值,学徒的就是负值,二者之差就是_美元,而从实际来讲技工的薪水比学徒的高_美元。

【第二篇:黑板写字】黑板上写着8、9、_、_、_、_、_七个数,每次任意擦去两个数,再写上这两个数的和减1。

例如:擦掉9和_,要写上_。

经过几次后,黑板上就会只剩下一个数,这个数是几?答案与解析:每次任意擦去两个数,然后写上这两个数的和减1,则可理解为擦去了前6个数字,六个数的和减去3,则结果为8+9+_+_+_+_+3 = 63-3 = 60 ,再次操作,60+_-1=73.【第三篇:使等式成立】_.5-(□_32-24_□)÷3.2=_在上面算式的两个方框中填入相同的数,使得等式成立。

那么所填的数应是多少?答案与解析:_.5-(□_32-24_□)÷3.2=_.5-□_(32-24)÷3.2=_.5-□_8÷3.2=_.5-□_2.5因为_.5-□_2.5=_,所以□_2.5=_.5-_,□=(_.5-_)÷2.5=5答:所填的数应是5。

五年级奥数题练习及答案(55题)

五年级奥数题练习及答案(55题)

五年级奥数题练习(55题)1、(1+2+8)÷(1+2+8)=2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。

如果在盒子中从左向右放5个不同的“福娃”,那么,有种不同的放法。

3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。

那么,这列数中的第10个数是。

4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐人。

5、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。

参加E组的人数最少,只有4人,那么,参加B组的有人。

6、菜地里的西红柿获得丰收,摘了全部的2/5时,装满了3筐还多16千克。

摘完其余部分后,又装满6筐,则共收得西红柿千克。

7、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。

因而提前3天完成任务。

这条路全长千米。

8、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是平方厘米。

9、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。

如6=3+3,12=5+7,等。

那么自然数100可以写成种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)10、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。

那么2008号运动员比赛了场。

11、0.15÷2.1×56=12、15+115+1115+ (1111111115)13、一个自然数除以3,得余数2,用所得的商除以4.得余数3。

若用这个自然数除以6,得余数。

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。

答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。

各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。

A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。

第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。

此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。

题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。

每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。

题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。

一楼到六楼走5 层楼梯,用时5×9 = 45 秒。

小学五年级奥数练习题及答案

小学五年级奥数练习题及答案

小学五年级奥数练习题及答案一、选择题(每题5分,共30分)1. 已知数轴上点A的坐标是-3,点B的坐标是5,那么AB的距离是几个单位?A. 2B. 3C. 4D. 8答案:D2. 小明的手表每两秒钟转动一圈,则10秒钟后指针指向的刻度是几刻度?A. 30°B. 60°C. 90°D. 120°答案:C3. 如果a + b = 8,那么a - b的值等于多少?A. 16B. 2C. 12D. 4答案:B4. 一个矩形的周长是56cm,宽度是7cm,那么它的长度是多少?A. 21cmB. 28cmC. 35cmD. 42cm答案:A5. 一根铁丝长60cm,将它剪成4段,每段铁丝长15cm,它们的周长总和是多少?A. 60cmB. 45cmC. 30cmD. 15cm答案:C6. 一个正方体的体积是125立方厘米,它的棱长是多少?A. 25cmB. 5cmC. 15cmD. 10cm答案:B二、填空题(每题5分,共25分)1. 一个边长为8cm的正方形的面积是 ______ 平方厘米。

答案:642. 如果7个苹果的重量是42克,那么3个苹果的重量是______ 克。

答案:183. 一只公鸡每分钟叫3次,10分钟后它叫了 ______ 次。

答案:304. 一辆汽车每小时行驶80公里,则它行驶1000公里需要的时间是______ 小时。

答案:12.55. 一个三位数,各位数字之和是15,个位和十位的差是3,那么这个数是 _____ 。

答案:351三、解答题(每题15分,共30分)1. 当一只狗以10公里/小时的速度追逐一只兔子,兔子以15公里/小时的速度逃跑。

如果他们起点相距50公里,请问狗几小时能追上兔子?答案:2小时解题过程:两只动物的速度差为15-10=5公里/小时,它们之间的距离为50公里,所以狗追上兔子所需要的时间为50/5=10小时。

2. 小明有30本书,他每天读3本。

小学五年级奥数练习及部分答案部分答案

小学五年级奥数练习及部分答案部分答案

奥数五年级上一、数列规律的应用--找规律(四) (1)二、等差数列求和的应用--数列(二) (7)三、包含与排除(二) (14)四、小数的巧算--巧算(四) (19)五、行程问题(三) (25)六、行程问题(四) (31)七、牛吃草问题 (36)八、平面图形的面积(二) (39)九、计数问题 (45)十、数的进位制(二) (50)十一、简单抽屉原理(一) (54)十二、简单的统筹规划问题 (60)部分答案 (68)奥数五年级上部分答案例2、解:从2到1994,偶数的个数是1994÷2=997(个)997÷8=124(组)……5(个)那么1994在第125组中的第5个,它在第4列,它所在的行数是第125组中第2行,也就是从上往下的第125×2=250(行)所以1994在第250行第4列。

例3、解:①各行的数的个数是:1,3,5,7,9,……各行最后一个数依次是:12,22,32,42,……那么第9行最后一个数是92=81∴第10行有2×10-1=19(个)数,第10行正中的一个数是第10个数:81+10=91(或100-10+1=91)②估算1999在哪个完全平方数之间?442=1936 452=2025则1999=442+(1999-1936)= 442+63∴1999在第45行左起第63个数。

观察每一行正中的数:1,3,7,13,……例4、解:①第一行第8个数是:1+2+3+…+8=36②第10行第1个数是:1+1+2+3+…+(10-1)=46第10行第8个数是:46+11+12+13+…+17=46+98=144例12、解:这串数字是:199731339731339……,这串数从第3个起,每6个为一周期(973133),(2002-2)÷6=333(周期) (2)∴第2002个是第334个周期的第2个数,是7。

例14、解:试算后可知当n依次等于1,2,3,4,5,……时,7n 的个位依次是:7,9,3,1,7,9,3,1,……,每4次重复出现(为一周期) 1998÷4=499…2,即共有499个周期多2个,∴1998个47(71998)的乘积的个位数字是9。

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。

问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。

如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。

根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。

因此所求的答案为5人。

2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。

但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。

问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。

3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。

x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。

如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。

直到两数相同为止。

问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。

小学五年级奥数题大全及答案

小学五年级奥数题大全及答案


姓名
得分
二、解答题
11、计算 172.4 6.2+2724 0.38
12、计算
0.00…0181 0.00…011 963 个 0 1028 个 0
13、计算 12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.23
14、下面有两个小数: a=0.00…0105 1994 个 0 求 a+b,a-b,a b,a b. b=0.00…019 1996 个 0
13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成 3 张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将 100 张黄油 票换成 100 张香肠票,并且在整个交换过程中刚好出手了 1991 张票券?
14、试找出这样的最小自然数,它可被 11 整除,它的各位数字之和等于 13.

姓名
得分
二、解答题
1、173□是个四位数字.数学老师说:“我在这个□中先后填入 3 个数字, 所得到的 3 个四位数,依次可被 9、11、6 整除.”问:数学老师先后填入的 3 个数字的和是多少?
12、在 1992 后面补上三个数字,组成一个七位数,使它们分别能被 2、3、5、11 整除,这个七位数最小值是多少?

姓名
得分
二、解答题
11、计算 32.14+64.28 0.5378 0.25+0.5378 64.28 0.758 64.28 0.125 0.5378
12、计算 0.888 125 73+999 3
13、计算 1998+199.8+19.98+1.998

小学五年级奥数题及答案大全

小学五年级奥数题及答案大全

小学五年级奥数题及答案大全小学五年级奥数题及答案大全一51. 一副扑克牌共54张,最上面的一张是红桃K。

如果每次把最上面的12 张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54 ,12]=108,所以每移动108 张牌,又回到原来的状况。

又因为每次移动12 张牌,所以至少移动108÷12=9(次)。

52. 爷爷对小明说:“我现在的年龄是你的7 倍,过几年是你的6倍,再过若干年就分别是你的 5 倍、4 倍、3倍、2 倍。

”你知道爷爷和小明现在的年龄吗?解:爷爷70 岁,小明10 岁。

提示:爷爷和小明的年龄差是6,5,4,3,2 的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。

(60 岁)53. 某质数加6或减6得到的数仍是质数,在50 以内你能找出几个这样的质数?并将它们写出来。

解:11,13,17,23,37,47。

54. 在放暑假的8 月份,小明有五天是在姥姥家过的。

这五天的日期除一天是合数外,其它四天的日期都是质数。

这四个质数分别是这个合数减去1 ,这个合数加上1 ,这个合数乘上2 减去 1 ,这个合数乘上2 加上 1 。

问:小明是哪几天在姥姥家住的?解:设这个合数为a,则四个质数分别为(a-1) , (a+1), (2a-1) , (2a+1)。

因为(a-1)与(a+1)是相差2的质数,在1〜31 中有五组:3,5;5 ,7;11 ,13;17 ,19;21 ,31 。

经试算,只有当a=6 时,满足题意,所以这五天是8 月5,6,7,11 ,13 日。

55. 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。

求这两个整数。

解:3,74;18 ,37。

提示:三个数字相同的三位数必有因数111。

因为111=3×37 ,所以这两个整数中有一个是37 的倍数( 只能是37 或74) ,另一个是 3 的倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年五年级奥数题练习(55题)1、(1 +2 +8 )÷(1 +2 +8 )=2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。

如果在盒子中从左向右放5个不同的“福娃”,那么,有种不同的放法。

3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。

那么,这列数中的第10个数是。

4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐人。

5、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。

参加E组的人数最少,只有4人,那么,参加B组的有人。

6、菜地里的西红柿获得丰收,摘了全部的2/5时,装满了3筐还多16千克。

摘完其余部分后,又装满6筐,则共收得西红柿千克。

7、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。

因而提前3天完成任务。

这条路全长千米。

8、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是平方厘米。

9、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。

如6=3+3,12=5+7,等。

那么自然数100可以写成种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)10、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。

那么2008号运动员比赛了场。

11、0.15÷2.1×56=12、15+115+1115+ (1111111115)13、一个自然数除以3,得余数2,用所得的商除以4.得余数3。

若用这个自然数除以6,得余数。

14、有一些自然数(0除外)既是平方数,又是立方数(平方数可以写成两个相同的自然数的乘积,立方数可以写成三个相同自然数的乘积)。

如:1=1×1=1×1×1,64=8×8=4×4×4。

那么,1000以内的自然数中,这样的数有个。

15、有一个自然数,它的最小两个因数的差是4,最大两个因数的差是308,这个自然数是。

16、先将4黑1白共5个棋子放在一个圆圈上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的5个棋子拿掉。

如此不断操作下去,圆圈上的5个棋子中最多有个白子。

17、甲、乙两人分别从A、B两地同时相向而行,甲的速度是乙的速度的3倍,经过60分钟,两人相遇。

然后,甲的速度减为原来的一半,乙的速度不变,两人各自继续前行。

那么,当甲到达B地后,再经过分钟,乙到达A地。

18、将一个棱长为1米的正方体木块分别沿长、宽、高三个方向锯开3次,得到24个长方体木块。

这24块长方体木块的表面积的和是平方米。

19、将1~2011的奇数排成一列,然后按每组1,2,3,2,1,2,3,2,…个数的规律分组如下(每个括号为一组):(1),(3,5),(7,9,11),(13,15),(17),(19,21),(23,25,27),(29,31),…则最后一个括号内的各数之和是。

20、当爷爷的年龄是爸爸年龄的2倍时,小明1岁;当爸爸的年龄是小明年龄的8倍时,爷爷61岁。

那么,爷爷比小明大岁;当爷爷的年龄是小明年龄的20倍时,爸爸的年龄是岁。

21、甲、乙、丙、丁4人去钓鱼,共钓到25条鱼,按数量从多到少的排名是甲、乙、丙、丁。

又知甲钓到鱼的条数是乙和丙钓到鱼的条数的和,乙钓到鱼的条数是丙和丁钓到鱼的条数的和。

那么甲、乙、丙、丁各钓到几条鱼?22、A、B两地间有一条公路,甲、乙两辆分别从A、B两地同时相向出发,甲车的速度是60千米/时。

经过1小时,两车第一次相遇。

然后两车继续行驶,各自到达B、A两地后都立即返回,第二次相遇点与第一次相遇点的距离是20千米。

求:①A、B两地的距离;②乙车的速度。

23、7 × 9 + 12 ÷ 3 - 2 加一对括号后,算式的最大值是。

24、已知三角形的内角和是180度.一个五边形的内角和应是度。

25、甲乙两个数的和是15.95,甲数的小数点向右移动一位就等于乙数,那么甲数是。

26、一个顾客买了6瓶酒,每瓶付1.3元,退空瓶时,售货员说,每只空瓶钱比酒钱少1.1元,顾客应退回的瓶钱是元。

27、两数相除得3余10,被除数,除数,商与余数之和是143,这两个数分别是和。

28、今年爸爸和女儿的年龄和是44岁,10年后,爸爸的年龄是女儿的3倍,今年女儿是岁。

29、一个两位数除250,余数是37,这样的两位数是。

30、把一条细绳先对折,再把它所折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成段。

31、把两个表面积都是6平方厘米的正方体拼成一个长方体,这个长方体的表面积平方厘米。

32、一昼夜钟面上的时针和分针重叠次。

33、某车间四月份实际生产机器76台,其中原计划生产的台数比超产台数多60台, 求四月份比原计划超产台机器。

34、一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要块。

35、一天,甲乙丙三人去郊外钓鱼已知甲比乙多钓6条,丙钓的是甲的2 倍,比乙多钓22条,问他们三人一共钓了条。

36、张师傅以1元钱4个苹果的价格买进苹果若干个,又以2元钱5个苹果有价格把这些苹果卖出,如果他要赚得15元钱的利润,那么他必须卖出苹果个。

37、1+12+22+12+13+23+33+23+13+…+12006+22006+…+20062006+…+22006+12006=____________。

38、8+88+888+…+88…8的和的个位上的数字是____________。

39、有四个连续奇数的和是2008,则其中最小的一个奇数是____________。

40、张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。

最后橘子分完了,苹果还剩下12个。

那么一共分给了________名小朋友。

41、有这样一种算式:三个不同的自然数相乘,积是100。

这样的算式有____________种。

(交换因数位置的算同一种。

)E42、在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。

43、一天,小慧和刘老师一起谈心。

小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。

”刘老师今年的年龄是____________岁。

44、小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。

他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。

45、某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。

已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。

那么前3名同学的总分比后3名同学的总分多____________分。

46、在右图中,已知正方形ABCD的面积是正方形EFGH面积的4倍,正方形AMEN的周长是4厘米,那么正方形ABCD的周长是____________厘米。

47、一个自然数各个数位上的数字之和是15。

如果它的各个数位上的数字都不相同,那么符合条件的最大数是________,最小数是________。

48、对自然数作如下操作:如果是偶数就除以2,如果是奇数就减去1,如此操作直到结果变成0为止。

那么经过6次操作后使结果变成0的数有______个,分别是________________________________。

49、五名裁判员给一名体操运动员评分,去掉一个最高分和一个最低分后平均得分是9.38分。

若去掉一个最高分平均得分为9.26分;若去掉一个最低分平均得分为9.46分。

这名体操运动员的最高分和最低分分别是______分。

50、学校合唱团全部是来自甲、乙、丙三个班的同学,其中来自甲、乙两班的同学共有60人。

合唱团中不是甲班的同学有100人,不是乙班的同学有90人。

问:(1)合唱团中来自甲、乙两班的同学各有多少人?(2)合唱团的同学一共有多少人?51、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。

那么有_____人两个小组都不参加。

52、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。

那么语文成绩得满分的有_____人。

53、50名同学面向老师站成一行。

老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。

问:现在面向老师的同学还有_____名。

54、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。

按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。

那么游艺会为该项活动准备的奖品铅笔共有_____支。

55、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。

问绳子共被剪成了_____段。

答案:1、12、120 (5×4×3×2×1=120)3、3344(164+448=612 612×2=1224 448+1224=1672 1672×2=3344)4、9(分别是第2、5、8、11、14、17、20、23、26个座位)5、7 (A:15 E:4 那么C与D至少5人,剩下7人)6、160(6÷(1-2/5)=10(筐)10-6-3=1(筐) 16×10=160(筐))7、21.6(解方程,设原计划需要X天完成。

720X=800(X-3) X=30 720×30=21600 化单位)8、1489、6(100=3+97=11+89=17+83=29+71=41+59=47+53)10、6(和2005号比赛1场,和2006号比赛2场,和2007号比赛3场,共6场)11、412、1234567935((11+111+1111+...+1111111111)+4×9=1234567899+36=1234567935)13、5(所得的商除以4,余数为3,设此商为4a+3,则原数为3(4a+3)+2=12a+11,除以6,商2a+1,余数为5。

相关文档
最新文档