五年级上册数学奥数试题第五讲——进位制问题 人教版
小学奥数进位制

进位制把一个十进制数改写成二进制数,可以采用“方幂法”,即将这个十进制数写成若干个2的次幂形式,再根据系数写出这个二进制数;也可以用2连续除十进制数,然后将每次所得的余数按自下而上的顺序依次写出来,这种办法通常叫“二除取余法”,即用2除十进制数自下而上依次取余数。
这两种方法同样适用于其他的进制换算。
将二进制数变成十进制数,可以采用方幂法来求解。
例把(37)10改写成二进制数。
解法一 (37)10=32+4+1=1×25+0×24+0×23+1×22+0×21+1×20=(100101)2解法二(37)10=(100101)21.把十进制数(3568)10写成数码与计算单位乘积的和的形式。
2 把二进制的数(101011)2写成数码与计数单位乘积的和的形式。
3 把二进制数(11001010011)2改写成八进位制数。
6. 把三进制数201012化为八进制的数。
7. 在什么进位制里,十进位制数71记为47?8. 一架天平,两边都能放砝码。
要称出1~80克的所有整数克重,最少需要几个砝码?分别是什么?9 一个自然数的七进位制表达式是一个三位数,而这个自然数的九进位制表达式也是一个三位数,而且这两个三位数的数码顺序恰好相反。
求这个自然数。
10 计算:(1)(110101)2+(11101)2; (2)(1101101)2-(1011110)2。
(3)(101110)2×(101)2; (4)(110011)2÷(1001)2。
11 有229人参加学校乒乓球赛,比赛实行淘汰制。
为了尽量减少比赛场次,规定只有在某一轮参赛选手为奇数时,才安排一人轮空。
此次安排比赛有几人轮空?12. 若5×6=26,则6×6=?13. 250个鸡蛋至少分装在几个盒子里,每个盒子里各几个,才能保证250以内所需鸡蛋数都可以用几只盒子凑齐,而不必再打开盒子?14. 把(354)6改写成十进制数。
五年级上册数学奥数试题第五讲——进位制问题 人教版

第五讲进位制问题例题1 (1)2013=()5=()8=()12=()16(2)(2012)5=()10;(3)(2012)2=()10练习1 (3A2)12=()10;(ADD)16=()10;(2012)5=()12;(2012)8=()12例题2 (1)把三进制数12120120110110121121改写为九进制,它从左向右数第1位数字是多少?(2)(111011001)2=()4=()8练习2 (120011221)3=()9例题3 (5453)7+(6245)7=()7练习3 (123)5 (123)5=()5例题4 在6进制中有三位数abc,化为9进制的cba,这个三位数在十进制中是多少?练习4 在7进制中有三位数abc,化为9进制为cba,这三位数在十进制中是多少?挑战极限例题五一个天平,物品必须放在左盘,砝码必须放在右盘,那么为了能称出1克到1000克,至少需要多少个砝码?例题6 一本书共有2013页,第一天看一页书,从第二天起,每天看到的页数都是以前各天的总和。
如果直到最后剩下的不足以看一次时就一次看完,共需要多少天?作业1、进制互化(1)(11202)4=()10;(2)(1CA)16=()10(2)(3120)10=()16;(4)(1248)10=()5(5)(11202)4=()9;(6)(157)9=()162 、(1)(202)4+(323)4=()4;(2)(21)5(322)5=()53 、一个十进制三位数(abc)10,其中a,b,c均代表某个数码,它的二进制表达式是一个七位数(1abcabc)2,这个十进制的三位数是多少?4 、一个自然数用三进制和四进制表示都为三位数,并且它的各位数字的排列顺序恰好相反,这个自然数用十进制表示是多少?5 、 a,b是自然数,a进制下的数47和b进制下的数74相等,a与b的和的最小值是多少?本周打卡:、1()()()()852109865=== 2、 ()=211010101 ()=87236 ()=542033、 在什么进位制里,十进位制数71记为47?4、 (110101)2+(11101)2 =_______; (1101101)2-(1011110)2 =______;222(101)(1011)(11011)⨯-=________;88888(63121)(1247)(16034)(26531)(1744)----=________;5、一个自然数的七进位制表达式是一个三位数,而这个自然数的九进位制表达式也是一个三位数,而且这两个三位数的数码顺序恰好相反。
五年级奥数试卷及答案2020——人教版

五年级奥数试卷及答案2020——人教版
一、选择题
1. 下列哪个数是质数?
A. 41
B. 42
C. 43
D. 44
{答案:C}
2. 一个五位数的最高位是万位,最低位是个位,这个数是?
A. 10000
B. 10001
C. 9999
D. 11111
{答案:C}
3. 下列哪个数是立方数?
A. 27
B. 28
C. 29
D. 30
{答案:A}
二、填空题
4. 1000除以25的商是______。
{答案:40}
5. 9的平方根是______。
{答案:±3}
6. 125乘以8等于______。
{答案:1000}
三、解答题
7. 一个长方形的长是12厘米,宽是5厘米,求它的面积和周长。
{答案:面积=60平方厘米,周长=34厘米}
8. 解方程:2x + 5 = 17。
{答案:x = 6}
9. 有一个数列:2, 4, 8, 16, 32, ...,请问第10项是多少?
{答案:512}
四、应用题
10. 小明的成绩提高了15%,他提高后的成绩是原成绩的多少百分之几?
{答案:115%}
11. 一个班有50名学生,其中男生占60%,请问这个班有多少名男生和女生?
{答案:男生30名,女生20名}
12. 一个水池,第一天注水1升,之后每天比前一天多注水2升,第五天注水多少升?
{答案:11升}
以上就是2020年人教版五年级奥数试卷的全部内容,希望同学们认真复习,取得好成绩。
10小学奥数——数阵+进位制 试题及解析

小学奥数——数阵、进位制一.选择题(共16小题)1.在右图的66⨯方格内,每个方格中只能填A,B,C,D,E,F中的某个字母,要求每行、每列、每个标有粗线的23⨯长方形的六个字母均不能重复.那么,第四行除了首尾两个方格外,中间四个方格填入的字母从左到右的顺序是()A.E,C,D,FB.E,D,C,FC.D,F,C,ED.D,C,F,E2.如图,请将0、1、2、⋯、14、15 填入一个的表格中,使得每行每列的四个数除以4的余数都恰为0、1、2、3各一个,而除以4的商也恰为0、1、2、3各一个.表格中已经填好了几个数,那么,这个表格中最下方一行的四个数的乘积是()A.784B.560C.1232D.5283.如图,将前9个正奇数1,3,5,7,9,11,13,15,17放在33⨯的幻方中,使横向、纵向和对角线方向数字和相等,则(+=)A EA.32B.28C.26D.244.将1,2,3,4,5,6分别填入66⨯的方格网(如图所示)的36个小方格中,使得每一行每一列中的6个数1,2,3,4,5,6各出现一次,并且满足与不等号相邻的两个数中小数是大数的约数,那么,第二行从左到右的第6个数是()(左图是一个33⨯的例子)A.5B.4C.3D.25.9、“九宫阵”是一个99⨯的方阵,它是由九个33⨯的“九宫格”(图中黑实线围住的方阵)组成.请你在下图中将数字1,2,3,4,5,6,7,8,9分别填入空格内,使得每行、每列及9个“九宫格”中数字1~9均恰好出现一次.当填写完后,那么,位于第4行第4列的数字是()A.2B.4C.6D.86.在如图方格表中的每个方格中填人一个字母,使得方格表中每行、每列及两条对角线上的四个方格中的字母都是A,B,C,D,那么表中★所在方格应填的字母是()A.AB.BC.CD.D7.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图给出了“河图”的部分点图,请你推算出P处所对应的点图.有以下4个点图可供选择其中,正确的是()A.①B.②C.③D.④8.如图的九个方格中,分别填入九个整数,使得每一横行,每一竖列及每一条对角线上的三个整数之积都相等(称之为乘法幻方),现在已填入三个整数:1,3,4及一个☆号,那么含有“☆”号的小方格中应填入的数是()A.9B.8C.7D.69.如图有九个空格,要求每个格中填入互不相同的数,使得每行、每列、每条对角线上的三个数之和都相等,则图中左上角的数是()A.9B.16C.21D.2310.九宫图的每行、每列、每条对角线上的三个数的和都相等,那么x等于()A.47B.48C.50D.5111.古时候的原始人捕猎,捕到一只野兽对应一根手指.等到10根手指用完,就在绳子上打一个结,这就是运用现在的数学中的()A.出入相补原理B.等差数列求和C.十进制计数法12.用a,b,c,d,x分别表示五进制中5个互不相同的数字.如果adx,adc,aab是由小到大排列好的连续自然数,那么cdx 所表示的整数写成十进制的表示是( ) A.48B.71C.82D.10813.二进制数2(101)可用十进制表示为2120215⨯+⨯+=,二进制2(1011)可用十进制表示为32120212111⨯+⨯+⨯+=,那么二进制数2(11011)用十进制表示为( )A.25B.27C.29D.3114.以下各数中有可能是五进制数的是( ) A.55B.106C.732D.213415.把389化为四进制数的末位为( ) A.1B.2C.3D.016.下列数不是八进制数的是( ) A.125B.126C.127D.128二.填空题(共30小题)17.N 是一个十进制中的自然数,它在四进制中的各位数字之和为4,五进制中的数字之和是5,则十进制中N 最小值是 .18.在r 进制中有这样一个算式:10(120)(44)(2016)r r ⨯=,其中结果已转换为十进制,那么r = .(填数字)19.一个超过20的自然数N ,在14进制与20进制中都可以表示为回文数(回文数就是指正读与倒读都一样的数,比如12321、3443都是回文数,而12331不是回文数),N 的最小值为 (答案用10进制表示).20.十进制10(23)在六进制中表示为6(35),66(230)(255)(+= 10). 21.十进制10(23)在六进制中表示为6(35),66(135)(12)(+= 10).22.如果一个数的二进制表示与负二进制表示的形式相同,这样的数称为“中环数”,比如:2220(10100)(10100)-==,其中432102(10100)1(2)0(2)1(2)0(2)0(2)-=⨯-+⨯-+⨯-+⨯-+⨯-,所以20就是“中环数”,而227(111)(11011)-==,所以7不是“中环数”,在小于1000的正整数中,“中环数”有 个.23.将六进制中的数2015改写成十进制是 .24.请将十进制数120转化成二进制: .25.两个七进制整数454与5的商的七进制表示为 . 26.计算:(2)(2)1101101⨯=(2).27.十进制中数57改写成四进制为4(321),计算:44(1003)(1012)+= 7(结果用七进制表示)28.巴依老爷请阿凡提为其整修花园,要求一个月完成,3月1日开始,31日结束,每天的工钱为一钱黄金.巴依老爷是出了名的守财奴,阿凡提要求每天结束时结算工钱,巴依老爷只有一块31钱的金条,他让阿凡提切割尽量少的次数,聪明绝顶的阿凡提只做了 次切割,就解决了问题.29.十进制中697改写成七进制为7(2014),今天是2014年2月23日,计算:77(2014)(223)+=7.(结果用七进制表示).30.日常生活中经常使用十进制来表示数.要用10个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用二进制,只要两个数码0和1,正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到一下自然数的十进制与二进制表示对照表: 十进制 0 1 2 3 4 5 6 7 8 ⋯ 二进制110111001011101111000⋯十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1110+=,十进制的3在二进制中变成了10111+=,⋯.那么二进制中的“1111”用十进制表示是 .31.仔细观察下面表示数的方式,第六行表示 .32.日常生活中经常使用十进制来表示数.要用10个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用二进制,只要两个数码0和1,正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到一下自然数的十进制与二进制表示对照表:十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1110+=,⋯熟知十进制10个2相乘等于+=,十进制的3在二进制中变成了101111024,即1021024=,在二进制中就是10000000000.那么二进制中的“10110”用十进制表示是.33.日常生活中经常使用十进制来表示数.要用10个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用二进制,只要两个数码0和1,正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到一下自然数的十进制与二进制表示对照表:十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1110+=,⋯熟知十进制10个2相乘等于+=,十进制的3在二进制中变成了101111024,即1021024=,在二进制中就是10000000000.那么,十进制中的2014用二进制表示是.34.日常生活中经常使用十进制来表示数.要用10个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用二进制,只要两个数码0和1,正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到一下自然数的十进制与二进制表示对照表:十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1110+=,⋯熟知十进制10个2相乘等于+=,十进制的3在二进制中变成了101111024,即1022014=,在二进制中就是10000000000.那么,十进制中的1039用二进制表示是.35.日常生活中经常使用十进制来表示数,要用10 个数码:0、1、2、3、4、5、6、7、8、9.在电子计算机中用二进制,只要用两个数码0和1.正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到以下自然数的十进制与二进制表示对照表:十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1110+=,十进制的3在二进制中变成了10111+=,⋯那么,二进制中的“111100”用十进制表示是 .36.十进制中259改写成五进制为5(2014),今天是2014年2月23日,计算:55(2014)(223)+=5.37.在n 进制的数中,若(1030)140n =,则n = .38.十进制计数法,是逢10进1,如102421041=⨯+⨯,21036531061051=⨯+⨯+⨯;计算机使用的是二进制计数法,是逢2进1,如21027121211111=⨯+⨯+⨯=,3210212121202011100=⨯+⨯+⨯+⨯=,如果一个自然数可以写成m 进制数45m ,也可以写成n 进制数54n ,那么最小的m = ,n = .(注:)n n aa a a a a =⨯⨯⨯⋯⨯{个39.在美洲的一个小镇中,对于200以下的数字读法都是采取20进制的,如果十进制中的147在20进制中的读音是“seyth ha seyth ugens ”,而十进制中的49在20进制中的读音是“naw ha dew ugens ”,那么20进制中读音是“dew ha naw ugens ”的数指的是十进制中的数 .40.有一天,唐僧师徒四人来到一个被称为“长寿岛”的地方,迎面走来一位青年,他自称有101岁了,孙悟空灵机一动,出了几道算术题给他算:11+=?;111++=?;1111+++=?;23⨯=?.这位青年的计算结果是:112+=,1113++=,11114+++=,2310⨯=.孙悟空仰天一笑,大声说,我知道你是 岁.41.欢欢,迎迎各有4张卡片,每张卡片上各写有一个正整数.两人各出一张卡片,计算两张卡片上所写数的和,结果发现一共能得到16个不同的和.那么,两人卡片上所写数中最大数最小是 .42.二进制数进行加、减、乘、除运算时是满 进一,退一作 . 43.把十进制数分别化成二进制数.44.一个自然数在四进制表示当中的各位数字之和是5,在五进制表示当中的各位数字之和是4,那么这个自然数除以3的余数是2,满足要求的最小自然数是(十进制表示) .45.把二进制数2(10111)化为十进制数是10;把十进制数10(37)化成二进制数是2.46.把5盏电灯并排安在台子上,用〇表示点亮的电灯,用●表示关掉的电灯.〇和●按一定的顺序排列,可以表示一定的数值,如图:(1)按图中的规律,●〇●●〇表示 ;(2)如果用1表示〇,用0表示●,则“00001” 1=,“00010” 2=,“00011” 3=.“00100” 4=,“00101” 5=,省略最前面的零可简写成“1” 1=,“10” 2=,“11” 3=,“100” 4=,那么“11011” = ,“11110” = . 三.计算题(共4小题)47.二进制是计算技术中广泛采用的一种计数方法,二进制数是用0和1两个数字来表示的.其加、减法的意义我我们平时学习的十进制类似. (1)二进制加法.在二进制加法中,同一数位上的数相加只有四种情况:000+=,011+=,101+=,1110+=. 二进制加法算式和十进制写法一样,算法也一样,也要求数位对齐,从低位到遍位依次运算,但“满二进一”.例:(2)二进制减法.二进制减法算式和十进制写法一样,算法也一样,也要数位对齐,从低位到高位依次运算,相同数位上的数不够减时,向高一位借,但“借一当二”.例:阅读以上关于二进制的介绍,请你完成以下二进制计算.(要求列竖式计算) (1)10111- (2)101101101+.48.(1)把二进制数101011100写成十进制数是什么? (2)把十进制数234写成二进制数是什么? 49.把下列十进制数分别改写成二进制数.(1)(10)17 (2)(10)23 50.计算下列各题. (1)(2)(2)10011100+ (2)(2)(2)10111001- (3)(2)(2)100111⨯ (4)(2)(2)1110111÷参考答案与试题解析一.选择题(共16小题)1.在右图的66⨯方格内,每个方格中只能填A,B,C,D,E,F中的某个字母,要求每行、每列、每个标有粗线的23⨯长方形的六个字母均不能重复.那么,第四行除了首尾两个方格外,中间四个方格填入的字母从左到右的顺序是()A.E,C,D,FB.E,D,C,FC.D,F,C,ED.D,C,F,E 【解析】依题意可知:首先根据排除法看第一宫格,第一列不能有A,第二行不能有A.那么A只能在第一行第二列.幻方规律排除法确定第三行第四列也是A;第四行第四列的数字是C;接着第五行第四列就是F;那么第二行的第四列是B;继续推理得:故选:C.2.如图,请将0、1、2、⋯、14、15 填入一个的表格中,使得每行每列的四个数除以4的余数都恰为0、1、2、3各一个,而除以4的商也恰为0、1、2、3各一个.表格中已经填好了几个数,那么,这个表格中最下方一行的四个数的乘积是()A.784B.560C.1232D.528【解析】依题意可知:可将数独拆分成余数数独和商的数独.商的数独注意某两个格子如果余数是相同的,那么商必然不同,如果商是相同的,那么余数必然不同,利用这个条件可以填完这两个数独,再合并成原表格.所以7814784⨯⨯=.故选:A.3.如图,将前9个正奇数1,3,5,7,9,11,13,15,17放在33⨯的幻方中,使横向、纵向和对角线方向数字和相等,则(+=)A EA.32B.28C.26D.24【解析】所以,151732+=+=A E故选:A.4.将1,2,3,4,5,6分别填入66⨯的方格网(如图所示)的36个小方格中,使得每一行每一列中的6个数1,2,3,4,5,6各出现一次,并且满足与不等号相邻的两个数中小数是大数的约数,那么,第二行从左到右的第6个数是()(左图是一个33⨯的例子)A.5B.4C.3D.2【解析】通过排除试填,得到如下答案,如图:故选:D.5.9、“九宫阵”是一个99⨯的“九宫格”(图中黑实线围住的方阵)⨯的方阵,它是由九个33组成.请你在下图中将数字1,2,3,4,5,6,7,8,9分别填入空格内,使得每行、每列及9个“九宫格”中数字1~9均恰好出现一次.当填写完后,那么,位于第4行第4列的数字是()A.2B.4C.6D.8【解析】由分析可知位于第4行第4列的数字是2;故选:A.6.在如图方格表中的每个方格中填人一个字母,使得方格表中每行、每列及两条对角线上的四个方格中的字母都是A,B,C,D,那么表中★所在方格应填的字母是()A.AB.BC.CD.D【解析】如上图:①D≠、C、A,只能是B;同理,★部分的字母A≠、B、D,只能是C,所以,★部分的方格中填入的字母是C.故选:C.7.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图给出了“河图”的部分点图,请你推算出P处所对应的点图.有以下4个点图可供选择其中,正确的是()A.①B.②C.③D.④【解析】每个点表示1,中间数就是5,幻和是5315⨯=.左下角的数是:15528--=,P点的数是:15816--=.P点有6个点组成,与③相同.故选:C.8.如图的九个方格中,分别填入九个整数,使得每一横行,每一竖列及每一条对角线上的三个整数之积都相等(称之为乘法幻方),现在已填入三个整数:1,3,4及一个☆号,那么含有“☆”号的小方格中应填入的数是()A.9B.8C.7D.6【解析】如图341B=,⨯⨯=⨯⨯,即12A B A=⨯,☆31249=⨯÷=.⨯⨯,因此4☆312C3C B⨯⨯=☆4故选:A.9.如图有九个空格,要求每个格中填入互不相同的数,使得每行、每列、每条对角线上的三个数之和都相等,则图中左上角的数是()A.9B.16C.21D.23【解析】如图,设相应方格中的数为1x ,2x ,3x ,4x ;由已知条件:行、列及对角线的三个数的和都相等,可以列出下面的等式(方程): ?十1x 十2x =?3413213x x x x x ++=++=十419x +, 这样,前面两个式子的和就等于后面两个式子的和, 即有2⨯?1x +十23411319x x x x ++=++十234x x x ++, 所以1319?162+==. 答:图中左上角的数是16. 故选:B .10.九宫图的每行、每列、每条对角线上的三个数的和都相等,那么x 等于( )A.47B.48C.50D.51【解析】幻和是:23739x x ++=+, (39)1623c x x =+--=, (39)372321a x x =+--=-,(39)(21)1639211644b x x x x =+---=+-+-=; (39)443742e x x =+--=-;所以:(21)(42)39x x x x +-+-=+214239x x x x ++--=+ 2102x = 51x =. 故选:D .11.古时候的原始人捕猎,捕到一只野兽对应一根手指.等到10根手指用完,就在绳子上打一个结,这就是运用现在的数学中的( ) A.出入相补原理B.等差数列求和C.十进制计数法【解析】古时候的原始人捕猎,捕到一只野兽对应一根手指.等到10根手指用完,就在绳子上打一个结,这就是运用现在的数学中的十进制计数法; 故选:C .12.用a ,b ,c ,d ,x 分别表示五进制中5个互不相同的数字.如果adx ,adc ,aab 是由小到大排列好的连续自然数,那么cdx 所表示的整数写成十进制的表示是( ) A.48B.71C.82D.108【解析】由于是连续的正整数,且adc ,aab ,个位与十位均发生了变化,可知是发生了进位,因为1adc adx -=,所以1c x -=. 又因1aab adc -=,即:(5)(5)1a b d c +-+=,所以5()()1a d b c -+-=;由于a ,b ,c ,d ,e 都是0至4之间的不同整数, 从而可以推知:1a d -=,4c b -=.经检验,得4c =,0b =,3e =,2a =,1d =,于是有: 5(413)cdx =,210451535+=⨯+⨯⨯, 42553=⨯++, 10053=++, 108=.答:cdx 所表示的整数写成十进制的表示108. 故选:D .13.二进制数2(101)可用十进制表示为2120215⨯+⨯+=,二进制2(1011)可用十进制表示为32120212111⨯+⨯+⨯+=,那么二进制数2(11011)用十进制表示为( )A.25B.27C.29D.31【解析】2(11011),432101212021212=⨯+⨯+⨯+⨯+⨯, 168021=++++,2421=++,27=;二进制数2(11011)用十进制表示为27. 故选:B .14.以下各数中有可能是五进制数的是( ) A.55B.106C.732D.2134【解析】因为五进制数不可能出现5,6,7,8,9,所以55、106、732不可能是五进制数,2134有可能是五进制数, 所以有可能是五进制数的是2134. 故选:D .15.把389化为四进制数的末位为( ) A.1B.2C.3D.0【解析】3894971÷=⋯,(末位) 974241÷=⋯, 24460÷=⋯, 6412÷=⋯, 1401÷=⋯,把所有余数倒序排列,即:12011. 所以,10(389)(=412011),所以,把389化为四进制数的末位为1. 故选:A .16.下列数不是八进制数的是( )A.125B.126C.127D.128【解析】八进制的数是由除以8的余数得来的数计数的,不可能出现8,所以128不合题意; 故选:D .二.填空题(共30小题)17.N 是一个十进制中的自然数,它在四进制中的各位数字之和为4,五进制中的数字之和是5,则十进制中N 最小值是 13 . 【解析】从上表可以看出符合条件的数最小是13. 故答案为:13.18.在r 进制中有这样一个算式:10(120)(44)(2016)r r ⨯=,其中结果已转换为十进制,那么r = 7 .(填数字) 【解析】10(120)(44)(2016)r r ⨯=2(12)(44)2016r r r ⨯+⨯⨯+= (1)(2)789r r r ⨯+⨯+=⨯⨯ 7r =故答案为:7.19.一个超过20的自然数N ,在14进制与20进制中都可以表示为回文数(回文数就是指正读与倒读都一样的数,比如12321、3443都是回文数,而12331不是回文数),N 的最小值为 105 (答案用10进制表示).【解析】因为20N >,所以N 在14进制与20进制中都不是一位数, 我们希望N 尽可能小,故设1420()()N aa bb ==,即1420N a a b b =+=+,所以1521N a b ==,即N 是15的倍数,又是21的倍数,即是357105⨯⨯=的倍数, 而101420(105)(77)(55)==,符合题意, 故N 的最小值为105. 故答案为105.20.十进制10(23)在六进制中表示为6(35),66(230)(255)(+= 197 10). 【解析】26(230)2636017218090=⨯+⨯+⨯=++=26(255)26565172305107=⨯+⨯+⨯=++= 90107197+=故答案为:197.21.十进制10(23)在六进制中表示为6(35),66(135)(12)(+= 67 10). 【解析】解法一:666(135)(12)(151)+=2106(151)1656163618567=⨯+⨯+⨯=++=解法二:2106(135)1636563618559=⨯+⨯+⨯=++=106(12)16268=⨯+⨯= 59867+=故答案为:67.22.如果一个数的二进制表示与负二进制表示的形式相同,这样的数称为“中环数”,比如:2220(10100)(10100)-==,其中432102(10100)1(2)0(2)1(2)0(2)0(2)-=⨯-+⨯-+⨯-+⨯-+⨯-,所以20就是“中环数”,而227(111)(11011)-==,所以7不是“中环数”,在小于1000的正整数中,“中环数”有 31 个.【解析】由题意,910210002<<, 所以1000化为二进制为10位数,由于如果一个数的二进制表示与负二进制表示的形式相同,这样的数称为“中环数”,所以2的偶次方可与0或1相乘(不能全部是0),2的奇次方只能与0相乘, 所以在小于1000的正整数中,“中环数”有52131==个. 故答案为31.23.将六进制中的数2015改写成十进制是 442 . 【解析】32106(2015)26061666=⨯+⨯+⨯+⨯ 43266=++442=故答案为:442.24.请将十进制数120转化成二进制: (10)(2)1201111000= . 【解析】1202600÷=⋯, 602300÷=⋯, 302150÷=⋯, 15271÷=⋯, 7231÷=⋯, 3211÷=⋯,故(10)(2)1201111000=. 故答案为:(10)(2)1201111000=.25.两个七进制整数454与5的商的七进制表示为 65 . 【解析】位值原理展开:2107(454)475747449574235=⨯+⨯+⨯=⨯+⨯+= (5)75=235547÷= 十进制转换成七进制方法是短除倒取余数法十进制转换七进制用短除倒取余法 107(47)(65)=故此题答案是6526.计算:(2)(2)1101101⨯= 1000001 (2).【解析】所以,(2)(2)(2)11011011000001⨯=. 故答案为:1000001.27.十进制中数57改写成四进制为4(321),计算:44(1003)(1012)+= (254) 7(结果用七进制表示) 【解析】303104410(1003)(1012)1434141424(137)+=⨯+⨯+⨯+⨯+⨯=, 因为2749= 13749239÷=⋯⋯ 39754÷=⋯⋯ 107(137)(254)=.所以447(1003)(1012)(254)+= 故答案为:(254)28.巴依老爷请阿凡提为其整修花园,要求一个月完成,3月1日开始,31日结束,每天的工钱为一钱黄金.巴依老爷是出了名的守财奴,阿凡提要求每天结束时结算工钱,巴依老爷只有一块31钱的金条,他让阿凡提切割尽量少的次数,聪明绝顶的阿凡提只做了 4 次切割,就解决了问题.【解析】阿凡提切成的金条分别是021=,122=,224=,328=,4216=, 514-=(次)故答案为:4.29.十进制中697改写成七进制为7(2014),今天是2014年2月23日,计算:77(2014)(223)+= (2240)7.(结果用七进制表示).【解析】777(2014)(223)(2240)+= 故答案为:(2240).30.日常生活中经常使用十进制来表示数.要用10个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用二进制,只要两个数码0和1,正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到一下自然数的十进制与二进制表示对照表: 十进制 0 1 2 3 4 5 6 7 8 ⋯ 二进制110111001011101111000⋯十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1110+=,十进制的3在二进制中变成了10111+=,⋯.那么二进制中的“1111”用十进制表示是 15 . 【解析】二进制的1111书写为32102(1111)121212121814121115=⨯+⨯+⨯+⨯=⨯+⨯+⨯+⨯=. 故此题答案是15.31.仔细观察下面表示数的方式,第六行表示 7 .【解析】由题意可知,第一列的黑点表示,“4”,第二列的黑点表示“2”,第三列的黑点表示“1”,所以第六行是4217++=. 故答案为7.32.日常生活中经常使用十进制来表示数.要用10个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用二进制,只要两个数码0和1,正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到一下自然数的十进制与二进制表示对照表: 十进制 0 1 2 3 4 5 6 7 8 ⋯二进制110111001011101111000⋯十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1110+=,十进制的3在二进制中变成了10111+=,⋯熟知十进制10个2相乘等于1024,即1021024=,在二进制中就是10000000000.那么二进制中的“10110”用十进制表示是 22 .【解析】二进制下的10110转换成十进制就是按照位置原来展开式:就是432102(10110)12021212021160814120122=⨯+⨯+⨯+⨯+⨯=⨯+⨯+⨯+⨯+⨯=. 故答案为22.33.日常生活中经常使用十进制来表示数.要用10个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用二进制,只要两个数码0和1,正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到一下自然数的十进制与二进制表示对照表: 十进制 0 1 2 3 4 5 6 7 8 ⋯二进制110111001011101111000⋯十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1110+=,十进制的3在二进制中变成了10111+=,⋯熟知十进制10个2相乘等于1024,即1021024=,在二进制中就是10000000000.那么,十进制中的2014用二进制表示是 11111011110 .【解析】短除法,倒取余数为11111011110综上所述:1111101111034.日常生活中经常使用十进制来表示数.要用10个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用二进制,只要两个数码0和1,正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到一下自然数的十进制与二进制表示对照表:十进制012345678⋯二进制0110111001011101111000⋯十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1110+=,十进制的3在二进制中变成了10111+=,⋯熟知十进制10个2相乘等于1024,即1022014=,在二进制中就是10000000000.那么,十进制中的1039用二进制表示是10000001111.【解析】短除倒取余,10000001111.故本题答案为10000001111.35.日常生活中经常使用十进制来表示数,要用10 个数码:0、1、2、3、4、5、6、7、8、9.在电子计算机中用二进制,只要用两个数码0和1.正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到以下自然数的十进制与二进制表示对照表:十进制012345678⋯二进制0110111001011101111000⋯十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1110+=,⋯那么,二进制中的“111100”+=,十进制的3在二进制中变成了10111用十进制表示是60.【解析】二进制中的“111100”用十进制表示是:54321⨯+⨯+⨯+⨯+⨯+12121212020=+++++32168400=60故答案为:60.36.十进制中259改写成五进制为5(2014),今天是2014年2月23日,计算:55(2014)(223)+= (2242)5.【解析】故答案为:(2242).37.在n 进制的数中,若(1030)140n =,则n = 5 . 【解析】32(1030)1030n n n n =⨯+⨯+⨯+ 33140n n =+=,从9开始分析逐次少1,能够得出140,只有3535140+⨯=. 所以5n =. 故答案为:5.38.十进制计数法,是逢10进1,如102421041=⨯+⨯,21036531061051=⨯+⨯+⨯;计算机使用的是二进制计数法,是逢2进1,如21027121211111=⨯+⨯+⨯=,3210212121202011100=⨯+⨯+⨯+⨯=,如果一个自然数可以写成m 进制数45m ,也可以写成n 进制数54n ,那么最小的m = 11 ,n = .(注:)n n aa a a a a =⨯⨯⨯⋯⨯{个【解析】4545m m =+; 5454n n =+;那么: 4554m n +=+即:4(1)5(1)m n -=-,如果15m -=,14n -=,则6m =,5n =,但此时n 进制中不能出现数字5; 如果110m -=,18n -=,则11m =,9n =,符合题意. 即m 最小是11,n 最小是9. 故答案为:11,9.39.在美洲的一个小镇中,对于200以下的数字读法都是采取20进制的,如果十进制中的147在20进制中的读音是“seyth ha seyth ugens ”,而十进制中的49在20进制中的读音是“naw ha dew ugens ”,那么20进制中读音是“dew ha naw ugens ”的数指的是十进制中的数 182 .【解析】147在20进制中是77读音是“syeth ha seyth ugens “,49在20进制中是29读音是“naw ha dew ugens “,所以syeth 代表的是7而ha 和ugens 则分别代表了第二位和末位,所以naw 和dew 分别代表了2和9.那么20进制中读音是“dew ha naw ugens “的数是20进制中的92(2和9对换位置即可),所以十进制中的数是9202182⨯+=. 故答案为182.40.有一天,唐僧师徒四人来到一个被称为“长寿岛”的地方,迎面走来一位青年,他自称有101岁了,孙悟空灵机一动,出了几道算术题给他算:11+=?;111++=?;1111+++=?;23⨯=?.这位青年的计算结果是:112+=,1113++=,11114+++=,2310⨯=.孙悟空仰天一笑,大声说,我知道你是 37 岁.【解析】根据112+=,1113++=,11114+++=,2310⨯=,可得:“长寿岛”的地方采用的是“六进制”, 那么:101转化为十进制是: 312111160616---⨯+⨯+⨯ 3601=++ 37=(岁)答:这个青年37岁. 故答案为:37.41.欢欢,迎迎各有4张卡片,每张卡片上各写有一个正整数.两人各出一张卡片,计算两张卡片上所写数的和,结果发现一共能得到16个不同的和.那么,两人卡片上所写数中最大数最小是 10 .【解析】一个人控制最高位和最低位:0000,0001,1000,1001; 另一个人控制中间两位:0000,0010,0100,0110.最大数最小是1001也就是9,容易发现8不行.原题要求正整数, 所以每个数再加1. 故答案是:10.42.二进制数进行加、减、乘、除运算时是满 二 进一,退一作 .【解析】二进制数进行加、减、乘、除运算时是满二进一,退一作二; 故答案为:二,二.43.把十进制数分别化成二进制数.【解析】解(1)252121÷=⋯, 12260÷=⋯, 6230÷=⋯, 3211÷=⋯, 1201÷=⋯,故102(25)(11001)=.(2)2(111010),543210121212021202=⨯+⨯+⨯+⨯+⨯+⨯, 32168020=+++++, 58=;210(111010)(58)=;故答案为:(11001),(58).44.一个自然数在四进制表示当中的各位数字之和是5,在五进制表示当中的各位数字之和是4,那么这个自然数除以3的余数是2,满足要求的最小自然数是(十进制表示) 56 . 【解析】4105(23)(11)(21)==,数字之和不是4; 4105(32)(14)(24)==,数字之和不是4; 4105(113)(23)(43)==,数字之和不是4; 4105(122)(26)(101)==,数字之和不是4; 4105(131)(29)(104)==,数字之和不是4; 4105(203)(35)(120)==,数字之和不是4; 4105(212)(38)(123)==,数字之和不是4;4105(221)(41)(131)==,数字之和不是4; 4105(230)(44)(134)==,数字之和不是4;4105(302)(50)(200)==,数字之和不是4; 4105(311)(53)(203)==,数字之和不是4; 4105(320)(56)(211)==,数字之和是4,563182÷=⋯⋯.故答案为:56.45.把二进制数2(10111)化为十进制数是 (23)10;把十进制数10(37)化成二进制数是2.【解析】(1)2(10111),432101202121212=⨯+⨯+⨯+⨯+⨯, 160421=++++, 23=;210(10111)(23)=;(2)372181÷=⋯, 18290÷=⋯, 9241÷=⋯, 4220÷=⋯, 2210÷=⋯, 1201÷=⋯,故102(37)(100101)=. 故答案为:(23),(100101).46.把5盏电灯并排安在台子上,用〇表示点亮的电灯,用●表示关掉的电灯.〇和●按一定的顺序排列,可以表示一定的数值,如图:。
小学五年级奥数 进制问题

2
2
2
②
Hale Waihona Puke 11010 101 2
2
2
【例3】 (★★★)
① (101)2(1011)2 (11011)2 ( )2
② ③
((131002010)4111)(6205)(17 01(0 1)2 )(1101)2
(
)2
④ (63121)8 (1247)8 (16034)8 (26531)8 (1744)8 ( )8
知识大总结 1. 进制转换:
⑴ 10转n:短除、取余、倒写 ⑵ n转10:写指、相乘、求和 2. n进制计算: ⑴ 同进制下,可以直接计算. ⑵ 不同进制,借助十进制转换计算. 3. 位值原理: ⑴ 借助数位,按数位进行计算. ⑵ 根据具体位置特征进行估算.
【今日讲题】 例1,例2,例3,例4
【讲题心得】 ______________________________________________________________
10
3
4. 关于进位制 ⑴ 本质:n进制就是逢n进一 ⑵ n进制下的数字最大为(n-1) 特别的:超过9的一般用大写英文字母表示. 例如,十六进制中,10、11、12、13、14、15、分别用A、B、C、D、E、 F表示.
5. n进制转十进制: 写指、相乘、求和. 例如:
101001 2
1
25
0
24
1
23
0
22
0
21
1
20
41 10
【例1】 (★★) ⑴将(2009)10写成二进制数 ⑵把十进制数 2008转化为十六进制数;
五年级数学奥数讲义-位值原理与数的进制(学生版)

“位值原理与数的进制”学生姓名授课日期教师姓名授课时长本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握的知识要点。
通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。
并学会在其它进制中位值原理的应用。
从而使一些与数论相关的问题简单化。
一、位值原理位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
二、数的进制我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,=1二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则是“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n,我们有n0=1。
n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
【试题来源】【题目】某三位数abc和它的反序数cba的差被99除,商等于与的差;ab与ba 的差被9除,商等于与的差;ab与ba的和被11除,商等于与的和。
【试题来源】【题目】如果ab×7= ,那么ab等于多少?【试题来源】【题目】从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数。
华数奥赛教材五年级练习题

上 册第一讲 小数的巧算与估算1.简算:1.25×<8÷25>7272÷8÷92.65-<1.65-0.97>4.74+<1.26-0.77>5.47-<1.47+0.84>9.9×9.9+0.991.25×2.5×32002.<8.4×2.5+9.7>÷<1.05÷1.5+8.4÷0.28><0.12+0.22+0.32+0.42>2÷<0.13+0.23+0.33+0.43>32.89×6.37+4.63×2.89327×2.8+17.3×283.82100.625980.6250.6250.625888222⨯⨯⋅⋅⋅⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯个个个4.不计算,在□中填入">""<"或"=":0.3÷0.03×0.003÷0.0003□10÷100×1000÷100032.7÷0.25+2.51×10□32.7×4+2.51÷0.1282.4÷0.999□282.4×0.9995.计算:<3.15+2.17+5.61>×<2.17+5.61+6.6>-<3.15+2.17+5.61+6.6>×<2.17+5.61>6.31.719×1.2798的整数部分是多少?7.1999199919999991199919991999999199919991⋅⋅⋅÷⋅⋅⋅个个的商的小数点后前三位数字是几?8.<1>一个三位小数四舍五入后成为4.80,原来的三位小数可能是几?<2>两个数进行乘法与除法运算,算式如下:3.□□×□.17≈6.84,3.□□÷□.17≈1.45试在□中填入合适的数字,使四舍五入取值后的式子成立.9.在混循环小数2.718281的某一位上再添一个表示循环的圆点,使新得到的循环小数尽可能大,请写出新的循环小数.10.在小数点后依次写下整数1,2,3,4,……999,其中小数点右边第1997个数字是几?第二讲 列方程解应用题1.一个两位数,十位数字是个位数字的2倍,将个位数字与十位数字调换,得到一个新的两位数,这两个两位数的和为132,求这个两位数.2.某建筑工地用大小卡车若干辆将580吨土运走.已知大卡车载重量是10吨,小卡车载重量是6吨,大卡车比小卡车多2辆,且每辆车都运了5次才将这些土运完,问有几辆大卡车?3.甲乙两位学生原计划每天自学同样的时间,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间相当于甲自学一天的时间,问甲、乙原定每天自学的时间是多少?4.某日停电,房间里同时点燃了两枝同样长的蜡烛,两枝蜡烛可点燃的时间不同,一枝可点燃3小时,一枝可点燃5小时,当送电时吹灭蜡烛,发现其中一枝剩下长度是另一枝剩下长度的3倍,这次停电多少时间?5.甲、乙两人在河中先后从同一地方同速同向游泳,现在甲位于前方,乙距起点20米,当乙游到甲现在的位置时,甲已离起点98米,问甲现在离起点多少米?6.甲、乙两人星期天一起上街买东西,两人身上带钱共计86元,在人民商场甲买一双运动鞋花去了所带钱数的4/9,乙买一件衬衫花去了人民币16元,这样两人身上剩的钱正好一样多,甲、乙两人原来各带多少钱?7.上午8点8分,小明骑自行车从家里出发,8分钟后爸爸骑摩托车追他,在离家4千米的地方追上了他.然后爸爸立刻回家,到家后又立刻回头去追小明,再追上他的时候,离家恰好是8千米,问这时是几点几分?8.位于同一直线上甲、乙、丙共三个站,乙站到甲、丙两站的距离相等,小明和小强分别从甲、丙两站同时出发相向而行,小明过乙站100米后与小强相遇,然后两人又继续前进,小明走到丙站立即返回,经过乙站300米又追上小强,问甲、丙两站的距离是多少米?9.大盒放有若干枝同样的钢笔,小盒放有若干枝同样的圆珠笔,两盒笔的总价值相等,如果从大盒中取出8枝钢笔放入小盒,从小盒中取出10枝圆珠笔放入大盒,必须在大盒中添两枝同样的钢笔,两盒笔的总价值才相等.如果从大盒中取出10枝钢笔放入小盒,从小盒中取出8枝圆珠笔放入大盒,那么大盒内笔的总价比小盒总价少44元,每枝钢笔多少钱?10.有四位小朋友的体重都是整千克数,他们两两合称体重,共称了五次,称得千克数分别为99、113、125、130、144,其中有两人没有一起称过,那么这两个人中较重的人体重是多少千克?第三讲容斥原理1.一个班有学生45人,参加数学兴趣小组有30人,参加音乐兴趣小组的有22人,并且每人至少参加一个组,这个班两组都参加的有多少人?2.有40名运动员,其中有25人会摔跤,有20人会击剑,有10人击剑、摔跤都不会,问既会摔跤又会击剑的运动员有多少人?3.1,2,3,…,99,100这100个自然数中,能被3整除或能被4整除的数共有多少个?4.如右图,四个圆两两相交,它们把四个圆分成13个区域,如果在这些区域中分别填上1~13这13个数,然后把各圆中的数各自相加,最后把这四个圆的和相加得总和,那么总和最小可能是多少?5.某校参加数学竞赛的有120名男生、80名女生,参加语文竞赛的有120名女生、80名男生,已知该校总共有260名学生参加竞赛,其中75名男生两科竞赛都参加了,那么只参加数学竞赛而没有参加语文竞赛的女生有多少人?6.60名同学,参加乒乓球赛的40人,参加足球赛的45人,参加篮球赛的48人.已知三项都参加的22人,问至多有几个人三项都未参加?7.参加大型团体操的同学共240名,他们面对教练站成一排,自左至右按1,2,3,4,…依次报数,教练让每个同学记住自己报的数并做以下动作:先让报数是3的倍数的学生向后转.接着又让报数是5的倍数的学生向后转.最后让报数是7的倍数的学生向后转,问此时还有多少学生面对教练?8.4枚棋子放在4×4方格中,要求每行每列都放一个且只放一个.同时不允许放在有斜线的方格内,问有多少种放法<如右图>?9.200盏变色灯,编为1至200号,每个灯都由一个开关控制,如果某灯扳动开关一次灯变黄色,再扳动开关一次,灯变绿色,再扳动开关灯又变红,如此循环变色,开始时,灯全部为红,现把所有编号为2的倍数的灯的开关扳动一次,再把编号为3的倍数的开关扳动一次,再把编号为5的倍数的开关扳动一次,求此时共有多少盏灯为黄色?第四讲抽屉原理1.衣柜里有10件绿色衣服,6件白色衣服,7件红色衣服,2件蓝色衣服。
五年级奥数学练习试卷思维培训资料 数的进制

第四讲 数的进制卷Ⅰ教学目标数的进制问题一直是我们教学大纲的一个漏洞,只在三年级春季班讲了一次简单的二进制与十进制的互化之外,再也没有讲过,到了六年级也只是简单提一下.这几年随着二进制与计算机的联系、一年12个月、一周7天等生活中的其它进制问题的凸显,数的进制问题将来一定会是命题的热点.我们常用十进制,可是这并不代表其它进制没有学习的必要,就像我们56个民族,汉族是多数,但其它民族也有可以学习和借鉴之处,更何况在生活中我们用的很多就是二进制、三进制、七进制等等.所以调整了大纲,放了这么一讲,大部分题目都是原创题,不妥之处请批评指教.本讲主要从两个方面来系统地介绍数的进制:一是从进制的基本计数关系、运算法则出发,使学生从十进制的计数思维中解脱出来;二是从进制的转化及应用来说,进一步巩固进制的使用(还有各种进制的整除特征及法则,怕学生难以接受就没放).建议教师专题回顾讲起,先介绍几种进制的计数单位及运算法则,再引出想挑战吗.中间穿插了两个信息点,教师可以简单介绍.下表是十进制与二进制、三进制 、八进制、十六进制的位值(计数单位)对比图:十进制 … 105 104 103 102 101 100 二进制 … 25 24 23 22 21 20 三进制 … 35 34 33 32 31 30 八进制 … 85 84 83 82 81 80 十六进制…16516416316216116n 进制的运算法则是“逢n 进一”、“借一当n”.n 进制的四则混合运算和十进制一样:先乘除,后加减;同级运算,先左后右;有括号,先算括号里面的.7进制乘法表 8进制乘法表12345611234562461113153121521244222633534426511234567112345672461012141631114172225420243034531364364452761我们都学过十进制乘法口诀表,那么聪明的你能写出七进制的乘法口诀表吗?八进制的呢?想挑战吗?专题回顾计算:(1) ;(2) ;(3) ;(4)22(101)(111)+22(1101)(110)-22(1101)(101)⨯22(101101)(111)÷分析:和十进制一样列数式计算,“逢二进一”、“借一当二”.(1)(2)1011111100+1101110111-(3)(4)1101101110111011000001⨯110111101101111100011111专题精讲(一)进制的概念及性质【例1】 (奥数网原创题)在八进制中,1234-456-322=________. 分析:十进制中,两个数的和是整十整百整千的话,我们称为“互补数”,凑出“互补数”的这种方法叫“凑整法”,在n 进制中也有“凑整法”,要凑的就是整n. 原式=1234-(456+322)=1234-1000=234.[前铺] (奥数网原创题)在十进制中,1234-456-544=________.分析:观察两个减数,会发现它们的和是1000.所以,原式=1234-(456+544)=1234-1000=234.[拓展1] (奥数网原创题)在八进制中,63121-1247-16034-26531-1744=________.分析:原式=63121-(1247+26531)-(16034+1744)=63121-30000-20000=13121.[拓展2] (奥数网原创题)在九进制中,14438+3123-7120-11770+5766=________.分析:原式=14438+(3123+5766)-(7120+11770)=14438+10000-20000=4438.[信息提示] 关于八进制的奥秘来自外星世界的太空飞船突然出现在我们上空时将会发生什么样的情况?科学家曾经仔细研究过来自外形世界的信号并发现信息是采用的八进制编码.地球上流行十进制,换句话说,我们有0到9共10个数码.在十进制计数法中,每个数码表示10的某个乘幂,但是,没有任何理由假定外星生物也会使用十进制,来自外星的信息不大可能用十进制编码.在地球上,我们的数学计算用的是十进制,因为我们恰好有10个手指.事实上,我们的语言已经提示了手指同数制的联系——“digit”这个单词兼有两种意思:数或手指.由于十进制来自我们的10只手指,那么八进制会不会透漏一点外星生物的解剖学结构呢?也许八进制会意味着:外星人的每只手上有一个大拇指,3个手指;或者是有着8根触须的怪物;或者是:这种动物长着4只手,而每只手上有一个大拇指,一个小指.甚至还有更荒唐的设想:外星人长着3个头颅,点头和摇头的全部组合刚好是8种!(当然也有可能他们的计数制同其身体结构毫无关系.毕竟,古巴比伦的60进制不能为我们提供关于人体结构的任何信息).【例2】 (奥数网原创题)在六进制中,15+255+3555+45555+555555=________.分析:利用凑整法,十进制中,接近整十整百整千的数,后面会有若干个9,那么类似地,在n 进制中,接近一个比较整的数,后面会有若干位是n-1.原式=(20-1)+(300-1)+(4000-1)+(50000-1)+(1000000-1)=1054320-5=1054311.[前铺] (奥数网原创题)在十进制中,19+299+3999+49999+599999=________.分析:观察各个数,发现每一个都比一个整十整百整千之类的数少1.所以,也可以利用凑整法,原式=(20-1)+(300-1)+(4000-1)+(50000-1)+(600000-1)=654320-5=654315.[拓展] (奥数网原创题)在七进制中,666661-66662-6663-664-65-6=________.分析:原式=(1000000-6)-(100000-5)-(10000-4)-(1000-3)-(100-2)-(10-1)=(1000000-111110)-6+21=555560+12=555602.【例3】 (仁华考题)若是的4倍,那么化为十进制是多少? (62)n (14)n (41)n分析:因为,所以(62)4(14)n n =, 1010(62)4(4)624167n n n n n +=⨯+⎧⎪+=+⎨⎪=⎩710.(41)471(29)=⨯+=[前铺] 表示n 进制数,若,求n. (54)n 10(54)(64)n =【例4】 (仁华考题)在几进制中有4×13=100.分析:我们利用尾数分析来求解这个问题:不管在几进制均有(4)×(3)=(12).但是,式中为100,101010尾数为0.也就是说已经将12全部进到上一位. 所以说进位制为12的约数,也就是12,6,4,3,2.但n 是出现了4,所以不可能是4,3,2进制.我们知道(4)×(13)=(52),因52 < 100,也就是说不到10101010就已经进位,才能是100,于是我们知道<10.所以,只能是6. n n[前铺] 计算:(234)7+(656)7分析:7进制的运算是逢7进1,所以原式=(1223)7.【例5】 (仁华考题)证明10101在任何进制的记数法中,都是一个合数.分析:设在a 进制,则, 4222222(10101)111(1)(1)(1)a a a a a a a a a =⨯+⨯+=+-=+-++可以将其表达为两个均不为1的整数乘积,显然为合数.[前铺] 证明10201在大于2的任何进制的记数法中,都是一个合数.分析:设在b 进制,则,所以不管在任何进制,均是一个非1的4222(10201)121(1)b b b b =⨯+⨯+=+完全平方数,当然是一个合数.卷Ⅱ(二)进制的转化及应用【例6】 (奥数网原创题)把二进制自然数10100001101转化为八进制自然数.分析:二进制数转化为八进制是从个位开始往前每三位转化为八进制.对应关系如下: 二进制 000 001 010 011 100 101 110 111 八进制 0 1 2 3 4 5 6 7 对其进行分组,情况如下:(一定要从后往前)有: 10 100 001 101 2进制 2 4 1 5 8进制 (10100001101)=(2415). 28[拓展1] (奥数网原创题)把二进制小数11.0010010001转化为八进制小数.分析:小数和整数转化的方法类似,只不过是从小数点处,向前和向后都要三位三位数.但是本题的小数点后位数不是3的倍数,所以必须补0. 11. 001 001 000 100 3. 1 1 0 4所以,二进制11.0010010001转化为八进制是3.1104.[拓展2] (奥数网原创题)把二进制循环小数转化为八进制循环小数. 0.10011分析:循环小数转化的方法也类似,但是循环节长度不是3的倍数,所以需要把循环节连写三遍,如下: 0. 100 111 001 110 011 0. 4 7 1 6 3所以,二进制转化为八进制是. 0.100110.47163[拓展3] (奥数网原创题)在几进制中,是一个整数的倒数? 0.1463分析:看到这类问题不知道如何入手的话,可以这样想: 大家都熟悉的十进制循环小数中,循环节的前一半和后一半“互补”,也就是对应位相加10.1428577= 等于9,也就是进制数减1.而的循环节前一半和后一半对应位相加等于7,所以应该是八进制.经0.1463 检验,. 10.14635= [信息提示] 莫尔斯-瑟厄数列在管乐声中有两个调子,用 表示长调,用 表示短调,所有乐曲都可以用类似或表示,就是这种看似既非完全规则、又非全然不规则节奏的神奇模式就是著名的、奇异的二进制数字模式——莫尔斯-瑟厄数列,它可以用0和1的数字串来表示.莫尔斯-瑟厄数列是为了纪念挪威数学家阿克塞尔-瑟厄和普林斯顿大学的马斯登-莫尔斯而命名的.瑟厄引入这个数列,作为一种非周期性的、但又可以通过递推办法而算出来的实例.有好几种办法可以生成莫尔斯-瑟厄数列.第一种:从数0开始,反复进行下列置换:0→01,1→10.换句话说,你一旦见到0,就用01取代它,见到1就用10来取代,从一个单独的0开始,我们就可以得出以下各“代”:你可以用一支笔、一张纸来形成这个数列.从0开始,代之以01,现在你已有了一个两个数码的数列,用01代替0,10代替.从而有了数列0110,下一个二进数模式是01101001,请注意0110是对称的,它是一个回文数,然而01101001则不是.但是,你要顶住!再下面一个模式0110100110010110又是回文了.这种现象是否交替出现?显然,数列的神奇性质只是刚刚开始,奥妙还在后面呢.注意数列的第四行可以译成管乐声中的8个手指记号,如果 表示0, 表示1的话,真是令人惊讶! (未完,见数学知识)【例7】 (奥数网原创题)在三进制中的数12120120110110121121,则将其改写为九进制,其从左向右数第l 位数字是几?分析:我们如果通过十进制来将三进制转化为九进制,那运算量很大.注意到,三进制进动两位则我们注意到进动了3个3,于是为9.所以变为遇9进1.也就是九进制.于是,两个数一组,两个数一组,每两个数改写为九进制,如下表:3进制 12 12 0l 20 11 01 10 12 11 21 9进制 5 5 l 6 4 1 3 5 4 7 所以,首位为5.[总结] 若原为进制的数,转化为进制,则从右往左数每个数一组化为进制.n n kk n k【例8】 (仁华考题)N 是整数,它的b 进制表示是777,求最小的正整数b ,使得N 是十进制整数的四次方.分析:先化为十进制数,,则有,因为N 是7的倍数,2(777)777b b b =⨯+⨯+24777b b x ⨯+⨯+=所以也是7的倍数,又7为质数,所以是7的倍数.于是令,则,4x x 7x t =247772401b b t ⨯+⨯+=则,,则.因为最小,所以也是最小的.即有最小在18进制有21343b b ++=(1)342b b +=18b =t b41810.(777)(7)=[前铺] 在7进制中有三位数,化为9进制是,求这个三位数在十进制中是多少? abc cba分析:都化为十进制数,,27()77497abc a b c a b c =⨯+⨯+=++,于是,,即29()99819cba c b a c b a =⨯+⨯+=++497819a b c c b a ++=++48802a c b =+,因为是8的倍数,也是8的倍数,所以也是8的倍数.于是或,2440a c b =+24a 40c b 0b =8b =但在7进制不可能有8.所以,即,则,所以为5 的倍数,为3的倍数,有0b =2440a c =35a c =a c 或,首位不可以是0,所以,那么,所以0a =5a =5a =3c =77()(503)5493248.abc ==⨯+=[拓展] 设1987可以在进制中写成三位数,且=1+9+8+7,试确定出所有可能的、、b xyz x y z ++x y z 及. b分析:我们注意2()19871987b xyz b x by z x y z ⎧=++=⎨++=+++⎩①②①-②得:(-1)+(-1)=1987-25,则(-1)(+1)+(-1)=1962,即(-1)[(+1)2b x b y b b x b y b b x +]=1962.所以,1962是(-1)的倍数.1962=2×9×109, y b 当-1=9时,=10,显然不满足;b b 当-1=18时,=19,则(-1)[(+1)+]=18×(20+)=1962;则20+=109,b b b b x y x y x y 所以, 545,(929911b x x x y y y z ⎧⎪===⎧⎧⎪⎨⎨⎨===⎩⎩⎪⎪=⎩=19不满足),......则显然,当=109不满足,=2×109不满足,当=9×109也不满足.于是为(59B)=(1987),B 代表11. b b b 1910【例9】 (仁华考题)若能被15整除,自然数n 可以取哪些值? n21-分析:因为,而,如果能被15整除,即 nn 1n 02221=10001111⎛⎫⎛⎫--= ⎪ ⎪ ⎪⎝⎭⎝⎭ 个个2151111=()n21- n 12111⎛⎫ ⎪⎝⎭ 个能被整除,所以n 是4的倍数,n=4,8,12,… 21111()[前铺] 求证:能被7整除.1821-分析:直接用十进制比较困难,我们考虑化为二进制的整除问题.因为.而,于是18181180222110001111⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭ 个个27111=(),所以能被7整除.182218122171111111001001001001001⎛⎫÷÷= ⎪⎝⎭ 个(-)=()()1821-[拓展] 计算:÷26的余数.2003333 3...31⎛⎫⨯⨯⨯- ⎪ ⎪⎝⎭个分析:==,26=(222), 2003333 3...31⎛⎫⨯⨯⨯- ⎪ ⎪⎝⎭ 个2003331000...01⎛⎫⨯- ⎪ ⎪⎝⎭个20033222...2⎛⎫⎪ ⎪⎝⎭ 个23所以÷26=÷(222),(222)整除(222),2003÷3=667……2,所以余数2003333 3...31⎛⎫⨯⨯⨯- ⎪ ⎪⎝⎭个20033222 (2)⎛⎫ ⎪ ⎪⎝⎭ 个2333是(22)=8.3【例10】 (仁华考题)三个两位数恰构成公差为6的等差数列,而在五进制的表示中,这三个数的数字和是依次减少的,那么符合这样要求的等差数列有多少个?分析:设等差数列中最小的那个数表示为5进制为,最大可为5(abc ),最小可为.那么有、、的数字5(322)996287=-⨯=5(20)10=5()abc 55()(11)abc +55()(22)abc +和依次减少,所以、在运算时均必须有进位,不难发现有、55()(11)abc +55()(22)abc +5(24)a 5(43)a 满足,而a 可以取0,1,2,于是共有6组符合要求的数列.[前铺] 用、、、、分别表示五进制中互不相同的数字,如果、、是由小a b c d e 5()ade 5()adc 5()aab 到大排列的连续正整数,那么所表示的整数写成十进制的表示是多少?5()cde 分析:由题意知,,根据进位原则知,.又,55()1()ade adc +=55()1()adc aab +=4,0c b ==1c e -=所以.,且、只能在1,2中取值,所以.即,转化为十进3e =1a d -=a d 2,1a d ==55()(413)cde =制的表示为.22510(413)45153(108)=⨯+⨯+=【例11】 (奥数网原创题)一串数:1,3,4,9,10,12,13,…,由一些正整数组成,它们或者是3的幂,或者是若干个不同的3的幂的和,求这串数中的第100项是多少?分析:将已知数改写成三进制数,得:1 3 4 9 10 12 13110 11 100 101 110 111十进制:三进制:观察发现,在三进制数中,各位上的数字均不是2,若将它们看成二进制数,可以看出,它们与十进制数1,2,3,4,5,6,7,…对应,第100项与十进制数100对应.因为10010=26+25+22=11001002,所【例12】 (仁华考题)称n 个相同的数a 相乘叫做a 的n 次方,记做,并规定.如果某个自然n a 01a =数可以写成2的两个不同次方(包括零次方)的和,我们就称这样的数为“双子数”,如,.它们都是双子数,那么小于1040的双子数有多少个?30922=+523622=+分析:双子数与二进制的联系,,310102(9)(22)(1001)=+=,写成2的两个不同次方(包括零次方)的和,这样的数改写成二进制5210102(36)(22)(100100)=+=后只含有2个1,有,这样的二进制数为11位数,但104101022(1040)(22)(1000000000010000)(10000010000)=+=+=是11位数有限制:先看10位数,于是,这样10位数,选择2个数位填1,其它为0,()**********所以为,再考虑11位数,于是,只有4个“”和紧邻的“1”,于是有5种选择,210C (1000001)*****所以共有种选择方法,所以这样的“双子数”为50个.210550C +=[拓展] 一个非零自然数,如果它的二进制表示中数码l 的个数是偶数,则称之为“坏数”.例如:是“坏数”.试求小于1024的所有坏数的个数. 218=10010()分析:我们现把1024转化为二进制:(1024)=2=(10000000000)2.于是,在二进制中为11位数,但1010是我们只用看10位数中情况.并且,我们把不足10位数的在前面补上0,如=502111...10000...0⎛⎫⎪ ⎪⎝⎭ 5个1个或以上912111...1⎛⎫⎪ ⎪⎝⎭ 个则,可以含2个l ,4个1,6个1,8个l ,10个1.于是为9120111...1⎛⎫ ⎪ ⎪⎝⎭ 个10* * * * * * * * * *⎛⎫ ⎪ ⎪⎝⎭个位置 2268101010101010C C C C C ++++=10910987109876510987654312123412345612345678⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯+++=45+210+210+45+1=511,于是,小于1024的“坏数”有511个.【例13】 (奥数网原创题)在地球上有一个矮人国,这个国家不用通常的十进制,而是用大于十的另一种进制.但是该国家的钟表与中国的本质上相同(当然可能钟面标的数字有区别,这不是本质区别).一名司机开车在笔直的公路上匀速行驶,每小时的速度是整数.当钟表的时针与分针垂直的时候,司机发现他刚好经过路边的一个里程碑,上面的数字是一个两位数.当钟表的时针与分针再次垂直的时候,司机再次发现他刚好经过路边的里程碑,上面的数字是刚才那个两位数的数字颠倒过来.当钟表的时针与分针第三次垂直的时候,司机第三次发现他刚好经过路边的里程碑,上面的数字是一个三位数,是在第一次的那个两位数中间插了一个数字.在该国家的进制数尽量小的情况下,司机的时速是多少?(请把答案转化成十进制)分析:每个小时,时针走过周,分针走过1周,也就是分针比时针多走过周.两次垂直之间,分1121112针比时针多走过半周,所以时间为小时. 111621211÷=显然,第三次所经过的里程碑的首位是1.设矮人国用N 进制,设第一次的里程数是,则第二次的1X 里程数是,再设第三次的里程数是.则有.从个位上看,X+X 个位是2,所1X 1YX 1112X YX X +=⨯以2X=N+2,N 必须是偶数,. 12NX =+.也就是说,车的时速等于(1)111(1)1(1)222N N N N X X NX N X N N --=+--=++--+=,所以N 最小是12,时速是121. (1)611(1)21112N N N N --÷=专题展望六年级还会继续学习数的进制哦!练习四1. (例4)在几进制中有125×125=16324.分析:因为,且,所以.再来看尾数,101010(125)(125)(15626)⨯=1562516324 10n ,16324的末位是4,所以25-4=21进到上一位.即n 为21的约数,也就是1,3,101010(5)(5)(25)⨯=7,21,因为原式中出现了6,所以n 只能是7.2. (例8)在6进制中有三位数,化为9进制为,求这个三位数在十进制中为多少? abc cba分析:()=×62+×6+=36+6+;()=×92+×9+=81+9+.所以36+6abc 6a b c a b c cba 9c b a c b a a b +=81+9+;于是35=3b+80;因为35是5的倍数,80也是5的倍数.所以3也必须是5c c b a a c a c b 的倍数,又(3,5)=1.所以,=0或5.b ①当=0,则35=80;则7=16;(7,16)=1,并且、≠0,所以=16,=7:但是在6,9进b ac a c a c a c 制,不可以有一个数字为16.②当=5,则35=3×5+80;则7=3+16;mod 7后,3+2≡0,所以=2或者2+7(为整数).因b a c a c c c k k 为有6进制,所以不可能有9或者9以上的数,于是=2.于是,35=15+80×2;=5.于是() c a a abc 6=(552)=5×62+5×6+2=212.所以.这个三位数在十进制中为212.63. (例9)试求除以992的余数是多少?200621(-)分析:因为被除数与2的次幂有关,所以我们可以用二进制来解决.,,在二进制中一定能整除1029921111100000=()() 2006220061221111⎛⎫= ⎪⎝⎭ 个(-) 515502111000⎛⎫ ⎪ ⎪⎝⎭ 个个或个以上的,因为能整除,所以余数为21111100000() 20001602111000⎛⎫ ⎪ ⎪⎝⎭ 个个21111100000(),所以原式的余数为63.543210211111122222263=+++++=()4. (例9)求证能被5整除. 151413121110982222222221-+-+-+-++-分析:15141312111098151311914121081010222222222222122222222211010101010101010101010101010101101010101010101-+-+-+-++-=+++++-+++++=-= ()()()()()又,显然能被整除,所以得证.25101=()2101010101010101()2101()5. (例10)一个10进制的三位数,把它分别化为9进制和8进制数后,就又得到了2个三位数.老师发现这3个三位数的最高位数字恰好是3、4、5,那这样的三位数一共有多少个?分析:我们设(3)=(4)=(5);我们知道(4) 在(400)~(488)之间,也就是4×92~ab 10cd 9ef 8cd 9995×92-1,也就是324~406;还知道(5) 在(500)~(577)之间,也就是5×82~6×82-1,也就是ef 888320~383;又知道(3) 在(300)~(399)之间.所以,这样的三位数应该在324~383之间,于是ab 101010有383-324+1=60个三位数满足条件.6. 一个g 进制数,,要计算它的十进制数时,有一54321543210N a g a g a g a g a g a =⋅+⋅+⋅+⋅+⋅+个简便算法:,这样进行5次乘法和5次加法,543210(((())))N a g a g a g a g a g a =⋅+⋅+⋅+⋅++现在请你用简便算法求出六进制数的N.=(6)312150N =(10)_____分析:如按,则需进行15(=5+4+3+2+1)次乘法和5次加54321543210a g a g a g a g a g a ⋅+⋅+⋅+⋅+⋅+法,显然浪费时间.根据题目中给出的简便算法 =(6)312150N =543210361626165606⨯+⨯+⨯+⨯+⨯+⨯=((((3×6+1)×6+2)×6+1)×6+5)×6+0=(10)25211数学知识莫尔斯-瑟厄数列也可以用别的办法来生成乐音数列:每一代都可以由其前代挂上它的“补数列”而得出,这意味着如果你看到了0110,就在它的后面加挂1001.此外,还有第三种办法来生成它.一开始先写0,1,2,3,…,然后把它们改写成二进制数:0,1,10,11,100,101,110,111,….(本书第21节的“第一步探索”中将详细阐述二进制数,如果你渴望了解背景信息,不妨直接跳到那里去阅读.)现在,对每个二进制数字求和,并取其模2同余.也就是说,把每个和数用2去除,并取其余数.例如,二进数11求数字和后奖成为2,在最后的数列中就应当用0表达,通过这种办法可以得出数列0,1,1,0,1,0,0,1……同欺其他办法是一致的!让果戈尔博士来告诉你,何以这一数列如此迷人.首先,它是自相似的,这意味着你可以取数列的一段而生成全部无穷数列!例如,逐项相间地截取,可以复制全部数列.也就是说,你可以取最前面的二个数,再跳过二个,如此等等.其次,数列没有任何周期性.例如,不会出现,诸如00,11,00,11这类情况.然而,数列虽然没有周期可言,它去决非随机,它具有极强的短程与长程结构.例如,不可能有两个以上相邻的项是完全一样的.发现数列中所存在的模式的方法是傅里叶频谱,用它来分析本数列时显示出了明显的波峰.采用这种数学方法,你可以绘出一个图像,表明数列中项的位置与数据频度,在第三维上有着更稠密的频率分量,而在二维图像上不过是极其简单的一个黑点.数列的生长极其迅速,下面是第8代:有时候,按此种方式把数列堆积在它自身之上时会冒出一些模式,在这里,你能看出什么名堂来吗?表示莫尔斯——瑟厄数列的另外一种办法是使用超市里常用的商品分类的“条形码”,看到1的时候是一根垂直线段,而在出现0时则跳过一段空白.为了使肉眼更易辨识,当两个1连续出现时,可以用短横加以联接.我们可以用喜欢的植物图形来描述莫尔斯——瑟厄数列,用花朵表示1,空档表示0:倘若采用较高的树木,图形甚至更加好看.你能否对行、列作出巧妙安排以便更好地显示出数列的模式?在这种神奇的森林里漫步会有什么感受?不妨去想一想,你握着心上人的玉手,走入这个一望无际的莫尔斯——瑟厄森林中去的美妙情景哦!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲进位制问题
例题1 (1)2013=()
5=()
8
=()
12
=()
16
(2)(2012)
5=()
10
;(3)(2012)
2
=()
10
练习1 (3A2)
12=()
10
;(ADD)
16
=()
10
;
(2012)
5=()
12
;(2012)
8
=()
12
例题2 (1)把三进制数12120120110110121121改写为九进制,它从左向右数第1位数字是多少?
(2)(111011001)
2=()
4
=()
8
练习2 (120011221)
3=()
9
例题3 (5453)
7+(6245)
7
=()
7
练习3 (123)
5 (123)
5
=()
5
例题4 在6进制中有三位数abc,化为9进制的cba,这个三位数在十进制中是多少?
练习4 在7进制中有三位数abc,化为9进制为cba,这三位数在十进制中是多少?
挑战极限
例题五一个天平,物品必须放在左盘,砝码必须放在右盘,那么为了能称出1克到1000克,至少需要多少个砝码?
例题6 一本书共有2013页,第一天看一页书,从第二天起,每天看到的页数都是以前各天的总和。
如果直到最后剩下的不足以看一次时就一次看完,共
需要多少天?
作业1、进制互化
(1)(11202)
4=()
10
;(2)(1CA)
16
=()
10
(2)(3120)
10=()
16
;(4)(1248)
10
=()
5
(5)(11202)
4=()
9
;(6)(157)
9
=()16
2 、(1)(202)
4+(323)
4
=()
4
;(2)(21)
5
(322)
5
=()
5
3 、一个十进制三位数(abc)
10
,其中a,b,c均代表某个数码,它的二进制表达式
是一个七位数(1abcabc)
2
,这个十进制的三位数是多少?
4 、一个自然数用三进制和四进制表示都为三位数,并且它的各位数字的排列顺序恰好相反,这个自然数用十进制表示是多少?
5 、 a,b是自然数,a进制下的数47和b进制下的数74相等,a与b的和的最小值是多少?
本周打卡:
2、
3、 在什么进位制里,十进位制数71记为47?
4、 (110101)2+(11101)2 =_______; (1101101)2-(1011110)2 =______;
222(101)(1011)(11011)⨯-=________;
88888(63121)(1247)(16034)(26531)(1744)----=________;
5、一个自然数的七进位制表达式是一个三位数,而这个自然数的九进位制表达式也是一个三位数,而且这两个三位数的数码顺序恰好相反。
求这个自然数。
、1()()()()8
52109865===()=211010101()=87236()=54203。