润湿作用及应用

合集下载

表面活性剂的润湿

表面活性剂的润湿

因此,在溶液浓度较稀时,-SO4—基在链端的 比在链中间的化合物其表血张力较低;而在浓 度较高时,-SO4—基在链中间的化合物(15-8) 降低表面张力的有效值则较强,显示出较好的 润湿性能。
(2)非离子聚氧乙烯类表面活性剂的EO数:
R一般以C7-C12的润湿性最好,C12以上润湿性 下降。以C8及C9为例,EO数变化时,润湿性 不断变化、EO=10~12时,润湿性最好;EO >12时,润湿性急剧下降;EO数较低时,润 湿性也差。
非离子型表面活性剂中主要是壬基苯酚和辛基 苯酚的环氧乙烯加成物和低碳脂肪醇和低聚氧 乙烯加成物如渗透剂JFC。
6.2强碱性溶液的润湿剂 强碱性溶液的润湿剂
丝光与煮练要求碱液能均匀而且很快地润湿织物, 有些润湿剂是不溶解的。
煮练
棉纤维生长时,有天然杂质(果胶质、蜡状物质、 含氮物质等)一起伴生。棉织物经退浆后,大部分 浆料及部分天然杂质已被去除,但还有少量的浆料 以及大部分天然杂质还残留在织物上。这些杂质的 存在,使绵织布的布面较黄,渗透性差。同时,由 于有棉籽壳的存在,大大影响了棉布的外观质量。 故需要将织物在高温的浓碱液中进行较长时间的煮 练,以去除残留杂质。煮练是利用烧碱和其他煮练 助剂与果胶质、蜡状物质、含氮物质、棉籽壳发生 化学降解反应或乳化作用、膨化作用等,经水洗后 使杂质从织物上退除。
6.润湿剂的选用 润湿剂的选用
在印染加工过程中,要迅速得到润湿效果,润 湿剂必须能迅速的吸附到界面上去。实际上, 具有最大表(界)面活性的物质,并不都是最好 的润湿剂。 而能促使最快吸附到界面而润湿的表面活性剂 才是最好的润湿剂。
6.1弱酸和弱碱性溶液的润湿剂 弱酸和弱碱性溶液的润湿剂
润试剂在弱酸性和弱碱性以及中性溶液的应用 最为普遍,在染整工业中如退浆、漂白、染色、 树脂整理、织布行业的上浆、上油等。 阴离子表面活性剂中可作为润湿剂和渗透剂用 的如渗透剂T(琥珀酸双异辛酯磺酸钠)、十二 烷基硫酸酯钠盐、十二烷基苯磺酸钠、丁基萘 磺酸钠(Nakal BX)、太古油(磺化油AH油酸丁 酯硫酸酯钠盐)等,其中以渗透剂T为最佳。

润湿原理的应用

润湿原理的应用

润湿原理的应用润湿原理是指液体在固体表面的扩展现象,也可以理解为液体与固体之间的相互作用力。

润湿现象广泛应用于生活和工业中的各个方面,以下是润湿原理的一些具体应用。

1. 表面润湿和表面张力:润湿现象可以使一些液体在固体表面上形成一层薄膜,这可以改变物体的表面性质。

例如,在纺织品加工中常用的涤纶功能面料采用了纳米级表面处理技术,通过润湿作用可以使面料具有防水、防油、防污等功能。

2. 渗透和分散:润湿原理可以被应用于渗透和分散过程中。

例如,在化妆品中,通过润湿作用可以使乳液或化妆品更容易渗透到皮肤中,提高吸收效果。

在农业领域,通过润湿作用可以促进植物根系对水分和养分的吸收。

3. 润滑:润滑是润湿原理在机械工程中的一个重要应用。

例如,在机械设备中润滑油或润滑脂能够减少机械零件之间的摩擦,降低能量损耗,并延长设备的使用寿命。

4. 涂层和印刷:通过润湿作用可以实现涂层和印刷工艺的精确控制。

在印刷过程中,墨水会通过润湿作用在印刷版与印刷媒介之间形成一层薄膜,从而实现传递。

在涂层过程中,涂料通过润湿作用可以均匀地附着在物体表面上,提供保护和装饰功能。

5. 表面改性:润湿原理可以通过表面改性实现多种功能。

例如,在材料科学领域,通过表面润湿作用可以提高材料的粘附性、耐磨性、耐腐蚀性等性能。

在光学和电子器件制造中,利用润湿现象可以改善材料的光学透明度和电子性能。

6. 微流控系统:微流控系统是一种利用微米级通道和润湿原理来控制微小流体流动的技术。

该技术被广泛应用于生物医学、化学分析和生物化工等领域。

微流控系统可以通过控制流体在不同通道中的润湿程度来实现样品的分离、混合和传感。

总的来说,润湿原理的应用十分广泛,涉及到生活的各个方面,如化妆品、纺织品、涂层和印刷、机械工程、材料科学等。

润湿现象的研究和应用不仅能改善材料的性能,还可以推动科技的发展,并为人们提供更便利、高效和可持续的生活方式。

润湿作用的应用及原理

润湿作用的应用及原理

润湿作用的应用及原理一、什么是润湿作用润湿作用是指液体在与固体接触时,能够在固体表面上形成一层平均和连续的薄液体膜,使固体表面被液体湿润的现象。

润湿作用广泛应用于各行各业,例如表面涂料、化妆品、医疗器械、涂层材料等。

二、使用润湿作用的应用领域润湿作用在很多领域都有重要的应用,以下为一些常见的应用领域:1. 化妆品润湿作用在化妆品中起着重要的作用。

化妆品中的润湿剂能够帮助产品更好地附着在皮肤表面,提高化妆品的使用体验。

同时,润湿作用还可以增加化妆品在皮肤上的持久性,使其更加耐用。

2. 医疗器械润湿作用在医疗器械中也有广泛的应用。

例如,在外科手术中,医疗器械通常需要与组织和体液接触,润湿作用可以帮助器械更好地与组织接触,并减少对组织的创伤。

3. 涂料润湿作用在涂料领域也有重要的应用。

涂料的润湿剂可以改善涂料在基材表面的附着,提高涂料的抗刮擦性和耐久性。

此外,润湿作用还可以减少涂料施工时的气泡和裂痕,提高涂料的光泽度。

4. 纺织工业在纺织工业中,润湿作用可以帮助纺织品更好地吸收染料,提高染色效果。

润湿剂可以改善纺织品与染料之间的接触,使染料能够快速、均匀地渗透到纤维中,提高染色的效果。

5. 粮食储藏润湿作用也可用于粮食储藏。

在贮存过程中,粮食表面积少的因素大大限制了湿气的渗透和沉积,采用润湿技术可以增加粮食表面积,提高粮食的储存效果。

三、润湿作用的原理润湿作用的原理涉及表面张力、界面能的概念及表面活性剂的作用,以下是润湿作用的一般原理:•表面张力:润湿作用的关键是液体的表面张力。

表面张力越小,润湿作用越好。

因为表面张力越小,液体越容易渗透到固体表面上,并形成一层薄液体膜。

•界面能:固体表面和液体之间具有一定的能量差异,称为界面能。

润湿作用的原理是通过降低界面能差异,使液体能够更好地湿润固体表面。

•表面活性剂:表面活性剂是一种能够降低表面张力的物质。

通过添加表面活性剂,可改变液体的表面性质,改善润湿作用。

9-3润湿作用及应用

9-3润湿作用及应用

(a)液体在毛细管中上升
由于p指向大气,使得管内凹液面下的液体的承受压力 小于管外水平液面下的液体所承受的压力,故液体被压 入管内,平衡时,则
gh p 2
r
注意:r 是弯曲液面的曲率半径。(不是毛细管半径)
4. 毛细管现象
r

利用下图可以得到,润湿角 与毛
R h

细管半径R及弯曲液面的曲率半径r 的关系:
( g / s) (l / s) cos (g / l)
(i) (g/s) > (l/s)时,cosө>0,ө<90°产生沾附润湿,
当ө = 0°为铺展润湿。
(ii) (g/s) < (l/s)时,cosө<0,ө>90°产生不润湿, 当ө =180°为完全不润湿。
润湿作用的应用
固体浸润过程
s 浸湿:能被液体润湿的固体完全浸入液体之中,则
称为浸湿润湿,是气-固界面完全被液-固界面取代
的过程。
gas
G [ ( l / s ) ( g / s )]AS
当G<0时,浸润过程可以自发进行。
liquid
铺展过程
铺展润湿:少量液体在固体表面上自动展开,形成
一层薄膜的过程。它实际上是以液-固界面取代气L-g界面可忽略 固界面,同时又增加气-液界面的过程。
自然界矿物接触角很少有超过90的。为了扩大矿物
之间疏水性的差异,达到有效分选,必须人为增大或 缩小特定矿物的接触角。

表层浮选→多油浮选→泡沫浮选 浮选发展的三个阶段:
(1)表层浮选:根据矿物的湿润性不同,把磨细的矿粉 撒于水面。疏水性的矿物漂在水面上作为精矿;亲水性的 浸没在水中即为尾矿。 (2)多油浮选:利用矿物和脉石的亲水性和亲油性不同, 加大油量与矿浆搅拌,然后将粘附于油层中的矿物刮出。

材料表面润湿性及在材料工程中的意义

材料表面润湿性及在材料工程中的意义

材料表面润湿性及在材料工程中的意义润湿性是材料表面的重要特性之一,通过静态接触角来表征,影响润湿性的因素主要是材料表面的化学组成和微观结构,主要通过表面修饰和表面微造型来改变材料表面润湿性。

润湿性已经直接应用到了生产和生活中,构建超疏水表面和润湿性智能可控表面是现阶段的研究热点,对于建筑、涂饰、生物医学等领域都有重要的意义。

润湿是自然界中最常见的现象之一,如水滴在玻璃上的铺展,雨滴对泥土的浸润等等。

润湿性是材料表面的重要特性之一,并已经成功运用到人类生活的各个方面,例如润滑、粘接、泡沫、防水等。

近年来,随着微纳米技术的飞速发展以及仿生学研究的兴起,对于固体表面润湿性的研究越来越引起了人们的重视,具有超疏水表面的金属材料具有自清洁作用,从而提高其抗污染、防腐蚀的能力;而在农药喷雾、机械润滑等方面却又要求液体具有良好的亲水性,所以对于材料表面润湿性的研究在材料工程中具有重要的意义。

为了调控材料表面的润湿性,人们通过接枝、涂层、腐蚀等众多方法从化学组成和微观结构两个方面对材料进行了改性,并取得了良好的结果。

1、润湿性润湿是指液体与固体接触,使固体表面能下降的现象,常见的润湿现象是固体表面上的气体被液体取代的过程。

例如在水干净的玻璃板上铺展,形成了新的固/液界面,取代原有的固/气界面,这个过程的完成与固体和液体的表面性质以及固液分子的相互作用密切相关[1]。

润湿作用实际上涉及气、液、固三相界面,在三相交界处自固-液界面经过液体内部到气-液界面的夹角叫接触角,以θ表示,通常通过Young方程计算得到,该方程是研究液-固润湿作用的基础。

一般来讲,接触角θ的大小是判定润湿性好坏的判据。

若θ=0,液体完全润湿固体表面,液体在固体表面铺展;0<θ<90°,液体可润湿固体,且θ越小,润湿性越好;90°<θ<180°,液体不能润湿固体;θ=180°,完全不润湿,液体在固体表面凝聚成小球。

第三章 表面活性剂功能与应用——润湿作用

第三章 表面活性剂功能与应用——润湿作用

第三章表面活性剂功能与应用——润湿作用一、润湿功能例子:水润湿玻璃,加入表面活性剂润湿容易;水滴在石蜡上,石蜡几乎不被润湿,加入少量表面活性剂石蜡就容易被润湿了;较厚的毛毡或棉絮放入水中,很难渗透,加入一些表面活性剂就容易浸透了。

表面活性剂具有渗透作用或润湿作用所谓润湿是指一种流体被另一种流体从固体表面或固液界面所取代的过程。

润湿过程往往涉及三相,其中至少两相为流体。

1.润湿过程润湿作用是一个过程。

润湿过程主要分为三类:沾湿、浸湿和铺展。

产生的条件不同。

其能否进行和进行的程度可根据此过程热力学函数变化判断。

在恒温恒压条件下可方便使用润湿过程体系自由能变化表征。

(1)沾湿主要指液-气界面和固-气界面上的气体被液体取代的过程,在此过程中消失的固-气界面的大小与其后形成的固-液界面的大小是相等的。

如喷洒农药,农药附着于植物的枝叶上。

沾湿附着发生条件:△G A=γSL-γSG-γLG<0W A=γSG-γSL+γLG≥0 (沾湿)式中:γSG、γSL和γLG分别为气-固、液-固和气-液界面的表面张力(2)浸湿浸湿是指固体浸入液体的过程,原有的固气界面空气被固液取代。

如洗衣时衣物泡在水中;织物染色前先用水浸泡过程浸湿发生条件:△G i=γSL-γSG≤0W i=γSG-γSL≥0 (W i:浸湿功)(3)铺展液体取代固体表面上的气体,固-气界面被固-液界面取代的同时液体表面能够扩展的现象。

铺展发生条件为:△G S=γSL+γLG-γSG≤0S=γSG-γSL-γLG≥0 (S:铺展功)一般,若液体能够在固体表面铺展,则沾湿和浸湿现象必然能够发生。

从润湿方程可以看出:固体自由能γSG越大,液体表面张力γLG越低,对润湿越有利。

2.接触角和润湿方程(杨氏方程)接触角:固、液、气三相交界处自固-液界面经过液体内部到气液界面处的夹角。

接触角与固-液,固-气和液-气表面张力的关系可表示为:γSG-γSL=γLG COSθ杨氏方程COSθ=(γSG-γSL)/γLG加入表面活性剂,γLG↓γSL↓ COSθ↑θ↓θ>90°不润湿θ<90°润湿θ越小润湿越好θ=0°或不存在→铺展将杨氏方程代入W A W i SW A =γLG (1+ COS θ)≥0 θ≤180° W i =γLG COS θ ≥0 θ≤90° S =γLG ( COS θ-1) ≥0 θ≤0° 纤维特性=γSL +γLG COS θ θ前进接触角 由于液体表面曲率,液体在毛细管中提升力大小为2πr γLG COS θ。

第三章 表面活性剂功能与应用——润湿作用

第三章 表面活性剂功能与应用——润湿作用

第三章表面活性剂功能与应用——润湿作用一、润湿功能例子:水润湿玻璃,加入表面活性剂润湿容易;水滴在石蜡上,石蜡几乎不被润湿,加入少量表面活性剂石蜡就容易被润湿了;较厚的毛毡或棉絮放入水中,很难渗透,加入一些表面活性剂就容易浸透了。

表面活性剂具有渗透作用或润湿作用所谓润湿是指一种流体被另一种流体从固体表面或固液界面所取代的过程。

润湿过程往往涉及三相,其中至少两相为流体。

1.润湿过程润湿作用是一个过程。

润湿过程主要分为三类:沾湿、浸湿和铺展。

产生的条件不同。

其能否进行和进行的程度可根据此过程热力学函数变化判断。

在恒温恒压条件下可方便使用润湿过程体系自由能变化表征。

(1)沾湿主要指液-气界面和固-气界面上的气体被液体取代的过程,在此过程中消失的固-气界面的大小与其后形成的固-液界面的大小是相等的。

如喷洒农药,农药附着于植物的枝叶上。

沾湿附着发生条件:△G A=γSL-γSG-γLG<0W A=γSG-γSL+γLG≥0 (沾湿)式中:γSG、γSL和γLG分别为气-固、液-固和气-液界面的表面张力(2)浸湿浸湿是指固体浸入液体的过程,原有的固气界面空气被固液取代。

如洗衣时衣物泡在水中;织物染色前先用水浸泡过程浸湿发生条件:△G i=γSL-γSG≤0W i=γSG-γSL≥0 (W i:浸湿功)(3)铺展液体取代固体表面上的气体,固-气界面被固-液界面取代的同时液体表面能够扩展的现象。

铺展发生条件为:△G S=γSL+γLG-γSG≤0S=γSG-γSL-γLG≥0 (S:铺展功)一般,若液体能够在固体表面铺展,则沾湿和浸湿现象必然能够发生。

从润湿方程可以看出:固体自由能γSG越大,液体表面张力γLG越低,对润湿越有利。

2.接触角和润湿方程(杨氏方程)接触角:固、液、气三相交界处自固-液界面经过液体内部到气液界面处的夹角。

接触角与固-液,固-气和液-气表面张力的关系可表示为:γSG-γSL=γLG COSθ杨氏方程COSθ=(γSG-γSL)/γLG加入表面活性剂,γLG↓γSL↓ COSθ↑θ↓θ>90°不润湿θ<90°润湿θ越小润湿越好θ=0°或不存在→铺展将杨氏方程代入W A W i SW A =γLG (1+ COS θ)≥0 θ≤180° W i =γLG COS θ ≥0 θ≤90° S =γLG ( COS θ-1) ≥0 θ≤0° 纤维特性=γSL +γLG COS θ θ前进接触角 由于液体表面曲率,液体在毛细管中提升力大小为2πr γLG COS θ。

【精选】9-3润湿作用及应用

【精选】9-3润湿作用及应用
θ
θ
(s/l)
(s/g) O (s/lls )
r
达到平衡时 也可写作
( g / s ) (l / s ) ( g / l ) cos
( g / s) (l / s) cos (g / l)
杨氏方程(Young T. 于1805年)
杨氏方程
杨氏方程
根据此式有:
( g / s) (l / s) cos (g / l)
(i) (g/s) > (l/s)时,cosө>0,ө<90°产生沾附润湿,
当ө = 0°为铺展润湿。
(ii) (g/s) < (l/s)时,cosө<0,ө>90°产生不润湿, 当ө =180°为完全不润湿。
润湿作用的应用
另一类也是利用表面活性剂,但作用正相反,使某些
物质本是润湿的变成不润湿——去润湿作用.原理是用
表面活性物质的极性部分选择性吸附,非极性部分向外 呈憎水性.典型的就是矿石的浮选,富集矿物. 一次性抽血器中盛血的玻璃管(定量的),内壁要疏 水化,使用的是硅偶联剂,使血液在管内不残留.
3.矿物浮选基本原理就是润湿作用
使它的亲水基团只吸在矿
(3)泡沫浮选:利用气泡携带矿物上浮。
19
浮 游 选 矿
首先将粗矿磨碎,倾入浮选池中。在池水中加入
捕集剂和起泡剂等表面活性剂。
搅拌并从池底鼓气,带有有效矿粉的气泡聚集表
面,收集并灭泡浓缩,从而达到了富集的目的。 不含矿石的泥砂、岩石留在池底,定时清除。
浮游选矿的原理图
当矿砂表面有 5%被捕集 矿物一般具有亲水性,为什么加入捕集剂后,矿物 剂覆盖时,就使表面产生 变成憎水性的? 憎水性,它会附在气泡上 解释:捕集剂是一种表面活性剂。表面活性剂由极 一起升到液面,便于收集。 性和非极性基所构成,极性基吸附在亲水性矿物的表 面上,而非极性基朝向水,于是矿物就具有憎水性。 选择合适的捕集剂,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

润湿作用的应用
1. 增加润湿作用 2. 降低润湿作用 3. 矿物浮选
1. 增加润湿作用
农药喷洒.由于大多农药水溶性差,对植物的茎叶润 湿不好,一是滚落浪费,二是不能展开而杀虫效果差,此 时就要用到表面活性剂surface active agent--SAA,加入 表面活性剂SAA,提高润湿程度,即可大大提高药效.
杨氏方程(Young T. 于1805年)
杨氏方程
杨氏方程 cos ( g / s) (l / s) (g / l)
根据此式有:
(i) (g/s) > (l/s)时,cosө>0,ө<90°产生沾附润湿, 当ө = 0°为铺展润湿。
(ii) (g/s) < (l/s)时,cosө<0,ө>90°产生不润湿, 当ө =180°为完全不润湿。
第九章 界面现象
9.3 润湿作用与毛细管现象
一. 润湿作用
(1)润湿:固体(或液体)表面上的气体被液体(或另 一种不互溶液体)取代的现象。 原因:固体与液体接触后吉布斯函数降低(G<0)。
按润湿程度深浅分类: (1)浸湿润湿 (2)铺展润湿 (3)沾附润湿 一定温度和压力下,润湿的程度可用润湿过程的吉布斯 函数改变量来衡量。吉布斯函数降低越多,越易润湿。
二. 毛细管现象
毛细管现象 将毛细管插入液面后,会发生液面沿毛细管上升
(或下降)的现象,称为毛细管现象。
ΔP
h
h
(a)水在毛细管中上升
(b)水银在毛细管中下降
ΔP
h
4. 毛细管现象
产生这种现象的原因:毛细 管内的弯曲液面上存在附加压
力p ,以毛细管上升为例。
不含矿石的泥砂、岩石留在池底,定时清除。
浮游选矿的原理图
当矿矿物砂一表般面具有有5亲%被水捕性集,为什么加入捕集剂后,矿物 剂变覆成盖憎时水,性就的使?表面产生 憎水性,它会附在气泡上 一起解升释到:液捕面集,剂便是于一收种集表。面活性剂。表面活性剂由极 性和非极性基所构成,极性基吸附在亲水性矿物的表 面上选,择而合非适极的性捕基集朝剂向,水,于是矿物就具有憎水性。 使它的亲水基团只吸在矿 砂的表面,憎水基朝向水。
17
矿物表面被水润湿的程度用接触角来评定
自然界矿物接触角很少有超过90的。为了扩大矿物 之间疏水性的差异,达到有效分选,必须人为增大或 缩小特定矿物的接触角。
浮选发展的三个阶段:表层浮选→多油浮选→泡沫浮选 (1)表层浮选:根据矿物的湿润性不同,把磨细的矿粉
撒于水面。疏水性的矿物漂在水面上作为精矿;亲水性的 浸没在水中即为尾矿。
2. 降低润湿作用
另一类也是利用表面活性剂,但作用正相反,使某些 物质本是润湿的变成不润湿——去润湿作用.原理是用 表面活性物质的极性部分选择性吸附,非极性部分向外 呈憎水性.典型的就是矿石的浮选,富集矿物.
一次性抽血器中盛血的玻璃管(定量的),内壁要疏 水化,使用的是硅偶联剂,使血液在管内不残留.
3.矿物浮选基本原理就是润湿作用
把易被水润湿的表面(如矸石表面)称为亲水表面, 把不易被水润湿的表面(如煤炭表面)称为疏水表面。 相应的矿物分别称为亲水性和疏水性矿物。
16
例:选择性吸附过程展示:气泡从疏水的煤的表面排 开水层并与其粘附;气泡不能从亲水的矸石的表面排开 水层实现粘附,仍保持球形。
接触角θ
1. θ的大小是可以通过实验测定的。例如用斜板法、 吊片法等实验方法测量
2.接触角的大小是由在气、液、固三相交界处的三种 界面张力的相对大小所决定
3.接触角的数值反映了液体对固体的润湿程度。
三种界面张力
(l/g)
O
(s/g) (s/l)
(l/g) (s/g) O (sr/ll)s
(s/g)–力图将 (g / l)
定义液体在固体表面的铺展系数s:
(
gL/-sg)]界面
S-L界面
s S( g / s) [ (l / s) ( g / l)] GS
s 0,G 0铺展才能产生
AS
(2)接触角与润湿方程
液体在固体表面上形成的液滴,它可以是扁平状,也 可以是圆球状,这主要是由各种界面张力的大小来决定。
如图,一液滴在固体表面上不完全展开时,有三种界 面张力,同时作用于O点处的液体分子上:
l,g
s,g O
L
S
l,s
液滴两种典型的状态
l-g
M
l-g
M
g
s-g
A l
s
g
N s-l
s-g
Al
s
N s-l
当系统达到平衡时,在气、液、固三相交界处,
气液界面和固液界面之间通过液体内部的夹角称为
接触角(润湿角),用θ表示
固体浸润过程
浸湿:能被液体润湿的固体s 完全浸入液体之中,则 称为浸湿润湿,是气-固界面完全被液-固界面取代 的过程。
gas
G [ (l / s) (g / s)]AS
liquid
当G<0时,浸润过程可以自发进行。
铺展过程
铺展润湿:少量液体在固体表面上自动展开,形成
一L层-g界薄面膜可的忽过略程。它实际上是以液-固界面取代气固界面,同时又增加气-液界面的过程。
粘附过程
沾附润湿:液体沾附在固体表面上成为平凸透镜状,
气-固,S 气-液界面消失,形成液-固界面的过程。
S
G [ (l / sS)-g界面( g / l) (g / s)]AS L-S界
当G<0时,粘L-附g界过程可以自发进行。

农药喷雾能否有面效地附着在植物枝叶上,L雨滴会不
L
会粘在衣服上,皆与粘湿过程能否自动进行有关。
方,使液体铺展;
(s/l) –力图将液体分子往
右拉,使液滴收缩
(l/g)–力图将液体分子拉向
液面切线方向,使液滴收缩。
杨氏方程
(l/g)
(s/g) θ O (s/l)
(l/g)
θ
(s/g) O (sr/ll)s
达到平衡时 (g / s) (l / s) (g / l)cos
也可写作
cos (g / s) (l / s) (g / l)
(2)多油浮选:利用矿物和脉石的亲水性和亲油性不同, 加大油量与矿浆搅拌,然后将粘附于油层中的矿物刮出。
(3)泡沫浮选:利用气泡携带矿物上浮。
19
浮游选矿
首先将粗矿磨碎,倾入浮选池中。在池水中加入 捕集剂和起泡剂等表面活性剂。
搅拌并从池底鼓气,带有有效矿粉的气泡聚集表 面,收集并灭泡浓缩,从而达到了富集的目的。
相关文档
最新文档