数学小数知识点归纳
小学四年级数学下册小数的意义和性质知识点总结

小学四年级数学下册小数的意义和性质知识点总结小学四年级数学下册小数的意义和性质知识点总结「篇一」关于小数的知识点总结数概念在小学数学中非常重要,由它引申而出了有理数、无理数等等数学概念,同时,小数的计算也是孩子经常出错的地方,为大家分享了小数的知识点归纳,一起来看看吧!1、小数点,数学符号,写作“.”,用于在十进制中隔开整数部分和小数部分。
2、在英语小数的读法中,小数点读作"point",整数部份按基数词的一般读法,小数部分则分开来读。
如:123.123,读作:one hundred and twenty-three point one two three3、根据十进制的位值原则,把十进分数仿照整数的写法写成不带分母的形式,这样的数叫做小数.4、小数点左边的部分是整数部分,小数点右边的部分是小数部分.5、整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数.例如0.3是纯小数,3.1是带小数.6、小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。
7、一位小数表示十分之几,二位小数表示百分之几,三位小数表示千分之几8、小数的计数单位也按照一定的顺序排列起来,它们所占的位置叫做小数的数位.9、小数的读法有两种:一种是按照分数的读法来读.带小数的整数部分按整数读法读;小数部分按分数读法读.例如:0.38读作百分之三十八,14.56读作十四又百分之五十六.另一种读法,整数部分仍按整数的读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字.例如:0.45读作零点四五;56.032读作五十六点零三二.10、小数点每往左移动一位,数值变为原来的十分之一小数点每往后移动一位,数值变为原来的十倍11、中国比欧洲早采用了小数三百多年。
第一个将这一概念用文字表达出来的是魏晋时代的刘徽。
12、小数分为有限小数和无限小数13、所有分数都可以表示成小数,所有的有限小数和无限循环小数均能用分数表示。
小学数学小数的乘法、除法知识点总结

小学数学小数的乘法、除法知识点总结小数乘除知识点1、计算(1)小数乘法1、小数乘法计算法则:①先按整数乘法算出积,再给积点上小数点。
②看因数中一共有几位小数,就从积的右边起(或个位)数出几位,点上小数点。
③当乘得的积的小数位数不够时,要在前面用0补足,再点小数点。
2、求积的近似值:算出精确值后再根据要求保留相应位数3、求近似数的方法四舍五入法4、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
5、小数四则运算顺序跟整数是一样的。
6、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。
一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。
一个因数扩大多少倍,另一个因数扩大多少倍,积就扩大它们的乘积倍。
小数乘法中的比大小当一个因数大于1时,积大于另一个因数。
(另一个因数≠0)当一个因数小于1时,积小于另一个因数。
(另一个因数≠0)当一个因数等于1时,积等于另一个因数。
练习2.14×8()2.14 0.84×0.27()0.840.35×14()0.35×8 1.06×2.5()1.062.56×8.32()8.32 1.8×23()232.7×0.43()2.73.6×0.15()3.6(2)小数除法小数除法法则:利用商不变性质,将除数变成整数,被除数扩大相同的倍数,再根据除数是整数的方法进行计算,除到哪位商哪位,被除数的小数点和商的小数点对齐。
三年级数学下册《小数的初步认识》知识点归纳

三年级数学下册《小数的初步认识》知识点归纳(新人教版)第七单元:《小数的初步认识》【1】小数的意义:像3.45,0.85,2.60,36.6,1.2 和1.5 这样的数叫做小数。
小数是分数的另一种表现形式。
【2】小数的组成:小数由小数点、整数部分和小数部分组成。
【3 】小数的读法:先读整数部分,再读小数点,最后读小数部分。
整数部分的读法与整数的读法相同,小数点读作“点”,小数部分依次读出每个数位上的数字。
【4】小数的写法:写小数时,先写整数部分,如果整数部分是零直接写成0,接着在个位右下角点上小数点,最后依次写出小数部分每一位上的数,无论有几个0 都要写出来。
【5】小数与分数的关系:(一)分母是10 的分数写成一位小数. 如:130.1;0.3 ;01019170.01 ;0.09 ;0.17 分母是100 的分数写成两位小数. 如:13710.001 ;0.003 ;0.031 ;0.371分母是1000 的分数写成两位小数. 如:1000(二)小数的数位小数点的左边是它的整数部分;小数点的右边是它的小数部分。
小数的计数单位是十分之一、百分之一、千分之一.. 按照一定的顺序排列起来。
31 、把1 米平均分成10 份,每份是1 分米,用米作单位是米,也是0.1 米。
3 份就是 3 分米、米、0.3 米。
01072 、把1 米平均分成100 份,每份是1 厘米,用米作单位是米,也是0.01 米。
7 份就是7 厘米、米、0.07 米。
001004 注:一位小数的形式实际上是分数十分之几的另外一种表示形式,写成小数就是0.4 。
0【6】【小数的加减法】:列竖式计算小数加、减法的方法:列竖式相加减的时候,要把小数点对齐,然后再进行加减。
小数的意义知识点归纳总结

小数的意义知识点归纳总结小数的意义知识点归纳总结小数是数学中的一个重要概念,是介于整数与分数之间的一种数值形式。
在我们的生活和学习中,小数经常被使用到,因此了解小数的意义及其特点非常重要。
下面将对小数的意义知识点进行归纳总结,帮助我们更好地理解和应用小数。
一、小数的定义和表示方法小数是指一个数以点“.”为分界,后面跟着一串数字的数值形式。
我们可以将小数表示为分数的形式,将小数点后面的数字作为分子,小数点后的位数作为分母,即可得到小数的分数形式。
例如,0.5可以表示为1/2。
二、小数的读法和大小比较1. 小数的读法:一般来说,小数点后的数按照数位依次读出即可。
例如,0.25可读作“两分之一”,0.125可读作“一百二十五分之一”。
2. 小数的大小比较:小数的大小比较可通过比较小数点前的整数部分和小数点后的小数部分来判断。
先比较整数部分的大小,如果相等,则比较小数部分的大小。
例如,0.3大于0.25,小数部分相同时,小数点前的整数部分越大,小数就越大。
三、小数与分数的转换小数和分数是可以相互转换的。
将一个小数转换为分数时,将小数点后的数作为分子,小数点后的位数作为分母。
例如,0.3可以转换为3/10;将一个分数转换为小数时,将分子除以分母即可。
例如,1/4可以转换为0.25。
四、小数的运算小数的运算包括加法、减法、乘法和除法。
在进行小数的运算时,要注意保持小数点的对齐,并根据需要进行进位或舍位。
1. 小数的加法和减法:小数的加法和减法运算与整数的加法和减法运算类似,将相同数位的数进行相加或相减即可,对齐小数点后的数。
2. 小数的乘法:小数的乘法运算可以看作是将两个数的小数部分相乘,然后根据小数点后的位数进行进位。
3. 小数的除法:小数的除法运算可以看作是将除数放大到整数形式,然后进行整数的除法运算。
五、小数的应用小数在我们的日常生活和学习中有广泛的应用。
1. 测量和计量:小数常用来表示长度、重量、体积等物理量的精确数值。
小数的意义和性质知识点归纳总结

小数的意义和性质知识点归纳总结小数是数学中的一个重要概念,它在我们的日常生活和学习中都有着广泛的应用。
了解小数的意义和性质对于我们掌握数学知识、提高数学运算能力都有着重要的意义。
下面我们就来对小数的意义和性质进行归纳总结。
一、小数的意义。
小数是指整数和分数之间的数,它可以表示分数的十进制形式。
在实际生活中,小数经常用来表示长度、重量、价格、比率等概念,比如我们常说的1.5米、2.3公斤、9.99元等,这些都是小数的应用。
小数的意义就是将一个数分割成若干等分,每一份称为一个小数位,这样就可以用小数来表示这个数。
二、小数的性质。
1. 小数的位数,小数点右边的数字位数可以是有限的,也可以是无限的。
有限小数是指小数点右边有限个数字的小数,比如0.25、3.14等;无限小数是指小数点右边有无限个数字的小数,比如0.3333……(3的循环小数)、0.123456789101112……(无限不循环小数)等。
2. 小数的大小比较,当比较两个小数的大小时,可以将它们化为相同位数的小数,然后从左到右逐位比较大小。
如果有一位数字较大,则这个小数就较大;如果对应位的数字相等,则继续比较下一位,直到找到大小不同的数字为止。
3. 小数的运算,小数的加减乘除运算和整数、分数的运算类似,需要注意小数点的对齐和进位借位等问题。
在进行小数的运算时,应该先将小数化为相同位数,然后按照整数的运算规则进行计算。
4. 小数的转化,小数可以转化为分数,也可以将分数转化为小数。
将小数转化为分数时,可以将小数部分的数字作为分子,分母为10、100、1000……,然后进行约分;将分数转化为小数时,可以进行除法运算,得到的商即为小数。
5. 小数的应用,小数在日常生活和学习中有着广泛的应用,比如计算商品的价格、测量长度和重量、计算比率和百分数等,都需要用到小数。
综上所述,小数作为数学中的重要概念,具有着重要的意义和丰富的性质。
掌握小数的意义和性质,对于我们提高数学运算能力、解决实际问题都有着重要的帮助。
六年级下册数学知识点归纳2篇

六年级下册数学知识点归纳2篇第一篇:六年级下册数学知识点归纳一、小数1.小数的定义:小数又称十进制小数,是以小数点为界分出的数的形式,分为有限小数和无限循环小数两种。
2.小数的运算:小数的加、减法:类似于整数加减法,将小数点对齐,然后相加或相减即可。
小数的乘法:将小数相乘时,先把小数点去掉,将两数转化成整数相乘,再恢复小数点,小数点后的位数是两个数小数点后位数的和。
小数的除法:与整数除法类似,小数除法要使被除数乘以10,直至能整除为止。
3.小数的应用:小数的应用十分广泛,例如在货币、化学计量、湿度和气温等方面都有应用。
二、分数1.分数的定义:分数指的是将整体分成若干份,然后取其中一份或若干份的表示方法,在分数中,分母表示被分成的份数,分子表示取的份数。
2.分数的运算:分数的加减法:求分数加减时,要先找出它们的公共分母,然后统一分母,再将分子相加或相减即可。
分数的乘法:将两个分数相乘时,将两个分数的分子相乘,然后将两个分数的分母相乘,得到的新分数即为所求。
分数的除法:将两个分数相除时,将一个分数的分子和另一个分数的分母互换,然后将两个分数进行相乘即可。
3.分数的应用:分数在很多领域都有应用,比如在饮食、健康、比率、百分比等方面都有广泛应用。
三、图形的周长和面积1.图形的周长:图形的周长指的是图形的边长总和,根据不同图形的形状和特点,计算周长的公式也各有不同。
例如:矩形的周长= 2 × (长 + 宽);正方形的周长 = 4 × 边长;三角形的周长 = a + b + c。
2.图形的面积:图形的面积指的是图形内部的面积大小,根据不同图形的形状和特点,计算面积的公式也各有不同。
例如:矩形的面积 = 长× 宽;正方形的面积 = 边长× 边长;三角形的面积 = 底× 高÷ 2。
3.图形的应用:图形的周长和面积在日常生活中有很多应用,比如在制作衣服、地毯、纸张、油漆等方面都有广泛应用。
人教版四年级数学下册 小数的意义和性质 知识点归纳

《小数的意义和性质》知识点归纳知识点一、小数的意义1、把一个整体平均分成若干份,这样的1份或几份就可以用小数来表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2、小数的计数单位是十分之一、百分之一、千分之一…… 分别写作0.1、0.01、0.001 ……3、小数相邻计数单位之间的进率都是十。
知识点二、小数的读法和写法1、小数包括:整数部分、小数点、小数部分。
2、小数的读法:步骤①、读整数部分,要按照整数的读法来读。
步骤②、把小数点读成“点”。
步骤③、读小数部分,这一部分要依次读出每个数字。
例、12.56读作:十二点五六3、小数的写法:步骤①、写整数部分,要按照整数的写法来写。
步骤②、在个位数的右下角写上“.”以表示小数点。
步骤③、写小数部分,这一部分要依次读出每个数字。
例、五十三点二六写作:53.26知识点三、小数的性质1、小数的性质:一个小数的小数部分的末尾添上0或去掉0,小数的大小不变。
2、去掉小数末尾的0,就化简了这个小数。
但小数里其它的0不能随便去掉,否则会改变这个小数的大小。
3、小数大小的比较:步骤①、先比较整数部分,整数部分大的小数就大。
步骤②、整数部分相同时,就比较十分位上的数,该位上大的小数就大。
如果十分位上的数相同,就按照这个方法比较百分位上的数。
百分位上的数相同,就比较千分位上的数。
依次类推……步骤③、如果两个小数的整数部分相同、小数部分也相同,那么这两个小数是相等的。
知识点四、小数点移动引起小数大小的变化1、小数点向右①移动一位,小数就扩大为原来的10倍。
②移动两位,小数就扩大为原来的100倍。
③移动三位,小数就扩大为原来的1000倍。
依次类推……2、小数点向左。
①移动一位,小数就缩小为原来的110。
②移动两位,小数就缩小为原来的1100。
③移动三位,小数就缩小为原来的11000依次类推……知识点五、小数与单位换算1、学过的长度单位有:千米、米、分米、厘米、毫米。
小数的加减法与乘除法方法总结小学数学知识点总结

小数的加减法与乘除法方法总结小学数学知识点总结小数的加减法与乘除法方法总结小数是数学中的重要概念之一,它在日常生活和学习中都扮演着重要角色。
小学阶段是学习数学的起点,也是小数概念的引入和初步应用的阶段。
本文将总结小学数学中关于小数的加减法与乘除法的方法,以帮助同学们更好地掌握这一知识点。
一、小数的加法方法小数的加法与整数的加法类似,只需要按照小数位对齐的原则进行计算即可。
具体步骤如下:1. 竖式计算:将加数与被加数按小数点对齐,从小数点开始向左右两边逐位相加,进位时向高位进位,直至完成加法运算。
2. 补零:如果两个小数的小数位数不相等,需要在较短的小数后面补零,使其小数位数相等后再进行计算。
计算完成后,如果和的小数位超过了原先最长的小数位数,要根据舍入规则进行四舍五入。
二、小数的减法方法小数的减法也是按照小数位对齐的原则进行的。
具体步骤如下:1. 竖式计算:将减数与被减数按小数点对齐,从小数点开始逐位相减。
如果被减数的某一位小于减数的对应位,则从高位向低位借位,直至计算完成。
2. 补零:如果两个小数的小数位数不相等,需要在较短的小数后面补零,使其小数位数相等后再进行计算。
计算完成后,如果差的小数位超过了原先最长的小数位数,要根据舍入规则进行四舍五入。
三、小数的乘法方法小数的乘法运算相对来说稍复杂一些,但掌握了正确的步骤和方法,也能够轻松完成。
具体步骤如下:1. 垂直排列:将被乘数和乘数竖式排列,将小数点对齐。
2. 逐位相乘:从乘数的个位数开始,按位与被乘数的每一位数相乘,得到乘积。
3. 位权运算:根据乘数的位权,将乘积移到正确的位置上,然后竖式计算,得到部分积。
4. 小数位数计算:根据乘数和被乘数的小数位数,确定最终结果的小数位数。
四、小数的除法方法小数的除法运算相对来说更为复杂,同样需要按照一定的步骤进行。
具体步骤如下:1. 垂直排列:将除数和被除数竖式排列,将小数点对齐。
2. 逐位相除:按照长除法的步骤,从被除数的左边开始,逐位相除,得到商的整数部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学小数知识点归纳
知识点是知识、理论、道理、思想等的相对独立的最小单元,以下是店铺为大家整理的数学小数知识点归纳,希望对你有所帮助!
数学小数知识点归纳篇1
1、小数的意义
把整数1平均分成10份、100份、1000份得到的十分之几、百分之几、千分之几可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几
一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位十分之一和整数部分的.最低单位一之间的进率也是10。
2、小数的分类
纯小数:整数部分是零的小数,叫做纯小数。
例如:0.25、0.368都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。
例如:3.25、5.26都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。
例如:41.7、25.3、0.23都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如:4.333.1415926
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如:3.5550.033312.109109 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如:3.99的循环节是9,0.5454的循环节是54。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
例如:3.1110.5656
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
3.12220.03333
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
例如:3.777简写作0.5302302简写作。
数学小数知识点归纳篇2
第一单元元角分与小数
单元知识点
1、结合购物的具体情境,初步理解小数的意义,会认、读、写简单小数。
2、经历探索如何比较小数大小的过程,能结合购物情境比较小数的大小。
3、会计算一位小数的加减运算,能解决一些相关的简单问题。
(与元、角、分密切联系)
4、能运用小数表示日常生活中的一些事物,并进行交流。
买文具
1、初步理解小数的具体意义,体会小数与它所表示的实际的量的单位之间的联系,会认、读、写简单的小数
2、将这些小数与以前学过的数比较,使他们发现小数都有小数点。
3、注重0在小数中的特殊地位。
货比三家
1、灵活掌握比较小数大小的的方法,并能独立比较小数大小。
2、培养估算意识。
3、小数部分末尾连续的0可以去。
买书
1、在多种算法的过程中,教师要引导学生观察不同算法的共性,即相同单位(数位)的数才能相加。
2、熟练掌握竖式求小数加减法的方法。
3、掌握竖式格式(小数点对齐)。
寄书
1、运用小数知识解决生活中的实际问题。
2、正确处理小数加减计算过程中需要进位或退位的算法问题。
3、灵活运用估算知识,并能解释估算过程。
【数学小数知识点归纳】。