圆与直线的相切问题---压轴题
2023年九年级数学中考复习 圆综合压轴题 解答题专题训练(含解析)

2022-2023学年九年级数学中考复习《圆综合压轴题》解答题专题训练(附答案)1.如图.在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD.以CD为直径作⊙O,分别与AC,BC相交于点M,N.过点N作⊙O的切线交AB于点E.(1)求证:∠BEN=90°.(2)若AB=10,请填空:①迮接OE,ON,当NE=时,四边形OEBN是平行四边形;②连接DM,DN,当AC=时,四边形CMDN为正方形.2.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD =OB.连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45°.(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求的值.3.如图,△ABC内接于⊙O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段PE上,且PF=CF.(1)求证:CF是⊙O的切线;(2)连接AP与⊙O相交于点G,若∠ABC=2∠P AC,求证:AB=BP;(3)在(2)的条件下,若AC=4,BC=3,求CF的长.4.如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2,求AC的长;(3)在(2)的条件下,求阴影部分的面积.5.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F,连接AD.(1)求证:EF是⊙O的切线.(2)求证:△FBD∽△FDA.(3)若DF=4,BF=2,求⊙O的半径长.6.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG.(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,DG=2.5时,求DE的长.7.已知:△ABC内接于⊙O,连接AO并延长交BC于点D,且AD⊥BC于点D.(1)如图1,求证:∠B=∠C;(2)如图2,点E在上,连接AE,CE,∠ACE=∠ACB,求证:∠CAE=2∠ACE;(3)如图3,在(2)的条件下,过点A作AF⊥CE交CE的延长线于点F,若AE=5,AB=13,求AF的长.8.在Rt△ABC中,∠ACB=90°,AC=6,∠B=30°,点M是AB上的动点,以M为圆心,MB为半径作圆交BC于点D,(1)若圆M与AC相切,如图1,求圆的半径;(2)若AM=2MB,连接AD,如图2.①求证:AD与圆M相切;②求阴影部分的面积.9.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)求证:△OAC∽△ECF;(3)若BD=4,BC=8,圆的半径OB=5,求EC的长.10.如图,已知以BC为斜边的Rt△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,过点D作DE∥BC交AB的延长线于点E,连接DB,DC.(1)求证:ED为⊙O的切线;(2)求证:BC2=2ED•FC;(3)若tan∠ABC=2,AD=,求BC的长.11.已知△ABC内接于⊙O,D是弧AC上一点,连接BD、AD,BD交AC于点M,∠BMC =∠BAD.(1)如图1,求证:BD平分∠ABC;(2)如图2,过点D作⊙O的切线,交BA的延长线于点F,求证:DF∥AC;(3)如图3,在(2)的条件下,BC是⊙O的直径,连接DC,AM=1,DC=,求四边形BFDC的面积.12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,P为弧AD上一点.(1)如图1,连接AC、PC、P A,求证:∠APC=∠ACD;(2)如图2,连接PB,PB交CD于E,过点P作⊙O的切线交CD的延长线于点F,求证:FE=PF;(3)如图3,在(2)的条件下,连接AE,且∠P AE=∠F,过点A作AG⊥PF,垂足为G,若PG=6,,求BH的长.13.如图,⊙O的半径为1,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.(1)求证:直线AC是⊙O的切线;(2)求△ABC的面积;(3)点E在上运动(不与B、D重合),过点C作CE的垂线,与EB的延长线交于点F.①当点E运动到与点C关于直径BD对称时,求CF的长;②当点E运动到什么位置时,CF取到最大值,并求出此时CF的长.14.如图所示,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF ⊥PC于点F,连接CB.(1)求证:AC平分∠F AB.(2)求证:BC2=CE•CP.(3)当AB=4时,求劣弧BC长度(结果保留π).15.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,连接CE,BD是⊙O的切线与OE的延长线相交于点D.(1)求证:∠D=∠AEC;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,,求FH的长.16.如图,在平面直角坐标系xOy中,已知点A(0,8),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若∠ABE=∠FDE,求EF的值.(3)若AB﹣BO=4,求tan∠AFC的值.17.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF∽GDF;(2)求证:BC是⊙O的切线;(3)若cos∠CAE=,DF=10,求线段GF的长.18.如图,⊙O是△ABC的外接圆,AC是⊙O的直径,过圆心O的直线PF⊥AB于D,交⊙O于E,F,PB是⊙O的切线,B为切点,连接AP,AF.(1)求证:直线P A为⊙O的切线;(2)求证:AC2=4OD•OP;(3)若BC=6,,求AC的长.19.如图,AB是半圆O的直径,AB=10.C是弧AB上一点,连接AC,BC,∠ACB的平分线交AB于点P,过点P分别作PE⊥AC,PF⊥BC,垂足分别为E、F.(1)求证:四边形CEPF是正方形;(2)当sin A=时,求CP的长;(3)设AP的长为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出y 的最大值.20.问题提出(1)如图①,△ABC为等边三角形,若AB=2,则△ABC的面积为.问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=3,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,求图中阴影部分的面积.问题解决(3)如图③,是某公园的一个圆形施工区示意图,其中⊙O的半径是4米,公园开发部门计划在该施工区内设计一个四边形绿化区域ABCD,连接AC、BD,现准备在△ADC 区域种植花卉供游人欣赏.按设计要求,A、B、C、D四个点都在圆上,∠ADB=∠BDC =60°.设BD的长为x米,△ADC的面积为y平方米.①求y与x之间的函数关系式;②按照设计要求,为让游人有更好的观赏体验,△ADC花卉区域的面积越大越好,那么请求出花卉区域△ADC面积的最大值.参考答案1.(1)证明:如图,连接ON,DN,∵CD是⊙O的直径,∴∠CND=∠DNB=90°,∵NE是⊙O的切线,∴∠ONE=90°,∴∠BNE=∠OND,∵ON=OD,∴∠ODN=∠OND,∴∠ODN=∠BNE,∵D是斜边AB的中点,∴CD=AD=BD,∴∠B=∠BCD,∵∠BCD+∠ODN=90°,∴∠B+∠BNE=90°,∴∠NEB=90°;(2)解:①∵四边形OEBN是平行四边形,∴BE=ON=,∵E为BD的中点,∴N为BC的中点,∴NE为△BCD的中位线,∴NE∥CD,且NE=CD=.故答案为:;②∵四边形CMDN为正方形,∴∠MCD=∠MDC=45°,∠CMD=90°,∴MC=MD=CD,∵AD=DC,∴M是AC的中点,AC=2MC=CD,∴CD=AB=5,∴AC=5.故答案为:5.2.(1)证明:①∵CD∥AB,∴∠F AB=∠D,∵∠AFB=∠DFC,∴△ABF∽△DCF;②∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵CD∥AB,∴∠DCO=∠AOC=90°,∵OC是半圆的半径,∴CD是⊙O的切线;(2)解:过点F作FH∥AB交OC于H,设圆的半径为2a,∵CD=OB=OA,CD∥AB,∴CE=OE=a,AE=DE,由勾股定理得:AE==a,∴AD=2a,∵△ABF∽△DCF,∴==,∵FH∥AB,∴==,∵FH∥AB,∴==,∴EF=,∵CD是⊙O的切线,∴DC2=DG•DA,即(2a)2=DG•2a,解得:DG=,∴FG=a﹣﹣=,∴==.3.(1)证明:连接OC,∵PF=FC,OC=OB,∴∠PCF=∠CPF,∠OCB=∠OBC,∵PD⊥AB,∴∠PDB=90°,∴∠CPF+∠OBC=90°,∴∠PCF+∠OCB=90°,∴∠FCO=90°,∴OC⊥CF,∴CF是⊙O的切线.(2)证明:连接BG,∵,∴∠P AC=∠PBG,∵∠PBA=2∠P AC,∴∠PBA=2∠PBG,∵AB为⊙O的直径,∴∠AGB=∠PGB=90°,∴∠APB=∠P AB,∴AB=BP;(3)解:∵AB为⊙O的直径,∴∠ACB=90°,∵AC=4,BC=3,∴AB===5,∴AB=BP=5,∴PC=2,∵∠PDA=∠PCA=90°,P A=P A,∠APB=∠P AB,∴△APC≌△APD(AAS),∴AD=PC=2,PD=AC=4,∠P AC=∠APD,∴AE=PE,设DE=x,AE=PE=4﹣x,在Rt△AED中,AD2+DE2=AE2,即22+x2=(4﹣x)2,解得x=,∴EP=4﹣x=,∵∠PEC=90°﹣∠EPC,∠FCE=90°﹣∠PCF,即∠PEC=∠FCE,∴EF=CF=PF,∴CF=.4.解:(1)直线AF与⊙O相切.理由如下:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,∴AF⊥OA,又∵OA为圆O的半径,∴AF为圆O的切线;(2)∵∠AOF=∠COF,OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵∠OAF=90°,OA=6,AF=2,∴tan∠AOF=,∴∠AOF=30°,∴AE=OA=3,∴AC=2AE=6;(3)∵AC=OA=6,OC=OA,∴△AOC是等边三角形,∴∠AOC=60°,OC=6,∵∠OCP=90°,∴CP=OC=6,∴S△OCP=OC•CP==18,S扇形AOC==6π,∴阴影部分的面积为S△OCP﹣S扇形AOC=18﹣6π.5.(1)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC.∵EF⊥AC,∴EF⊥OD.∵OD是半径,∴EF与⊙O相切.(2)证明:∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵OD⊥DE,∴∠FDB+∠ODB=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠BAD=∠FDB,∵∠F=∠F,∴△FBD∽△FDA;(3)解:设⊙O的半径为r,则AB=2r,∵△FBD∽△FDA,∴,∵DF=4,BF=2,∴,∴r=3.6.解:(1)CG与⊙O相切,理由如下:如图1,连接CO,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∵OC是圆的半径,∴CG与⊙O相切;(2)证明:∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=2∠F,又∵∠DCE=2∠F,∴∠EGC=∠DCE,∵∠DCE=∠AOD=45°,∴∠EGC=45°,又∵∠OCG=90°,∴△OCG为等腰直角三角形,∴GC=OC,OG=OC,∴OD+DG=OC,即OC+2.5=OC,解得OC=,∵GF=GE=GC=OC,∴DE=GE﹣DG=OC﹣DG=.7.(1)证明:∵AD⊥BC,AD过圆心O,∴BD=CD,且AD⊥BC,∴AB=AC,∴∠B=∠C;(2)证明:连接BE,设∠ACE=α,则∠ACB=3α,∴∠ABC=∠ACB=3α,∵∠ABE=∠ACE=α,∴∠CBE=∠ABC﹣∠ABE=3α﹣α=2α,∴∠CAE=∠CBE=2α=2∠ACE;(3)解:过点E作EG⊥AC于点G,在CG上截取GH=AG,连接EH,∴EH=AE=5,∴∠AHE=∠EAH=2α,∴∠CEH=∠AHE﹣∠ECH=2α﹣α=α=∠ECH,∴CH=EH=5,∵AC=AB=13,∴AH=AC﹣CH=13﹣5=8,∴AG=GH=4,∴CG=4+5=9,在Rt△AEG中,EG===3,在Rt△CEG中,CE===3,∵,∴,∴.8.解:(1)过点M作MN⊥AC于点N,∵圆M与AC相切,∴MN=MB,∵∠ACB=90°,AC=6,∠B=30°,∴AB=12,设MN=MB=R.∴AM=12﹣R,∵∠ACB=90°,MN⊥AC,∴MN∥BC,∴∠B=∠AMB=30°,∴,∴,解得R=24﹣36.(2)①连接DM,由题意可知MB=MD,∴∠B=∠MDB=30°,∴∠AMD=60°,∵AM=2MB,∴AM=2MD,∵∠ACB=90°,∠B=30°,∴AB=2AC,∠BAC=60°,∴△AMD∽△ABC,∴∠ADM=∠ACB=90°,∴AD与圆M相切;②∵AB=12,AM=2MB,∴BM=4,AM=8,∵∠ADM=90°,∴AD==4,∴S阴影部分=4.9.(1)证明:∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF;(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵△OAC∽△ECF,∴,∴EC==.10.(1)证明:如图1,连接OD.∵BC为⊙O的直径,∴∠BAC=90°.∵AD平分∠BAC,∴.∴OD⊥BC,∵DE∥BC,∴OD⊥ED,又∵OD为半径,∴ED为⊙O的切线;(2)证明:由(1)可得△BCD为等腰直角三角形.∵DE∥BC,∴∠E=∠ABC=∠ADC,∠BDE=∠DBC=∠DCB=45°.∴△BED∽△FDC,∴,即BD2=DE•FC,又,∴BC2=2ED•FC;(3)解:如图2,过点D作DG⊥AD,交AC的延长线于点G.∴∠CDG+∠ADC=90°,∠DGC=∠DAG=45°.又∵∠ADB+∠ADC=90°,∴∠ADB=∠GDC,∵DB=DC,∠BAD=∠DGC=45°,∴△ABD≌△GCD(AAS),∴AB=CG.∵∠DAG=45°,∠ADG=90°,∴△ADG为等腰直角三角形,∴AB+AC=AG=AD==3,∵tan∠ABC=2,∴设AB=x,则AC=2x.∴3x=3,∴x=1.即AB=1,AC=2.∴BC===.11.(1)证明:∵∠BMC=∠BAD,又∵∠BMC=∠BAC+∠ABD,∠BAD=∠BAC+∠DAM,∴∠ABD=∠DAC,又∵弧DC=弧DC,∴∠DAC=∠DBC,∴∠ABD=∠CBD,∴BD平分∠ABC;(2)证明:连接OA、OB、OD,OD交AC于点N,∵FD是⊙O的切线,D为切点,OD是⊙O的半径,∴OD⊥FD,∴∠FDO=90°,又∵∠AOD=2∠ABD,∠DOC=2∠DBC,∠ABD=∠CBD,∴∠AOD=∠COD,又∵AO=CO,∴ON⊥AC,∴∠ANO=90°,∴∠ANO=∠FDO,∴AC∥FD;(3)解:连接OD,交AC于N,∵BC是⊙O的直径,∴∠BAC=∠BDC=90°,∴∠F AC=180°﹣∠BAC=90°,又∵∠ANO=∠FDN=90°,∴四边形ANDF是矩形,∴AF=DN,∠F=90°,又∵ON⊥AC,∴AN=CN,∴设MN=a,则AN=CN=MN+AM=a+1,∴CM=MN+CN=2a+1,在Rt△MDC中,cos∠ACD=,在Rt△NDC中,cos∠ACD=,∴,解得a1=﹣(舍去),a2=1,∴MN=1,CN=a+1=2,∴DN=AF==,又∵MN=AM=1,∠AMB=∠NMD,∠BAM=∠MND=90°,∴△BAM≌△DNM(AAS),∴BA=ND=,∴BF=AB+AF=2,∴AN=FD=a+1=2,∴BD==2,∴S△BFD=,S△DBC=BD•CD==3,∴S四边形BFDC=S△BFD+S△BDC=2.12.(1)证明:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴,∴∠ACD=∠DC,∵,∴∠APC=∠ADC,∴∠APC=∠ACD;(2)证明:连接OP,∵PF是⊙O的切线,∴OP⊥PF,即∠EPF+∠OPE=90°,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠HEB+∠HBE=90°,∵∠PEF=∠HEB,∴∠PEF=∠FPE,∴FE=PF;(3)解:过E作EM⊥PF,垂足为M,∵AG⊥PF,∴∠GAP+∠GP A=90°,∵∠APE=90°,∴∠GP A+∠EPM=90°,∵∠AGP=∠EMP=90°,∴△GP A∽△MEP,∴,∵∠P AE=∠F,∴tan∠P AE=tan∠F,则,∵,∴,∴MF=PG=6,设PM=x,∵PE2﹣PM2=EF2﹣FM2,∴,解得:x1=﹣10,x2=4,即PM=4,∴EM==8,∵,即,∴P A=3,∵CD⊥AB,AB是直径,∴∠BHE=∠APB=90°,∴∠HEB=∠BAP,∵∠MPE=∠HEB,∴tan∠P AB=,即,∴PB=6,∴BE=PB﹣PE=2,∵sin∠HEB=,即,∴BH=4.13.(1)证明:连接OC,如图1,∵AD=CD,∠A=30°,∴∠ACD=30°,∴∠CDB=60°,∵OD=OC,∴∠OCD=60°,∴∠ACO=∠ACD+∠OCD=90°,∵OC是半径,∴直线AC是⊙O的切线;(2)解:∵∠OCD=60°,OC=OD,∴△DCO是等边三角形,∴CD=AD=OD=1,作CH⊥BD于点H,则DH=,如图2,∴CH===,∵AB=AD+BD=3,∴S△ABC==.(3)①当点E运动到与点C关于直径AB对称时,CE⊥AB于点K,如图3,∵BD为⊙O的直径,CK=,∴CE=2CK=,∵CF⊥CE,∴∠ECF=90°,∵∠CDB=∠CEB=60°,∴CF=CE•tan60°==3,②∵点E在上运动过程中,∠CDB=∠CEB=60°,在Rt△ECF中,tan60°=,∴CF=CE,∴当CE最大时,CF取得最大值,∴当CE为直径,即CE=2时,CF最大,最大值为2.14.(1)证明:连接AC,BC,∵OC=OA,∴∠OCA=∠OAC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠F=90°,∴AF∥OC,∴∠F AC=∠OCA,∴∠F AC=∠OAC,∴CA平分∠F AB.(2)证明:∵CD是直径,∴∠CBD=90°,∴∠CBP=90°,∵CE⊥OB,∴∠CEB=∠CBP=90°,∵PC切⊙O于点C,∴∠PCB=∠CAB,∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∠BCE+∠ABC=90°,∵∠CAB=∠BCE,∴∠PCB=∠BCE,∴△BCE∽△PCB,∴,∴BC2=CE•CP;(3)解:,设CF=3a,CP=4a,∵BC2=CE•CP=3a•4a=12a2,∴BC=2a,在Rt△BCE中,sin∠CBE=,∴∠CBE=60°,∴∠BCE=30°,∴△COB是等边三角形,∵AB=4,∴OB=BC=2,∴劣弧BC的长==π.15.(1)证明:∵BD是⊙O的切线,∴∠OBD=90°,∠ABC+∠DBC=90°,∵BC⊥OD,∴∠D+∠DBC=90°,∴∠ABC=∠D,∵∠AEC=∠ABC,∴∠D=∠AEC;(2)证明:连接AC,如图所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,过O作OG⊥BE于G,如图所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,∴AB=10,∵cos∠BCE=,∴cos∠BAE==,∴AE=8,∴BE===6,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH=,在Rt△BEH中,BH=.∵OG⊥BE,OB=OE,∴BG=3,∴OG===4,∴BF•OE,∴BF=,∴HF=BH﹣BF=.16.解:(1)∵点A(0,8),∴AO=8,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD,∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS),∴AE=AO=8;(2)∵∠ABE=∠FDE,∴AB∥DF,∴△CAB∽△CDF,∴,又∵∠ABE=∠FDE,∠AEB=∠FED∴△DEF∽△BEA,∴,∴EF=2AE=16;(3)设BO=x,则AB=x+4,在Rt△ABO中,由AO2+OB2=AB2得:82+x2=(x+4)2,解得:x=6,∴OB=BE=6,AB=10,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BF A=∠AFC,∴△BF A∽△AFC,∴;设EF=m,则AF=8+m,BF=(8+m),∵在Rt△BEF中,BE2+EF2=BF2,∴62+m2=[(8+m)]2,解得:m=,即EF=,∴tan∠AFC=.17.(1)证明:如图1,∵EF平分∠AED,∴∠AEF=∠FED,∵∠AEF=∠ADF,∴∠FED=∠ADF,∵∠GFD=∠DFE,∴△GFD∽△DFE;(2)证明:如图2,∵AE平分∠BAC,∴∠BAE=∠EAO,∵OA=OE,∴∠EAO=∠OEA,∴∠BAE=∠OEA,∴AB∥OE,∴∠OEC=∠B,∵∠B=90°,∴∠OEC=90°,∵OE为半径,∴BC是⊙O的切线;(3)解:如图3,连接OF、AF,∵AD为直径,∴∠AFD=∠AED=90°,∵EF平分∠AED,∴∠AEF=∠FED=45°,∴∠AFD=∠AEF=45°,∴△AFD为等腰直角三角形,∵DF=10,OA=OD∴AD=DF=×10=20,OF⊥AD,OA=OD=OF=10,∵cos∠CAE=,∴AE=AD•cos∠CAE=20×=10,∵∠AEF=∠ADF,∠AGE=∠FGD,∴△AGE∽△FGD,∴,∴AG=GF,∵AG=AO+OG=10+OG,∴10+OG=GF,∴OG=GF﹣10,在Rt△FOG中,GF2=OF2+OG2,∴GF2=102+(GF﹣10)2,解得:GF=或(不符合题意,舍去),∴线段GF的长为.18.(1)证明:连接OB,∵PB是⊙O的切线,∴∠PBO=90°,∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB,又∵PO=PO,∴△P AO≌△PBO(SAS),∴∠P AO=∠PBO=90°,∵OA为圆的半径,∴直线P A为⊙O的切线;(2)证明:∵∠P AO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OP A+∠AOP=90°,∴∠OAD=∠OP A,∴△OAD∽△OP A,∴,∴OA2=OD•OP,又∵AC=2OA,∴AC2=4OD•OP;(3)解:∵OA=OC,AD=BD,BC=6,∴OD=BC=3,设AD=x,∵tan∠F=,∴FD=2x,OA=OF=2x﹣3,在Rt△AOD中,由勾股定理,得,(2x﹣3)2=x2+32,解之得,x1=4,x2=0(不合题意,舍去),∴AD=4,OA=2x﹣3=5,∵AC是⊙O的直径,∴AC=2OA=10.∴AC的长为10.19.(1)证明:∵∠ACB=90°,PE⊥AC,PF⊥BC,∴四边形PECF是矩形,∵CP平分∠ACB,PE⊥AC,PF⊥BC,∴PE=PF,∴四边形CEPF是正方形;(2)解:∵sin A=,AB=10,∴,∴BC=8,∴AC===6,∴tan A=,设PE=CE=m,则AE=6﹣m,∴tan A=,∴m=,∴PC=PE=;(3)解:∵四边形CEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P顺时针旋转90°,得到△A′PF,P A′=P A,如图所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△P AE+S△PBF=S△P A′B=P A′•PB=x(10﹣x),∴y与x之间的函数关系式为y=﹣+5x,∵y=﹣+5x=﹣,∴x=5时,y有最大值为.20.解:(1)如图①,AD⊥BC,∵△ABC为等边三角形,AB=2,∴∠B=60°,BC=AB=2,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,=sin B=sin60°,∴=,∴AD=,∴△ABC的面积=AB•AD=×2×=,故答案为:;(2)如图②,过点D作DH⊥BC于点H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠DBC=∠ABD=45°,∵DE⊥BD,∴∠BDE=90°,∴∠DEB+∠DBE=90°,∴∠DEB=90°﹣∠DBE=90°﹣45°=45°,∴BD=ED,∵DH⊥BC,∴BH=EH,∴DH=BE=BH=EH,设DH=BH=EH=a,∵∠ABC=90°,∴AB⊥BC,∵DH⊥BC,∴AB∥DH,∴△CDH∽△CAB,∴==,∵AD=1,AC=3,∴CD=3﹣1=2,∴==,∴AB=a,CE=a,∴BC=CE+BE=a+2a=3a,∵AB2+BC2=AC2,∴a2+9a2=9,∴a2=1,∴S阴影=S△ABC﹣S△BDE=AB•BC﹣BE•DH=×a•3a﹣×2a•a=a2﹣a2=a2=1;(3)①设AC与BD相交于点E,连接OB,OA,OC,过点O作OH⊥AB于点H,∵∠ADB=∠BDC=60°,∴AB=BC,∠BAC=∠BDC=60°,∴△ABC是等边三角形,∴∠ACB=60°,AB=AC=BC,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),同理△ABO≌△CBO(SSS),∴S△ABO=S△ACO=S△CBO,∴S△ABC=3S△ABO,∵∠AOB=2∠ACB,∴∠AOB=120°,在Rt△OAH和Rt△OBH中,,∴Rt△OAH≌Rt△OBH(HL),∴∠AOH=∠BOH,AH=BH,在Rt△OAH中,OA=4,∠AOH=∠AOB=60°,∴cos∠AOH=cos60°==,sin∠AOH=sin60°==,∴OH=OA=2,AH=OA=2,∴AB=2AH=4,∴S△ABC=3S△ABO=3××4×2=12,∵∠ABE=∠DBA,∠BAE=∠BDA=60°,∴△ABE∽△DBA,∴===,即S△DBA=S△ABE,∵∠CBE=∠DBC,∠BCE=∠BDC=60°,∴△CBE∽△DBC,∴===,即S△DBC=S△CBE,∴S四边形ABCD=S△DBA+S△DBC=S△ABE+S△CBE,=(S△ABE+S△CBE)=S△ABC=×12=x2,∴S△ADC=S四边形ABCD﹣S△ABC=x2﹣12,即y=x2﹣12;∵BD的长度大于AB,小于等于直径,∴4<x≤8,∴y与x之间的函数关系式为y=x2﹣12(4<x≤8);②由①知,y与x之间的函数关系式为y=x2﹣12,则对称轴为y轴,∵>0,∴x>0时,y随x的增大而增大,∵4<x<8,∴当x=8时,y有最大值,即当BD为⊙O的直径时,y取最大值,即y=×82﹣12=4,∴花卉区域△ADC面积的最大值是4.。
中考数学压轴题提升训练:圆中证明及计算问题

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学压轴题提升训练:圆中证明及计算问题【例1】如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:AB•CP=BD•CD;(3)当AB=5 cm,AC=12 cm时,求线段PC的长.【答案】见解析.【解析】(1)证明:连接OD.∵∠BAD=∠CAD,∴弧BD=弧CD,∴∠BOD=∠COD=90°,∵BC∥P A,∴∠ODP=∠BOD=90°,即OD⊥P A,∴PD是⊙O的切线.(2)证明:∵BC∥PD,∴∠PDC=∠BCD.∵∠BCD=∠BAD,∴∠BAD=∠PDC,∵∠ABD+∠ACD=180°,∠ACD+∠PCD=180°,∴∠ABD=∠PCD,∴△BAD∽△CDP,∴AB BD CD CP,∴AB•CP=BD•CD.(3)∵BC是直径,∴∠BAC=∠BDC=90°,∵AB=5,AC=12,由勾股定理得:BC=13,由(1)知,△BCD是等腰直角三角形,∴BD=CD,∵AB•CP=BD•CD.∴PC=169 10.【变式1-1】如图,△ABC内接于⊙O,且AB=AC,延长BC到点D,使CD=CA,连接AD交⊙O于点E.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,BE=8,则EF的长为.【答案】(1)见解析;(2)60;9 2 .【解析】(1)证明:连接CE,∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD+∠BCE=∠BAE +∠BCE=180°,∴∠ECD=∠BAE,同理,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE;(2)①60;连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=∠AOC=120°,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,AC=CD,∴∠CAD=∠D=30°,∴∠ACE =30°, ∴∠OAE =∠OCE =60°, 即四边形AOCE 是平行四边形, ∵OA =OC ,∴四边形AOCE 是菱形; ②由(1)得:△ABE ≌△CDE , ∴BE =DE =8,AE =CE =6,∠D =∠EBC , 由∠CED =∠ABC =∠ACB , 得△ECD ∽△CFB , ∴CE CF DE BC ==68, ∵∠AFE =∠BFC ,∠AEB =∠FCB , ∴△AEF ∽△BCF ,∴EF CFAE BC =, 即668EF =,∴EF =92.【例2】如图,AB 为⊙O 的直径,点C 为AB 上方的圆上一动点,过点C 作⊙O 的切线l ,过点A 作直线l 的垂线AD ,交⊙O 于点D ,连接OC ,CD ,BC ,BD ,且BD 与OC 交于点E .(1)求证:△CDE ≌△CBE ; (2)若AB =4,填空:①当弧CD 的长度是 时,△OBE 是等腰三角形; ②当BC = 时,四边形OADC 为菱形.【答案】(1)见解析;(2)2π;2.【解析】(1)证明:延长AD 交直线l 于点F ,∵AD垂直于直线l,∴∠AFC=90°,∵直线l为⊙O切线,∴∠OCF=90°,∴∠AFC=∠OCF=90°,∴AD∥OC,∵AB为⊙O直径,∴∠ADB=90°,∴∠OEB=90°,∴OC⊥DB,∴DE=BE,∠DEC=∠BEC=90°,∵CE=CE,∴△CDE≌△CBE;(2)①如图2,连接OD,由(1)知∠OEB=90°,当△OBE是等腰三角形时,则△OEB为等腰直角三角形,∴∠BOE=∠OBE=45°,∵OD=OB,OE⊥BD,∴∠DOC=∠BOE=45°,∵AB =4, ∴OD =2, ∴弧CD 的长=452180π⨯=2π; ②当四边形OADC 为菱形时, 则AD =DC =OC =AO =2, 由(1)知,BC =DC , ∴BC =2.【变式2-1】(2019·河南南阳一模)如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B =135°,则弧AC 的长为()A. 2πB. πC.2πD.3π【分析】根据弧长公式180n rl π=,需先确定弧AC 所对的圆心角∠AOC 的度数,再根据同弧所对的圆心角是圆周角的2倍得到∠AOC =2∠D ,根据圆内接四边形对角互补,求出∠D =180°-∠B =45°,再代入弧长公式求解即可.【解析】解:∵四边形ABCD 是⊙O 的内接四边形, ∴∠D =180°-∠B =45°,∴弧AC 所对圆心角的度数为:2×45°=90°, ∵⊙O 的半径为2, ∴弧AC 的长为:902180180n r l ππ⨯===π, 故选B .1.如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径的⊙O ,与斜边AB 交于点D ,E 为BC 边的中点,连接DE .(1)求证:DE 是⊙O 的切线;(2)填空:①若∠B=30°,AC=BD=②当∠B=时,以O、D、E、C为顶点的四边形是正方形.【答案】见解析.【解析】解:(1)连接OD,∵AC为直径,∴∠ADC=90°,∠CDB=90°,∵E是BC的中点,∴DE=CE=BE,∴∠DCE=∠EDC,∵OD=OC,∴∠OCD=∠ODC,∴∠ODC+∠CDE=∠OCD+∠DCE=90°,即∠ODE=90°,∴DE是⊙O的切线;(2)3;45°,理由如下:①∵∠B=30°,AC=BCA=90°,∴BC= AC÷tan30°=6,∴DE=3,②由∠B=∠A=45°,OA=OD,得∠ADO=∠AOD=45°,∴∠AOD=90°,∴∠DOC=90°,又∠ODE=90°,∴四边形ODEC是矩形,∵OD=OC,∴四边形ODEC是正方形.2.已知△ABC内接于以AB为直径的⊙O,过点C作⊙O的切线交BA的延长线于点D,且DA∶AB=1∶2.(1)求∠CDB的度数;(2)在切线DC上截取CE=CD,连接EB,判断直线EB与⊙O的位置关系,并证明.【答案】见解析.【解析】解:(1)如图,连接OC,∵CD是⊙O的切线,∴∠OCD=90°.∵DA:AB=1:2,∴DA=OC,DO=2OC.在Rt△DOC中,sin∠CDO=12,∴∠CDO=30°,即∠CDB=30°.(2)直线EB与⊙O相切.证明:连接OC,由(1)可知∠CDO=30°,∴∠COD=60°,∵OC=OB,∴∠OBC=∠OCB=30°,∴∠CBD=∠CDB,∴CD=CB,∵CD是⊙O的切线,∴∠OCE=90°,∴∠ECB=60°,又∵CD=CE,∴CB=CE,∴△CBE为等边三角形,∴∠EBA=∠EBC+∠CBD=90°,∴EB是⊙O的切线.3.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与斜边AB交于点D,E为BC边上一点,且DE是⊙O的切线.(1)求证:BE=EC;(2)填空:①若∠B=30°,AC DE=;②当∠B=°时,以O,D,E,C为顶点的四边形是正方形.【答案】(1)见解析;(2)①3;②45.【解析】解:(1)证明:如图,连接OD,∵∠ACB=90°,AC为⊙O的直径,∴EC为⊙O的切线,∵DE为⊙O的切线,∴EC=ED,∵∠EDO=90°,∴∠BDE+∠ADO=90°,∵OD=OA,∴∠ADO=∠A,∴∠BDE+∠A=90°,∵∠A+∠B=90°,∴∠BDE=∠B,∴BE=EC;(2)①3;②45,理由如下:①在Rt△ABC中,∠B=30°,AC,∴BC=6,由(1)知,E是BC中点,∴DE=12BC=3;②∵ODEC为正方形,∴∠DEC=90°,DE=CE=BE,∴∠B=45°,故答案为:3;45.4.如图,AB为⊙O的直径,C为半圆上一动点,过点C作⊙O的切线l的垂线BD,垂足为D,BD与⊙O交于点E,连接OC,CE,AE,AE交OC于点F.(1)求证:△CDE≌△EFC;(2)若AB=4,连接AC.①当AC= 时,四边形OBEC为菱形;②当AC= 时,四边形EDCF为正方形.【答案】见解析.【解析】(1)证明:如图,∵BD⊥CD,∴∠CDE=90°,∵AB是直径,∴∠AEB=90°,∵CD是切线,∴∠FCD=90°,∴四边形CFED矩形,∴CF=DE,EF=CD,∵CE=CE,∴△CDE≌△EFC.(2)解:①当AC=2时,四边形OCEB是菱形.理由:连接OE.∵AC=OA=OC=2,∴△ACO是等边三角形,∴∠CAO=∠AOC=60°,∵∠AFO=90°,∴∠EAB=30°,∵∠AEB=90°,∴∠B=60°,∵OE=OB,∴△OEB是等边三角形,∴∠EOB=60°,∴∠COE=180°﹣60°﹣60°=60°,∵CO=OE,∴△COE是等边三角形,∴CE=CO=OB=EB,∴四边形OCEB是菱形.故答案为2.②当四边形DEFC是正方形时,∵CF=FE,∴∠CEF=∠FCE=45°,∵OC⊥AE,∴弧AC=弧CE,∴∠CAE=∠CEA=45°,∴∠ACE=90°,∴AE是⊙O的直径,∴△AOC是等腰直角三角形,∴AC.∴AC时,四边形DEFC是正方形.故答案为.5.如图,AB是半圆O的直径,D为半圆上的一个动点(不与点A,B重合),连接AD,过点O作AD 的垂线,交半圆O的切线AC于点C,交半圆O于点E.连接BE,DE.(1)求证:∠BED=∠C.(2)连接BD,OD,CD.填空:①当∠ACO的度数为时,四边形OBDE为菱形;②当∠ACO的度数为时,四边形AODC为正方形.【答案】(1)见解析;(2)30;45.【解析】解:(1)证明:设AD,OC交于点P,∵OC⊥AD,∴∠APC=90°.∴∠C+∠CAP=90°∵AC是半圆O的切线,∴∠CAO=∠CAP+∠BAD=90°,∴∠BAD=∠C,∵∠BED=∠BAD,∴∠BED=∠C;(2)①30,理由如下:连接BD,如图:∵AB是半圆O的直径,∴∠ADB=90°,∵∠DAB=∠ACO=30°,∴∠DBA=60°,∵OE⊥AD,∴弧AE=弧AD,∴∠DBE=∠ABE=30°∵∠DEB=∠DAB=30°,∴∠DEB=∠ABE,DE∥AB∵∠ADB=90°,即BD⊥AD,OE⊥AD,∴OE∥BD,∴四边形OBDE是平行四边形∵OB=OE∴四边形OBDE是菱形;故答案为30°;②45,理由如下:连接CD、OD,∵∠BED=∠ACO=45°,∴∠BOD=2∠BED=90°,∴∠AOD=90°,∵OC⊥AD,∴OC垂直平分AD,∴∠OCD=∠OCA=45°,∴∠ACD=90°,∵∠ACO=90°,∴四边形AODC 是矩形, ∵OA =OD ,∴四边形AODC 是正方形, 故答案为45°.6.如图,CD 是⊙O 的直径,且CD =2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线P A 、PB ,切点分别为A 、B .(1)连接AC ,若∠APO =30°,试证明△ACP 是等腰三角形; (2)填空:①当弧AB 的长为 cm 时,四边形AOBD 是菱形; ②当DP = cm 时,四边形AOBP 是正方形.【答案】(1)见解析;(2)23π1. 【解析】解:(1)连接AO ,∵P A 是⊙O 的切线, ∴∠P AO =90°, ∵∠APO =30°, ∴∠AOP =60°, ∵OA =OC ,∴∠C =∠CAO =30°, ∴∠C =∠APO =30°, ∴△ACP 是等腰三角形;(2)①若四边形AOBD 是菱形,则AO =AD ,∵AO=OD,∴△AOD是等边三角形,∠AOD=60°,∴∠AOB=120°,∵CD=2,∴圆O的半径为1,∴弧AB的长为:21201180π⨯=23π.②若四边形AOBP为正方形时,则P A=AO=1,则OP,∵OD=1,∴PD-1,-1.7.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=2时,求出四边形ACDE的面积.【答案】见解析.【解析】证明:(1)∵F为弦AC(不是直径)的中点,∴AF=CF,OD⊥AC,∵DE是⊙O的切线,∴OD⊥DE,∴AC∥DE.(2)连接CD,∵AC∥DE,OA=AE=2,∴OF=FD,∵AF=CF,∠AFO=∠CFD,∴△AFO≌△CFD,∴S△AFO=S△CFD,∴S四边形ACDE=S△ODE∵OD=OA=AE=2,∴OE=4,由勾股定理得:DE∴S四边形ACDE=S△ODE= 12×OD×OE=12×2×.8.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.【答案】见解析.【解析】(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)证明:∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠DEB=90°,∴∠ADE+∠BDE=∠DBE+∠BDE=90°,∴∠ADE=∠DBE=∠DAC,∴PD=P A,∵∠DF A+∠DAF=∠ADE+∠BDE=90°,∴∠PDF=∠PFD,∴PD=PF,∴P A=PF,即P是线段AF的中点;(3)解:∵∠CBD=∠DBA,CD=3,∴CD=AD=3,由勾股定理得:AB=5,即⊙O的半径为2.5,由DE×AB=AD×BD,即:5DE=3×4,∴DE=2.4.即DE的长为2.4.9.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD,AC分别交于点E,F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=12,BC=4,求⊙O的半径.【答案】见解析.【解析】(1)直线CE与⊙O相切,证明:连接OE,∵OA=OE,∴∠EAO=∠AEO,∵∠ACB=∠DCE,∴∠AEO=∠ACB=∠DCE,∵四边形ABCD是矩形,∴BC∥AD,∴∠ACB=∠DAC,∵∠ACB=∠DCE,∴∠DAC=∠DCE,由∠D=90°,得:∠DCE+∠DEC=90°,∴∠AEO+∠DEC=90°,∴∠OEC=90°,即OE⊥EC,∵OE为半径,∴直线CE与⊙O相切;(2)解:在Rt△ACB中,AB=tan∠ACB×BC=12×4=2,由勾股定理得:AC=,∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=12,在Rt△DCE中,CD=AB=2,DE=DC×tan∠DCE=2×12=1,由勾股定理得:CE,在Rt△COE中,CO2=CE2+OE2,OE=OA,(OA)2=OA2+)2,解得:OA,即⊙O.10.如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为点D,直线AC交⊙C于点E、F,且CF=12AC,(1)求证:△ABF是直角三角形;(2)若AC=6,则直接回答BF的长是多少.【答案】见解析.【解析】(1)证明:连接CD,则CF=CD,∵AB是⊙C的切线.∴CD⊥AB,∠ADC=∠BDC=90°,在Rt△ACD中,CF=12 AC,∴CD=CF=12AC,∴∠A=30°∵AC=BC,∴∠ABC=∠A=30°,∴∠ACB=120°,∠BCD=∠BCF=60°,∵BC=BC,∴△BCD≌△BCF,∴∠BFC=∠BDC=90°,∴△ABF是直角三角形.(2)解:由(1)知:AC=BC,CD⊥AB,∴AD=BD=BF,在Rt△ACD中,∠A=30°,AC=6,∴CD=3,∴AD=.∴BF=金榜题名前程似锦21。
中考数学压轴题-圆的压轴题 含解析

圆的压轴题(1)1、如图,BF 为⊙O 的直径,直线AC 交⊙O 于A ,B 两点,点D 在⊙O 上,BD 平分∠OBC ,DE ⊥AC 于点E 。
(1)求证:直线DE 是⊙O 的切线;(2)若 BF=10,sin ∠BDE=,求DE 的长。
2、如图,AN 是M ⊙的直径,NB x ∥轴,AB 交M ⊙于点C .(1)若点()0,6A ,()0,2N ,30ABN =∠°,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是M ⊙的切线.x y C D M O B NA3、如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.4、已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.5、如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β.(1)用含α的代数式表示β,并直接写出α的取值范围;(2)连接OF与AC交于点O′,当点O′是AC的中点时,求α,β的值.6、如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.7、如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.8、如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2 ,求阴影部分的面积.9、如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G点.(1)求证:EF是⊙O的切线;(2)求AE的长.10、如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).11、如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为的中点,P是直径MN上一动点.(1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB的最小值.12、如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.13、如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.14、如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF ∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.15、如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.16、已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.参考答案1、【解答】解:(1)如图所示,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD平分∠OBC,∴∠OBD=∠DBE,∴∠ODB=∠DBE,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴直线DE是⊙O的切线;(2)如图,连接DF,∵BF是⊙O的直径,∴∠FDB=90°,∴∠F+∠OBD=90°,∵∠OBD=∠DBE,∠BDE+∠DBE=90°,∴∠F=∠BDE,在Rt△BDF中,=sinF=sin∠BDE=,∴BD=10×=2,∴在Rt△BDE中,sin∠BDE==,∴BE=2×=2,∴在Rt△BDE中,DE===4。
圆压轴题题型归纳及方法

圆压轴题题型归纳及方法
圆压轴题是高中数学中常见的题型之一,本文将对圆压轴题进行归纳总结,并介绍解题方法。
一、题型分类
圆压轴题可分为以下几类:
1.圆的相切问题:给定两个圆,求它们的公切线或内切线的位置关系。
2.圆的切线问题:给定一条直线和一个圆,求这条直线与圆的切点位置。
3.圆的位置问题:给定两个圆的位置关系,求它们的大小关系或者位置。
二、解题方法
1.圆的相切问题:
(1)公切线问题:如果两个圆外切,则两个圆的公切线为它们圆心的连线;如果两个圆内切,则它们的公切线为它们圆心的连线。
(2)内切线问题:如果两个圆内切,则它们的内切线为它们圆心的连线;如果两个圆外切,则它们的内切线为它们圆心的连线的延长线。
2.圆的切线问题:
(1)求切线方程:先求出圆心与直线的距离,然后根据勾股定理求出切点坐标,再根据切点坐标和切线斜率求出切线方程。
(2)判别式:通过判别式判断直线与圆的位置关系,如果判别式
为负,则直线与圆没有交点,如果判别式为0,则直线与圆有一个交点,如果判别式为正,则直线与圆有两个交点。
3.圆的位置问题:
(1)大小关系:判断两个圆的半径大小关系,如果一个圆的半径大于另一个圆的半径,则它的面积也大于另一个圆的面积。
(2)位置关系:根据两个圆的圆心距离和两个圆的半径之和与差的大小关系,判断它们的位置关系,如重合、内含、外离、相交等。
以上是圆压轴题的归纳总结及解题方法,希望对同学们的学习有所帮助。
直线与圆的典型问题

当 r1 r2 d 时,两圆外切;
当 r1 r2 d 时,两圆外离;
当 r1 r2 d 时,两圆内切;
当 r1 r2 d 时,两圆内含.
(3)
弦长 l
具有的关系
r2
d2
l 2
2
二 典型例题
1.直线 3x-4y+6=0 与圆(x-2)2+(y-3)2=4 的位置关系是
13
132
+16,解得 c=10 或 c=-68.
89.自点 P(-6,7)发出的光线 l 射到 x 轴上的点 A 处,被 x 轴反
射,其反射光线所在直线与圆 x2+y2-8x-6y+21=0 相切于点 Q.
求光线 l 所在直线方程.
解:如图所示,作圆 x2+y2-8x-6y+21=0 关于 x 轴的对称圆 x2+y2-8x+6y+21=0,由几何光学原理,知直线 l 与圆 x2+y2-8x +6y+21=0 相切.
110.(本小题满分 12 分)已知圆 x2+y2=4 上一定点 A(2,0),B(1, 1)为圆内一点,P,Q 为圆上的动点.
(1)求线段 AP 中点的轨迹方程; (2)若∠PBQ=90°,求线段 PQ 中点的轨迹方程.
解:(1)设 AP 中点为 M(x,y), 由中点坐标公式可知,P 点坐标(2x-2,2y). 因为 P 点在圆 x2+y2=4 上,所以(2x-2)2+(2y)2=4. 故线段 AP 中点的轨迹方程为(x-1)2+y2=1. (2)设 PQ 的中点为 N(x,y). 在 Rt△PBQ 中,|PN|=|BN|, 设 O 为坐标原点,连接 ON(图略), 则 ON⊥PQ, 所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2, 所以 x2+y2+(x-1)2+(y-1)2=4. 故线段 PQ 中点的轨迹方程为 x2+y2-x-y-1=0.
压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06解析几何压轴题题型/考向一:直线与圆、直线与圆锥曲线题型/考向二:圆锥曲线的性质综合题型/考向三:圆锥曲线的综合应用一、直线与圆、直线与圆锥曲线热点一直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离.判断方法:(1)点线距离法(几何法).(2)判别式法:设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0(A2+B2≠0),+By+C=0,x-a)2+(y-b)2=r2,消去y,得到关于x的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.热点二中点弦问题已知A(x1,y1),B(x2,y2)为圆锥曲线E上两点,AB的中点C(x0,y0),直线AB 的斜率为k.(1)若椭圆E的方程为x2a2+y2b2=1(a>b>0),则k=-b2a2·x0y0;(2)若双曲线E的方程为x2a2-y2b2=1(a>0,b>0),则k=b2a2·x0y0;(3)若抛物线E的方程为y2=2px(p>0),则k=py0.热点三弦长问题已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2(y1+y2)2-4y1y2.热点四圆锥曲线的切线问题1.直线与圆锥曲线相切时,它们的方程组成的方程组消元后所得方程(二次项系数不为零)的判别式为零.2.椭圆x2a2+y2b2=1(a>b>0)在(x0,y0)处的切线方程为x0xa2+y0yb2=1;双曲线x2a2-y2b2=1(a>0,b>0)在(x0,y0)处的切线方程为x0xa2-y0yb2=1;抛物线y2=2px(p>0)在(x0,y0)处的切线方程为y0y=p(x+x0).热点五直线与圆锥曲线位置关系的应用直线与圆锥曲线位置关系的判定方法(1)联立直线的方程与圆锥曲线的方程.(2)消元得到关于x或y的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.二、圆锥曲线的性质综合热点一圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.热点二椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e=ca=1-b2a2(0<e<1),双曲线的离心率e=ca=1+b2a2(e>1).(2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围.2.与双曲线x2a2-y2b2=1(a>0,b>0)共渐近线的双曲线方程为x2a2-y2b2=λ(λ≠0).热点三抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α是弦AB的倾斜角,则(1)x1x2=p24,y1y2=-p2.(2)|AB|=x1+x2+p=2psin2α.(3)1|FA|+1|FB|=2p.(4)以线段AB为直径的圆与准线x=-p2相切.三、圆锥曲线的综合应用求解范围、最值问题的常见方法(1)利用判别式来构造不等关系.(2)利用已知参数的范围,在两个参数之间建立函数关系.(3)利用隐含或已知的不等关系建立不等式.(4)利用基本不等式.○热○点○题○型一直线与圆、直线与圆锥曲线一、单选题1.过圆224x y +=上的动点作圆221x y +=的两条切线,则连接两切点线段的长为()A .2B .1C 32D 3【答案】D【详解】令点P 是圆224x y +=上的动点,过点P 作圆221x y +=的两条切线,切点分别为A ,B ,如图,则OA PA ⊥,而1||||12OA OP ==,于是260APB OPA ∠=∠= ,又||||3PB PA ==,因此PAB 为正三角形,||||3AB PA ==,所以连接两切点线段的长为3.故选:D2.过抛物线:()的焦点的直线交抛物线于,两点,若2AF BF AB ⋅=,则抛物线C 的标准方程是()A .28y x=B .26y x=C .24y x=D .22y x=3.若直线0x y a +-=与曲线A .[12,12]-+B .(1C .[2,12)+D .(1【答案】B4.已知抛物线22y px =的焦点为4x =A .4B .42C .8D .【答案】D5.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过FC 交于A ,B 两点,D 为AB 的中点,且DM l ⊥于点M ,AB 的垂直平分线交x 轴于点N ,四边形DMFN的面积为,则p =()A.B .4C.D.因为30DN DF DFN ⊥∠=︒,,故223DF DE p ==,FN6.已知圆22:4C x y +=,直线l经过点3,02P ⎛⎫⎪⎝⎭与圆C 相交于A ,B 两点,且满足关系OM =(O 为坐标原点)的点M 也在圆C 上,则直线l 的斜率为()A .1B .1±C .D .±故选:D.7.已知椭圆()222210x y a b a b+=>>的上顶点为B ,斜率为32的直线l 交椭圆于M ,N 两点,若△BMN 的重心恰好为椭圆的右焦点F ,则椭圆的离心率为()A .22BC .12D8.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,直线y =与C的左、右两支分别交于A ,B 两点,若四边形12AF BF 为矩形,则C 的离心率为()AB .3C1D 1+二、多选题9.在平面直角坐标系xOy 中,已知圆()()()222:210C x y r r -+-=>,过原点O 的直线l 与圆C 交于A ,B 两点,则()A .当圆C 与y 轴相切,且直线l 的斜率为1时,2AB =B .当3r =时,存在l ,使得CA CB⊥C .若存在l ,使得ABC 的面积为4,则r 的最小值为D .若存在两条不同l ,使得2AB =,则r 的取值范围为()1,3故选:BC10.已知0mn ≠,曲线22122:1x y E m n +=,曲线22222:1x y E m n-=,直线:1x y l m n +=,则下列说法正确的是()A .当3n m =时,曲线1E 离心率为3B .当3n m =时,曲线2E 离心率为103C .直线l 与曲线2E 有且只有一个公共点D .存在正数m ,n ,使得曲线1E 截直线l11.已知抛物线:4C x y =,过焦点F 的直线l 与交于1122两点,1与F 关于原点对称,直线AB 和直线AE 的倾斜角分别是,αβ,则()A .cos tan 1αβ⋅>B .AEF BEF∠=∠C .90AEB ∠>︒D .π22βα-<【答案】BD【详解】作AD y ⊥轴于D ,作BC y ⊥轴于C ,则,DAF DAEαβ=∠=∠由()()1122,,,A x y B x y ,则()()120,,0,D y C y ,故选:BD.12.已知双曲线22:145x y C -=的左、右焦点分别为12,F F ,过点2F 的直线与双曲线C 的右支交于,A B 两点,且1AF AB ⊥,则下列结论正确的是()A .双曲线C 的渐近线方程为2y x =±B .若P 是双曲线C 上的动点,则满足25PF =的点P 共有两个C .12AF =D .1ABF 2○热○点○题○型二圆锥曲线的性质综合一、单选题1.设1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 的直线交双曲线右支于A ,B 两点,若1123AF BF =,且223AF BF =,则该双曲线的离心率为()A B .2C D .32.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,12F F =P为C 上一点,1PF 的中点为Q ,2PF Q △为等边三角形,则双曲线C 的方程为().A .2212y x -=B .2212x y -=C .2222133x y -=D .223318y x -=A .6B .3或C .D .或4.已知双曲线221(0,0)a b a b-=>>的实轴为4,抛物线22(0)y px p =>的准线过双曲线的左顶点,抛物线与双曲线的一个交点为(4,)P m ,则双曲线的渐近线方程为()A .y x =B .y =C .23y x =±D .4y x =±故选:A5.2022年卡塔尔世界杯会徽(如图)正视图近似伯努利双纽线.在平面直角坐标系xOy中,把到定点()1,0F a -,()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线.已知点00(,)P x y 是双纽线C 上一点,有如下说法:①双纽线C 关于原点O 中心对称;②022a a y -≤≤;③双纽线C 上满足12PF PF =的点P 有两个;④PO .其中所有正确的说法为()A .①②B .①③C .①②③D .①②④6.如图所示,1F ,2F 是双曲线22:1(0,0)C a b a b-=>>的左、右焦点,双曲线C 的右支上存在一点B 满足12BF BF ⊥,1BF 与双曲线C 的左支的交点A 平分线段1BF ,则双曲线C 的离心率为()A .3B .C D7.已知椭圆1和双曲线2的焦点相同,记左、右焦点分别为1,2,椭圆和双曲线的离心率分别为1e ,2e ,设点P 为1C 与2C 在第一象限内的公共点,且满足12PF k PF =,若1211e e k =-,则k 的值为()A .3B .4C .5D .6个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点.设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若从椭圆右焦点2F 发出的光线经过椭圆上的点A 和点B 反射后,满足AB AD ⊥,且3cos 5ABC ∠=,则该椭圆的离心率为().A .12B 22C D则113cos 5AB ABF BF ∠==,sin ABF ∠可设3AB k =,14AF k =,1BF =由1122AB AF BF AF BF AF ++=++二、多选题9.已知曲线E :221mx ny -=,则()A .当0mn >时,E 是双曲线,其渐近线方程为y =B .当0n m ->>时,E 是椭圆,其离心率为eC .当0m n =->时,E 是圆,其圆心为()0,0D .当0m ≠,0n =时,E是两条直线x =10.2022年卡塔尔世界杯会徽(如图)的正视图可以近似看成双纽线,在平面直角坐标系中,把到定点()1,0F a -和()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线,已知点()00,P x y 是双纽线C 上一点,则下列说法正确的是()A .若12F PF θ∠=,则12F PF △的面积为sin 2aθB .022a a y -≤≤C .双纽线C 关于原点O 对称D .双纽线上C 满足12PF PF =的点P 有三个【答案】BC11.已知椭圆()2:1039C b b+=<<的左、右焦点分别为1F 、2F ,点2M在椭圆内部,点N 在椭圆上,椭圆C 的离心率为e ,则以下说法正确的是()A .离心率e 的取值范围为0,3⎛ ⎝⎭B .存在点N ,使得124NF NF =C .当6e =时,1NF NM +的最大值为62+D .1211NF NF +的最小值为1如上图示,当且仅当2,,M N F12.已知P ,Q 是双曲线221x y a b-=上关于原点对称的两点,过点P 作PM x ⊥轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A .k 的取值范围是b bk a a-<<且0k ≠B .直线MN 的斜率为2kC .直线PN 的斜率为222b kaD .直线PN 与直线QN 的斜率之和的最小值为ba2222PN QNb k b k k ka a +=+≥,当且仅当但PN QN k k ≠,所以等号无法取得,选项○热○点○题○型三圆锥曲线的综合应用1.已知椭圆()2222:10x y C a b a b+=>>2倍,且右焦点为()1,0F .(1)求椭圆C 的标准方程;(2)直线():2l y k x =+交椭圆C 于A ,B 两点,若线段AB 中点的横坐标为23-.求直线l 的方程.【详解】(1)由椭圆C 的长轴长是短轴长的2倍,可得2a b =.所以()2222bb c =+.又()1,0F ,所以()2221bb =+,解得1b =.所以2a =.所以椭圆C 的标准方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,由()22122x y y k x ⎧+=⎪⎨⎪=+⎩,得()2222218820k x k x k +++-=.则2122821k x x k -+=+,21228221k x x k -=+.因为线段AB 中点的横坐标为23-,所以2122422213x x k k +-==-+.2.已知抛物线:2=2的焦点为(1,0),过的直线交抛物线于,两点,直线AO,BO分别与直线m:x=-2相交于M,N两点.(1)求抛物线C的方程;(2)求证:△ABO与△MNO的面积之比为定值.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点F 到其中一条渐近线的距离(1)求双曲线C 的标准方程;(2)(2)过右焦点F 作直线AB 交双曲线于,A B 两点,过点A 作直线1:2l x =的垂线,垂足为M ,求证直线MB 过定点.4.如图,平面直角坐标系中,直线l 与轴的正半轴及轴的负半轴分别相交于两点,与椭圆22:143x y E +=相交于,A M 两点(其中M 在第一象限),且,QP PM N = 与M关于x 轴对称,延长NP 交㮋圆于点B .(1)设直线,AM BN 的斜率分别为12,k k ,证明:12k k 为定值;(2)求直线AB 的斜率的最小值.5.已知双曲线C :221a b-=(0a >,0b >)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点()0,0O ,()0,2M ,动直线l :y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.。
专题15 二次函数中的圆和直线相切问题(原卷版)

专题15 二次函数中的圆和直线相切问题【模型展示】圆与抛物线以及与坐标系相交,根据抛物线的解析式可求交点坐标,根据交点可求三角形的边长,由于圆的位置不同,三角形的形状也不同。
再根据三角形的形状,再解决其它问题。
【精典讲解】1、如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A,B两点.(1)则点A,B,C的坐标分别是A (2,0),B (8,0),C (0,4);(2)设经过A,B两点的抛物线解析式为y=14(x-5)2+k,它的顶点为E,求证:直线EA与⊙M相切;(3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使⊙PBC是等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.2、如图,已知抛物线y=-12(x2-7x+6)的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:y=a(x-h)2+k(a≠0),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.3、已知二次函数y =-x 2+bx +c +1.(1)当b =1时,求这个二次函数的对称轴的方程;(2)若c =-14b 2-2b ,问:b 为何值时,二次函数的图象与x 轴相切;(3)如图所示,若二次函数的图象与x 轴交于点A(x 1,0),B(x 2,0),且x 1<x 2,与y 轴的正半轴交于点M ,以AB 为直径的半圆恰好经过点M ,二次函数的对称轴l 与x 轴,直线BM ,直线AM 分别相交于点D ,E ,F ,且满足DE EF =13,求二次函数的表达式.4、如图所示,已知抛物线y =ax 2+bx +c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2).直线y =12x+1与抛物线交于B ,D 两点,以BD 为直径作圆,圆心为点C ,⊙C 与直线m 交于对称轴右侧的点M(t ,1).直线m 上每一点的纵坐标都等于1.(1)求抛物线的表达式; (2)证明:⊙C 与x 轴相切;(3)过点B 作BE⊙m ,垂足为E ,再过点D 作DF⊙m ,垂足为F.求BE⊙MF 的值.5、已知抛物线y =x 2+mx -2m -4(m >0).(1)证明:该抛物线与x 轴总有两个不同的交点.(2)设该抛物线与x 轴的两个交点分别为A ,B (点A 在点B 的右侧),与y 轴交于点C ,A ,B ,C 三点都在⊙P 上.①试判断:不论m 取任何正数,⊙P 是否经过y 轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C 关于直线x =-m2的对称点为点E ,点D (0,1),连结BE ,BD ,DE ,△BDE 的周长记为l ,⊙P 的半径记为r ,求lr的值.设BD =a ,BE =2a ,则DE =5a ,∴l r =3a +5a 5a2=10+655.6、在平面直角坐标系中,二次函数y =ax 2+53x +c 的图象经过点C (0,2)和点D (4,-2),点E 是直线y =-13x +2与二次函数图象在第一象限内的交点. (1)求二次函数的表达式及点E 的坐标;(2)如图1,若点M是二次函数图象上的点,且在直线CE的上方,连结MC,OE,ME,求四边形COEM 面积的最大值及此时点M的坐标;(3)如图2,经过A,B,C三点的圆交y轴于点F,求点F的坐标.7、若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的同一点,且抛物线L的顶点在直线l上,则称次抛物线L与直线l具有“一带一路”关系,并且将直线l叫做抛物线L的“路线”,抛物线L叫做直线l的“带线”.(1)若“路线”l的表达式为y=2x﹣4,它的“带线”L的顶点的横坐标为﹣1,求“带线”L的表达式;(2)如果抛物线y=mx2﹣2mx+m﹣1与直线y=nx+1具有“一带一路”关系,求m,n的值;(3)设(2)中的“带线”L与它的“路线”l在y轴上的交点为A.已知点P为“带线”L上的点,当以点P为圆心的圆与“路线”l相切于点A时,求出点P的坐标.8、如图⊙已知抛物线y=ax2﹣3ax﹣4a(a<0)的图象与x轴交于A、B两点(A在B的左侧),与y的正半轴交于点C,连结BC,二次函数的对称轴与x轴的交点为E.(1)抛物线的对称轴与x轴的交点E坐标为_____,点A的坐标为_____;(2)若以E为圆心的圆与y轴和直线BC都相切,试求出抛物线的解析式;(3)在(2)的条件下,如图⊙Q (m ,0)是x 的正半轴上一点,过点Q 作y 轴的平行线,与直线BC 交于点M ,与抛物线交于点N ,连结CN ,将⊙CMN 沿CN 翻折,M 的对应点为M′.在图⊙中探究:是否存在点Q ,使得M′恰好落在y 轴上?若存在,请求出Q 的坐标;若不存在,请说明理由.9、如图,在平面直角坐标系xOy 中,经过C (1,1)的抛物线y =ax 2+bx +c (a >0)顶点为M ,与x 轴正半轴交于A ,B 两点.(1)如图1,连接OC ,将线段OC 绕点O 逆时针旋转使得C 落在y 轴的正半轴上,求线段OC 过的面积;(2)如图2,延长线段OC 至N ,使得ON OC ,若⊙ONA =⊙OBN 且tan⊙BAM ,求抛物线的解析式;(3)如图3,已知以直线x =52为对称轴的抛物线y =ax 2+bx +c 交y 轴于(0,5),交直线l :y =kx +m (k >0)于C ,D 两点,若在x 轴上有且仅有一点P ,使⊙CPD =90°,求k 的值.10、如图1,抛物线2133=++y x x 与y 轴交于点C ,与x 轴交于点A 、B (点A 在点B 左边),O 为坐标原点.点D 是直线BC 上方抛物线上的一个动点,过点D 作DE ⊙x 轴交直线BC 于点E .点P 为⊙CAB 角平分线上的一动点,过点P 作PQ ⊙BC 于点H ,交x 轴于点Q ;点F 是直线BC 上的一个动点.(1)当线段DE 的长度最大时,求DF +FQ +12PQ 的最小值. (2)如图2,将⊙BOC 沿BC 边所在直线翻折,得到⊙BOC ′,点M 为直线BO ′上一动点,将⊙AOC 绕点O 顺时针旋转α度(0°<α<180°)得到⊙A ′OC ′,当直线A ′C ′,直线BO ′,直线OM 围成的图形是等腰直角三角形时,直接写出该等腰直角三角形的面积.11、如图,抛物线y =﹣12x 2+bx+c 与x 轴交于A 、B (A 左B 右),与y 轴交于C ,直线y =﹣x+5经过点B 、C .(1)求抛物线的解析式;(2)点P 为第二象限抛物线上一点,设点P 横坐标为m ,点P 到直线BC 的距离为d ,求d 与m 的函数解析式;(3)在(2)的条件下,若⊙PCB+⊙POB =180°,求d 的值.12、在平面直角坐标系xOy 中,对“隔离直线”给出如下定义:点(,)P x m 是图形1G 上的任意一点,点(,)Q x n 是图形2G 上的任意一点,若存在直线l :(0)y kx b k =+≠满足m kx b ≤+且n kx b ≥+,则称直线l :(0)y kx b k =+≠是图形1G 与2G 的“隔离直线”,如图1,直线l :2y x =--是函数4(0)y x x=<的图像与正方形OABC 的一条“隔离直线”.(1)在直线⊙11y x =--,⊙231y x =+,⊙34y x =-+,⊙42y x =-中,是图1函数4(0)y x x=<的图像与正方形OABC 的“隔离直线”的为 .(2)如图2,第一象限的等腰直角三角形EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是(2,1),⊙OEDF ∆与⊙O 的“隔离直线”?若存在,求出此“隔离直线”的表达式:若不存在,请说明理由;(3)正方形1111D C B A 的一边在y 轴上,其它三边都在y 轴的左侧,点(1,)M t -是此正方形的中心,若存在直线2y x b =-+是函数223(40)y x x x =+--≤≤的图像与正方形1111D C B A 的“隔离直线”,请直接写出t 的取值范围.13、如图,已知直角坐标平面上的△ABC ,AC =CB ,∠ACB =90∘,且A(−1, 0),B(m, n),C(3, 0).若抛物线y =ax 2+bx −3经过A 、C 两点.(1)求a 、b 的值;(2)将抛物线向上平移若干个单位得到的新抛物线恰好经过点B,求新抛物线的解析式;(3)设(2)中的新抛物的顶点P点,Q为新抛物线上P点至B点之间的一点,以点Q为圆心画图,当⊙Q与x轴和直线BC都相切时,联结PQ、BQ,求四边形ABQP的面积.x﹣1与x轴,y轴的交点分别为A、B,以x=﹣1为对称轴的抛物14、如图,在直角坐标系中,直线y=﹣13线y=x2+bx+c与x轴分别交于点A、C,直线x=﹣1与x轴交于点D.(1)求抛物线的解析式;(2)在线段AB上是否存在一点P,使以A,D,P为顶点的三角形与⊙AOB相似?若存在,求出点P的坐标;如果不存在,请说明理由;(3)若点Q在第三象限内,且tan⊙AQD=2,线段CQ是否存在最小值,如果存在直接写出最小值;如果不存在,请说明理由.15、如图,抛物线y=ax2+bx+6与x轴交于点A(6,0),B(﹣1,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点M为该抛物线对称轴上一点,当CM+BM最小时,求点M的坐标.(3)抛物线上是否存在点P,使⊙BCP为等腰三角形?若存在,有几个?并请在图中画出所有符合条件的点P,(保留作图痕迹);若不存在,说明理由.。
2024年中考数学压轴题型(安徽专用)专题07解答题压轴题(圆的综合)(学生版)

专题07解答压轴题(圆的综合)通用的解题思路:一、切割线定理当出现圆中一条弦和一条切线(或另一条弦)所在直线交于圆外一点时,可利用相似三角形解决线段相关问题。
二、解决三角形外接圆的问题做这类题时可通过连接圆心(外心)和三角形的顶点,或过圆心(外心)作边的垂线,进而应用圆周角定理、垂径定理及勾股定理解决问题。
三、证切线的方法1、已知半径证垂直;2、已知垂直证半径。
1.(2023-安徽•中考真题)已知四边形班CD内接于。
,对角线如是。
的直径.⑴如图1,连接OA,C4,若求证;04平分乙BCD;(2)如图2,E为。
内一点,满足AE±BC,CE±AB,若BD=30AE=3,求弦BC的长.2.(2022.安徽.中考真题)已知AB^jQO的直径,。
为。
上一点,D为BA的延长线上一点,连接CQ.c c图1上AB图2⑴如图1,若COLAB,20=30。
,0A=L求AQ的长;(2)如图2,若OC与。
0相切,E为OA上一点,且ZACD=ZACE,求证:CE±AB.3.(2021.安徽.中考真题)如图,圆0中两条互相垂直的弦AB,CQ交于点E.(1)M是CD的中点,(W=3,CD=12,求圆。
的半径长;(2)点尸在CQ上,>CE=EF,求证:AF1BD.1.(2024-安徽六安•一模)如图,4ABC内接于O。
,是。
的直径,0D1AB交O。
于点E,交AC于点KDF=DC.D\R(1)求证:CD是。
的切线;(2)若。
F=而,BC=6,求DE的长.2.(2024.安徽•一模)如图,已知点尸为。
外一点,点A为。
上一点,直线P4与。
的另一个交点为点B,AC是。
的直径,APAC的平分线刀。
交。
于点Q,连接CD并延长交直线霹于点M,连接OQ.(1)求证:OD||BM;(2)若tan ZACD-,。
的直径为4,求刀B的长度.3.(2024-安徽合肥•二模)如图,AB为。
的直径,的和吨是。
的弦,连接AD f CD.P(1)若点C为AP的中点,且PC=PD,求ZB的度数;⑵若点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1.(2011•龙岩)如图,已知抛物线与x轴相交于A、B两点,其对称轴为直线x=2,且与x轴交于点D,AO=1.
(1)填空:b= ,c= ,点B的坐标为( 5 ,0 ):
(2)若线段BC的垂直平分线EF交BC于点E,交x轴于点F.求FC的长;(3)探究:在抛物线的对称轴上是否存在点P,使⊙P与x轴、直线BC都相切?若存在,请求出点P的坐标;若不存在,请说明理由.
例2、在平面直角坐标系XOY中,一次函数y=x+3的图象是直线l
1,l
1
与x轴、
y轴分别相交于A、B两点,直线l
2
过点C(a,0)且与直线l1垂直,其中a>0,点P、Q同时从A点出发,其中点P沿射线AB运动,速度为每秒4个单位;点Q 沿射线AO运动,速度为每秒5个单位。
(1)写出A点的坐标和AB的长;
(2)当点P、Q运动了多少秒时,以点Q为圆心,PQ为半径的⊙Q与直线l
2
、y 轴都相切,求此时a的值。
例3、已知直线y=3x-6 3与x轴、y轴分别相交于A、B两点,点C在射
线BA上以每秒3个单位的速度运动,以C点为圆心,半径为1作⊙C.点P以每秒2个单位的速度在线段OA上来回运动,过点P作直线l⊥x轴.
(1)填空:A点坐标为(____,____),B点坐标为(____,____);
(2)若点C与点P同时从点B、点O开始运动,求直线l与⊙C第二次相切时点P的坐标;
(3)在整个运动过程中,直线l与⊙C有交点的时间共有多少秒?
例4、如图,在平面直角坐标系中,直线l:y=2x+b与x轴交于点A(-4,0),与y轴交于点B.点P是y轴上的一个动点,以P为圆心,3为半径作⊙P.(1)若PA=PB,试判断⊙P与直线l的位置关系,并说明理由;
(2)当⊙P与直线l相切时,求点P与原点O间的距离;
(3)如果以⊙P与直线l的两个交点和圆心P为顶点的三角形是等边三角形,求点P的坐标.
例5、已知二次函数的图象经过点A(-3,6),并与x轴交于点B(-1,0)和点C,顶点为P.
(1)求这个二次函数的解析式,并在下面的坐标系中画出该二次函数的图象;(2)设D为线段OC上的一点,满足∠DPC=∠BAC,求点D的坐标;
(3)在x轴上是否存在一点M,使以M为圆心的圆与AC、PC所在的直线及y轴都相切?如果存在,请求出点M的坐标;若不存在,请说明理由.
例6、如图,在平行四边形ABCD 中,AB 在x 轴上,D 点y 轴上,∠C =60°,BC =6,B 点坐标为(4,0).点M 是边AD 上一点,且DM : AD =1 : 3.点E 、F 分别从A 、C 同时出发,以1个单位/秒的速度分别沿AB 、CB 向点B 运动,当点F 运动到点B 时,点E 随之停止运动,EM 、CD 的延长线交于点P ,FP 交AD 于
点Q .⊙E 的半径为 25,设运动时间为t 秒. (1)求直线BC 的解析式;
(2)当t 为何值时,PF ⊥AD ?
(3)在(2)的条件下,⊙E 与直线PF 是否相切?如果相切,加以证明,并求出切点的坐标;如果不相切,说明理由.
例7、如图,已知△ABC 中,AB=AC=5,BC=4,点O 在BC 边上运动,以O 为圆心,OA
为半径的圆与边AB 交于点D (点A 除外),设OB=x ,AD=y .
(1)求sin ∠ABC 的值;
(2)求y 关于x 的函数解析式,并写出函数的定义域;
(3)当点O 在BC 边上运动时,⊙O 是否可能与以C 为圆心,4
1BC 长为半径的⊙C 相切?如果可能,请求出两圆相切时x 的值;如果不可能,请说明理由.
例8、如图1,已知sin ∠ABC =3
1,⊙O 的半径为2,圆心O 在射线BC 上移动,且⊙O 与射线BA 相交于E 、F 两点,
(1)设BO 的长为x , ①求x 的取值范围; ②设EF 的长为y ,请写出y 关于x 的函数解析式;
(2)若EF=32,点P 在射线BC 上,以P 为圆心作圆,使得⊙P 同时与⊙O 和射线 BA 相切,求所有满足条件的⊙P 的半径。