一元一次方程复习资料讲解

合集下载

(完整)一元一次方程复习讲义

(完整)一元一次方程复习讲义

一元一次方程复习讲义1.方程的有关概念2.等式的基本性质3.解一元一次方程的基本步骤:4.应用一元一次方程解决实际问题的一般步骤(1)审 (2)找 (3)设 (4)列 (5)解 (6)验 (7)答1.下列方程是一元一次方程的有哪些? x+2y=9 x 2-3x=111=x x x 3121=- 2x=1 3x –5 3+7=10 x 2+x=12、解下列方程:⑴ 103.02.017.07.0=--x x ⑵16110312=+-+x x⑶03433221=-+++++x x x ⑷2362132432⎪⎭⎫ ⎝⎛+--=+--x x x x x(5)|5x 一2|=33、8=x 是方程a x x 2433+=- 的解,又是方程 ()[]b x b x x x +=⎥⎦⎤⎢⎣⎡---913131的解,求 b4、小张在解方程1523=-x a (x 为未知数)时,误将 - 2x 看成 2x 得到的解为3=x ,请你求出原来方程的解5、已知关于x 的方程 ()()x n x m 121232+=-+无穷多解,求m 、n1、(本题7分)按要求完成下面题目:323221+-=--x x x解:去分母,得424136+-=+-x x x ……① 即 8213+-=+-x x ……②移项,得 1823-=+-x x ……③合并同类项,得 7=-x ……④∴ 7-=x ……⑤上述解方程的过程中,是否有错误?答:__________;如果有错误,则错在__________步。

如果上述解方程有错误,请你给出正确的解题过程:2、(本题7分)请阅读下列材料:让我们来规定一种运算:bcad dc ba -=,例如:5432=2×5-3×4=10-12=-2. 按照这种运算的规定,若2121x x-=23,试用方程的知识求x 的值。

3、检修一处住宅区的自来水管,甲单独完成需要14天,乙单独完成需18天,丙单独完成需要12天。

一元一次方程知识点总结

一元一次方程知识点总结
一元一次方程知识点总结
一、等式与方程 .等式:
(1)定义:含有等号的式子叫做等式.
(2)性质: ①等式两边同时加上(或减去)同一个整式,等式的值不变. 若那么 ②等式两边同时乘以一个数或除以同一个不为0的整式,等式的
值不变. 若那么有或()
③对称性:若,则. ④传递性:若,则.
(3)拓展: ①等式两边取相反数,结果仍相等. 如果,那么 ②等式两边不等于0时,两边取倒数,结果仍相等. 如果,那么 ③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的 性质.
(5)列一元一次方程解应用题的基本步骤及注意点: ①“审” 要沉着冷静,耐下心去,慢读细读多读,透彻理解题意.即弄清已知
量、未知量及其相互关系. ②“设” 设一个恰当的未知数,若有单位一定加单位,表示多项
式加单位括号. ③“列” 根据等量关系列出方程,即所列的方程应满足两边的量要相等;方
程两边的代数式的单位统一,用题目中的原数;题中条件应充 分利用,不能漏也不能将一个条件重复利用,重复用一个条件 会得到恒等式,解不出来. ④“解” 解出方程,一定在草纸上一步步认真计算,先化简往往 会简化计算. ⑤“验” 检验两方面,一是解得是否正确,用代入法;二是是 否符合实际情况.
根据是等式的性质①. Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边
对含未知数的项合并,右边对常数项合并,方便求解.
(4)解一元一次方程的一般步骤及根据: ①去分母——等式的性质② ②去括号——分配律 ③移项——等式的性质① ④合并——合并同类项法则 ⑤系数化为1——等式的性质② ⑥检验——把方程的解分别代入方程的左右边看求得的值是否
路程=时间×速度,时间=,速度=.
(注意单位:路程——米、千米;时间——秒、分、时;速度

一元一次方程(复习)

一元一次方程(复习)
第三章 一元一次方程
小结与复习
要点梳理
考点讲练
课堂小结
课后作业
目标导学1
1.解一元一次方程的一般步骤:
(1) 去分母:方程两边都乘各分母的最小公倍数, 别漏乘.
(2) 去括号:注意括号前的系数与符号. (3) 移项:把含有未知数的项移到方程的左边,常 . 数项移到方程右边,移项注意要改变符号 (4) 合并同类项:把方程化成 ax = b (a≠0)的形式.
(5) 系数化为1:方程两边同除以 x 的系数,得 x=m 的形式.
2. 列方程解决实际问题的一般步骤: 审:审清题意,分清题中的已知量、未知量. 设:设未知数,设其中某个未知量为x. 列:根据题意寻找等量关系列方程. 解:解方程. 验:检验方程的解是否符合题意. 答:写出答案 (包括单位).
审题是基础,找 等量关系是关键.
(2) 工程问题中基本量之间的关系:
① 工作量 = 工作效率×工作时间; ② 合作的工作效率 = 工作效率之和; ③ 工作总量 = 各部分工作量之和 = 合作的工作效
率×工作时间; ④ 在没有具体数值的情况下,通常把工作总量看
做1.
例2 一项工作,甲单独做8天完成,乙单独做12天完 成,丙单独做24天完成.现甲、乙合作3天后,甲 因有事离去,由乙、丙合作,则乙、丙还要几天才 能完成这项工作?
10
解:设最多可以打 x 折,根据题意得
5001 40% x 500112%.
10 解得 x = 8.
答:广告上可写出最多打 8 折.
针对训练
7. 一家商店将某种商品按进价提高40%后标价,节假 日期间又以标价打八折销售,结果这种商品每件 仍可获利24元,问这件商品的进价是多少元?
解:设这件商品的进价是 x 元,根据题意得

一元一次方程(知识点完整版)

一元一次方程(知识点完整版)

第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程.注意未知数的理解,n m x ,,等,都可以作为未知数。

题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次); ③这样的整式方程叫做一元一次方程。

题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0. 例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等.即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等.即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b,那么a —c=b-cB 、如果a=b,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解例7、解方程284=-练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。

清单03一元一次方程(五大考点梳理题型解读解决实际问题12种题型)(原卷版)

清单03一元一次方程(五大考点梳理题型解读解决实际问题12种题型)(原卷版)

清单03 一元一次方程(五大考点梳理+题型解读+解决实际问题12种题型)【知识导图】【知识清单】考点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.【例1】(2022秋•颍州区期末)下列各式中,是方程的个数为()①x=0;②3x﹣5=2x+1;③2x+6;④x﹣y=0;⑤=5y+3;⑥a2+a﹣6=0.A.2个B.3个C.5个D.4个2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.细节剖析:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.【例2】(2022秋•汉台区期末)已知(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则()A.m=2B.m=﹣3C.m=±3D.m=13.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.【例3】(2023春•蒸湘区校级期末)若x=﹣1是方程2x+m﹣6=0的解,则m的值是()A.﹣4B.4C.﹣8D.8【变式】(2022秋•宁阳县期末)若一元一次方程ax+b=0的解是x=1,则a,b的关系为()A.相等B.互为相反数C.互为倒数D.互为负倒数4.解方程:求方程的解的过程叫做解方程.考点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.【例4】(2022秋•雅安期末)下列等式变形错误的是()A.若,则x﹣1=2xB.若x﹣1=3,则x=4C.若x﹣3=y﹣3,则x﹣y=0D.若3x+4=2x,则3x﹣2x=﹣42.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.考点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bxa(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.【例5】(2022秋•东宝区期末)解方程:(1)4﹣2x=﹣3(2﹣x);(2).考点四、列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)【例6】(2022秋•汇川区期末)如图,已知数轴上有A,B两点,它们分别表示数a,b,且(a+6)2+|b﹣12|=0.(1)填空:a=,b=;(2)点C以2个单位长度/秒的速度从点A向点B运动,到达点B后停止运动.若点D为AC中点,点E为BC中点,在点C运动过程中,线段DE的长度是否发生改变?若不变,求线段DE的长度,若变化,请说明原因;(3)在(2)的条件下,点P以1个单位长度/秒的速度同时从原点O向点B运动,P点到达B点后停止运动,问点P运动多少秒后,点P与点C相距2个单位长度?【例7】(2022秋•秦淮区期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(元/千瓦时)不超过150千瓦时的部分a 超过150千瓦时,但不超过300千瓦时的部分b 超过300千瓦时的部分a +0.32015年5月份,该市居民甲用电100千瓦时,交费60元;居民乙用电200千瓦时,交费125元. (1)求上表中a 、b 的值;(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费285元?【例8】.(2022秋•常州期末)列方程解决问题:小华和妈妈一起玩成语竞猜游戏,商定如下规则:小华猜中1个成语得2分,妈妈猜中1个成语得1分,结果两人一共猜中了30个成语,得分恰好相等.请问小华猜中了几个成语?考点五、用一元一次方程解决实际问题的常见类型 1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+ 7.数字问题;8.分配问题; 9.比赛积分问题;10.水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度水流速度).题型1.配套问题1.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?2.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?题型2.销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。

第五章 一元一次方程复习-

第五章 一元一次方程复习-

初一数学复习资料5 第五章:一元一次方程知识要求:1、能根据具体问题的数量关系,列出方程、建立模型、解方程和运用方程来解决实际问题。

2、了解一元一次方程及其有关概念,会解一元一次方程(数字系数)。

3、能一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力。

知识重点:掌握等式的基本性质、方程的概念、会解一元一次方程及应用一元一次方程来解应用题。

知识难点:灵活运用求解一元一次方程的步骤,应用一元一次方程来解应用题。

考点:解方程和运用方程解应用题是考试的重点内容。

知识点:一、方程的有关概念 1、方程的概念:(1)含有未知数的等式叫方程。

(2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程。

2、等式的基本性质:(1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。

若a=b ,则a+c=b+c 或a – c = b – c 。

(2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式。

若a=b ,则ac=bc 或cb ca(3)对称性:等式的左右两边交换位置,结果仍是等式。

若a=b ,则b=a 。

(4)传递性:如果a=b ,且b=c ,那么a=c ,这一性质叫等量代换。

二、解方程1、移项的有关概念:把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项。

这个法则是根据等式的性质1推出来的,是解方程的依据。

要明白移项就是根据解方程变形的需要,把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号。

二、列方程解应用题1、列方程解应用题的一般步骤:(1)将实际问题抽象成数学问题;(2)分析问题中的已知量和未知量,找出等量关系; (3)设未知数,列出方程; (4)解方程; (5)检验并作答。

2、一些实际问题中的规律和等量关系:(1)日历上数字排列的规律是:横行每整行排列7个连续的数,竖列中,下面的数比上面的数大7。

一元一次方程知识点及经典例题

一元一次方程知识点及经典例题

一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。

要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果,那么;(c 为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。

方程的右边没有变化,这要与“去分母”区别开。

2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。

初中一元一次方程知识点归纳

初中一元一次方程知识点归纳

初中一元一次方程知识点归纳
初中一元一次方程知识点归纳如下:
1. 一元一次方程的定义:一元一次方程是指方程中只有一个变量,且变量的最高次数为1的方程。

2. 方程的基本形式:一元一次方程的基本形式为ax+b=0,其
中a和b是已知实数,且a≠0。

3. 解方程的步骤:解一元一次方程的步骤主要包括去括号、合并同类项、移项、合并同类项、化简等。

4. 解方程的性质:一元一次方程的解具有唯一性,即要么无解,要么有唯一解。

5. 方程的解表示形式:一元一次方程的解有三种表示形式,即唯一解、无解和无穷多解。

6. 解方程的方法:解一元一次方程的方法主要包括正向代入、逆向代入、等式交换等。

7. 使用方程解实际问题:一元一次方程可以应用于实际问题中,通过建立方程并解方程可以求解实际问题。

8. 方程的应用领域:一元一次方程在代数、几何、物理等领域中都有广泛的应用。

9. 方程的相关概念:一元一次方程与方程的根、方程的系数、方程的次数等相关概念有着密切的联系。

10. 方程的扩展:一元一次方程是一元线性方程的特殊情况,线性方程还有更高次数的形式,如二次方程、三次方程等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(3)1.1a-10=210; (4)6 0 - x = 2 .
55
三、求解方程 体会化归
问题6: (1)解以x为未知数的方程,就是把方程逐步转化
为( x=a )的形式.
(2)解一元一次方程的一般步骤是什么?
①去分母;
②去括号;
解一元一次方程时,
③移项;
要根据方程的具体特点,
④合并同类项;
灵活选择解答步骤.
问题5:列方程表示下列语句所表示的等量关系: (1)某地2011年9月6日的温差是10 ℃,这天最高气
温是t ℃,最低气温是 2 t ℃;
3
(2)七年级学生人数为n,其中男生占45%,女生有 100人;
(3)一种商品每件的进价为a元,售价为进价的1.1 倍,现每件又降价10元,现售价为每件210元;
(4)在5天中,小华共植树60棵,小明共植树x (x<60)棵,平均每天小华比小明多种2棵树.
二、列出方程 表示等量
问题5:列方程表示下列语句所表示的等量关系: (1)某地2011年9月6日的温差是10 ℃,这天最高气
温是t ℃,最低气温是 2 t ℃;
3
(2)七年级学生人数为n,其中男生占45%,女生有 100人;
一、基础回顾 加深理解
问题4:填空并说明根据等式的第几条性质 怎样进行的变形. (1)如果a=b+5,那么a-2=( b+3 );
根据等式的性质1,两边减2. (2)如果x=2y+1,那么2x-4=( 4y-2 ).
先根据等式的性质2,两边乘2; 再根据等式的性质1,两边减4.
二、列出方程表示等量关系
学习难点: 分析实际问题中的数量关系并用一元一次方程表示其中学习
的相等关系.
一、基础回顾 加深理解
问题1: (1)什么叫做方程?请你举出一个例子.
(2)什么叫做一元一次方程?一元一次方程有哪几 个特征?请你举出一个一元一次方程的例子.
(3)什么叫做方程的解?
(4)什么叫做解方程?
一、基础回顾 加深理解
问题2:
(1)下列各式中,是一元一次方程的是( C ).
(A)2x-3y=7 (B)x2-4x=5 (C)2y+7=3y-9 (D)xy32
(2)下列方程中,以x=2为解的方程是( D ).
(A)x+2=0
(B)2x-1=0
(C)2x+4=6+3x (D)2x-4=6-3x
一、基础回顾 加深理解
问题3: (1)什么叫做等式? (2)请你叙述等式的两条性质,并用字母表示.
解:(1)t- 2 t=10;
3
(2)45%n+100=n;
二、列出方程 表示等量
问题5:列方程表示下列语句所表示的等量关系: (3)一种商品每件的进价为a元,售价为进价的1.1
倍,现每件又降价10元,现售价为每件210元; (4)在5天中,小华共植树60棵,小明共植树x
(x<60)棵,平均每天小华比小明多种2棵树.
(1)设未知数; (2)列方程; (3)解方程; (4)检验; (5)写答案.
四、实际应用 方程建模
实际问题 设未知数·列方程
实际问题
检验
的答案
数学问题 (一元一次方程)
一般步骤: 解 去分母 方 去括号 程 移项
合并同类项 系数化为1
数学问题的解 (x=a)
四、实际应用 方程建模
问题9:运动场的跑道一圈长400 m.小健练习骑自 行车,平均每分骑350 m;小康练习跑步,平均每 分跑250 m.两人从同一处同时反向出发,经过多 少时间首次相遇?又经过多少时间再次相遇? 解:设经过x分首次相遇,
350x-250x=400. 合并同类项,得 100x=400.
系数化为1,得 x=4.
答:经过4分首次相遇.
五、课堂小结 布置作业
通过本节课的学习,你有哪些收获?
作业:
(1)基础作业:教科书复习题3中第2(1)(2)(4), 5,7题; (2)提高作业:教科书复习题3中第9,10题。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
速度(m/min) 时间(min) 路程(m)
小健
350
x
350x
小康
250
x
250x
相等关系: 小健的路程+小康的路程=一圈的路程. 列方程: 350x+250x=400.
四、实际应用 方程建模
问题9:运动场的跑道一圈长400 m.小健练习骑自 行车,平均每分骑350 m;小康练习跑步,平均每 分跑250 m.两人从同一处同时反向出发,经过多 少时间首次相遇?又经过多少时间再次相遇?
(2)1(3x-6)=2 x-3 .
6
5
解:(2)去分母,得 5(3x-6)=12x-90; 去括号,得 15x-30=12x-90; 移项,得 15x-12x=-90+30; 合并同类项,得 3x=-60; 系数化为1,得 x=-20.
四、实际应用 方程建模
问题8:列一元一次方程解决实际问题一般 要经过哪几个步骤?
解:设经过x分首次相遇。
350x+250x=400.
合并同类项,得 600x=400.
系数化为1,得
x=
2 3
.
答:经过 2 分首次相遇,又经过 2 分再次相遇.
3
3
四、实际应用 方程建模
问题10:运动场的跑道一圈长400 m.小健练习骑自 行车,平均每分骑350 m;小康练习跑步,平均每 分跑250 m.两人从同一处同时同向出发,经过多 少时间首次相遇? 解:设经过x分首次相遇,
加深对一元一次方程及其相关概念的理解. 2.理解解一元一次方程的一般步骤,熟练地解一元一次方
程. 3.以方程为工具,分析、解决实际问题. 体会列方程中蕴涵
的 “数学建模思想”和解方程中蕴涵的“化归思想”.
学习重点: 熟练解一元一次方程、列一元一次方程解决实际问题.
⑤系数化为1.
(3)你能说出每一步的依据吗?
三、求解方程 体会化归
问题7:解下列方程. (1)4x-7=2x+1;
(2)1(3x-6)=2 x-3 .
6
5
解:(1)移项,得 4x-2x=1+7. 合并同类项,得 2x=8. 系数化为1,得 x=4.
三、求解方程 体会化归
问题7:解下列方程. (1)4x-7=2x+1;
相关文档
最新文档