动态规划
动态规划

=MIN(3+12,4+10)=14
最短路线: A—— B2 ——C2——D2——E2——F 最优解: d1*(A)= B2,最短用时14
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
最优解: d2*(B1)= C1
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S2=B2,则下一步能取C2或C3,故
f2(B2)=MIN r(B2,C2)+ f3(C2)
r(B2,C3)+ f3(C3) =MIN(2+8,1+11)=10
最短路线: B2 ——C2——D2——E2——F
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S4=D3,则下一步只能取E2,故
动态规划

多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。
第6章动态规划

第6章 动态规划动态规划(Dynamic Programming )是解决多阶段决策过程最优化的一种有用的数学方法。
它是由美国学者Richard .Bellman 在1951年提出的,1957年他的专著《动态规划》一书问世,标志着运筹学的一个重要分支-动态规划的诞生.动态规划也是一种将多变量问题转化为单变量问题的一种方法。
在动态规划中,把困难的多阶段决策问题变换成一系列相互联系的比较容易的单阶段问题一个个地求解。
动态规划是考察解决问题的一种途径 ,而不是一种特殊的算法,不像线性规划那样有统一的数学模型和算法(如单纯形法).事实上,在运用其解决问题的过程中还需要运用其它的优化算法。
因此,动态规划不像其它方法局限于解决某一类问题,它可以解决各类多阶段决策问题。
动态规划在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。
在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。
许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。
特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。
动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。
本教材主要介绍动态规划的基本概念、理论和方法,并通过典型的案例说明这些理论和方法的应用。
6.1动态规划的基本理论6.1.1多阶段决策过程的数学描述有这样一类活动过程,其整个过程可分为若干相互联系的阶段,每一阶段都要作出相应的决策,以使整个过程达到最佳的活动效果。
任何一个阶段(stage ,即决策点)都是由输入(input )、决策(decision )、状态转移律(transformation function )和输出(output )构成的,如图6-1(a )所示.其中输入和输出也称为状态(state ),输入称为输入状态,输出称为输出状态。
动态规划.pdf

第三章:动态规划3.1 动态规划的基本概念一、动态决策问题:决策过程具有阶段性和时序性(与时间有关)的决策问题。
即决策过程可划分为明显的阶段。
二、什么叫动态规划(D.P.–Dynamic Program):多阶段决策问题最优化的一种方法。
广泛应用于工业技术、生产管理、企业管理、经济、军事等领域。
三、动态规划(D.P.)的起源:1951年,(美)数学家R.Bellman等提出最优化原理,从而建立动态规划,名著《动态规划》于1957年出版。
四、动态决策问题分类:1、按数据给出的形式分为:•离散型动态决策问题。
•连续型动态决策问题。
2、按决策过程演变的性质分为:•确定型动态决策问题。
•随机型动态决策问题。
五1、阶段(stage)n :作出决策的若干轮次。
n = 1、2、3、4、5。
2、状态(state)S n :每一阶段的出发位置。
构成状态集,记为S nS 1={A},S 2={B 1,B 2,B 3},S 3={C 1,C 2,C 3},S 4={D 1,D 2,D 3},S 5={E 1,E 2}。
阶段的起点。
3、决策(decision)X n :从一个阶段某状态演变到下一个阶段某状态的选择。
构成决策集,记为D n (S n )。
阶段的终点。
D 1(S 1)={X 1(A)}={B 1,B 2,B 3}= S 2,D 2(S 2)={X 2(B 1),X 2(B 2),X 2(B 3)}={C 1,C 2,C 3}=S 3,D 3(S 3)={X 3(C 1),X 3(C 2),X 3(C 3)}={D 1,D 2,D 3}=S 4,D 4(S 4)={X 4(D 1),X 4(D 2),X 4(D 3)}={E 1,E 2}=S 5D 5(S 5)={X 5(E 1),X 5(E 2)}={F;F}={F}。
4、策略(policy):全过程中各个阶段的决策Xn 组成的有序总体{Xn }。
如 A àB2àC1àD1àE2àF5、子策略(sub-policy):剩下的n个阶段构成n子过程,相应的决策系列叫n子策略。
动态规划

(3)决策(Decision)
(4)策略(Policy)各阶段的决策组成的一个决策序列称为
一个策略,记为: p x1, x2 ,, xn
从阶段i开始的过程,称为i子过程,它包含阶段i,阶 段i+1,…,阶段n。i子过程的决策序列称为i子策略,记
为 pi xi , xi1,, xn i 1, 2 ,, n 1
,
3 资源分配问题
设有数量为a的资源,计划分配给n 个项目。设xi (i=1, 2, …, n)为分配给第i 个项目的资源量,gi(xi)为第i个项目得到 数量为xi的资源后可提供的收益,问如 何分配资源a,可使总收益为最高?
►静态规划模型
n
max f gi (xi )
i 1
n xi a
1.3 动态规划的基本方程
(1) 动态规划的基本方程(逆序递推公式)
si1
g(si , xi )
,f
* n 1
(
x
n 1
)
0
fi* (si )
opt
v(si , xi )
f
i
* 1
(si
1
)
xi
i n, n 1,,1
(2) 动态规划的基本方程(正序递推公式)
si1 g(si , xi ) ,f1*(s1) opt{v(s1, x1)}
1
6
7
X
2
(
B2
,
C3
)
f
3
(C3
)
1 6
最短路线B2C3D。
C1
5
5
4
B1 5
3
A
C2
3
D
4
6
第6章-动态规划

求解过程
由最后一个阶段的优化开始,按逆向顺序逐步 向前一阶段扩展,并将后一阶段的优化结果带 到扩展后的阶段中去,以此逐步向前推进,直 至得到全过程的优化结果。
f1
(
A)
min
dd11
( (
A, A,
B1) B2 )
ff22((BB12))
min
4 9
9 11
13
d1( A, B3) f2 (B3)
5 13
其最短路线是A→ B1→C2 →D2 →E ,相应的决 策变量是u1(A)=B1
因此,最优策略序列是:
u1(A) =B1, u2(B1)=C2, u3(C2)=D2, u4(D2)=E
5 8 C2 4 6 4
4 C3 2
C3
D1 4 2 6
D2 9 7
D3 5
D4
E1 1 F
E2 2
E5
F
动态规划的逆序解法与顺序解法
逆序(递推)解法:即由最后一段到第一段逐步 求出各点到终点的最短路线,最后求出A点到E点 的最短路线。运用逆序递推方法的好处是可以始 终盯住目标,不致脱离最终目标。 顺序解法:其寻优方向与过程的行进方向相同, 求解时是从第一段开始计算逐段向后推进,计算 后一阶段时要用到前一段求优的结果,最后一段 的计算结果就是全过程的最优结果。
B1
A
4+9=13
d(u1)+f2
B2
B3
f1(s1) u1*
动态规划(完整)
主要内容:
§7.1多阶段决策问题 §7.2 动态规划的基本概念和基本原理
§7.3 动态规划应用举例
例 求解最短路问题
A1 2 Q 4 3 A3 A2 6 3 7 4 B1 1 4 2 4 4 1 5 6 B2 3 B3 3 3 C2 C1 3 4 T
Ⅰ
Ⅱ
Ⅲ
Ⅳ
分阶段的最短路径
• • • • • • • Ⅳ : C1—T Ⅲ --Ⅳ : B1—C1—T Ⅱ--Ⅲ--Ⅳ :A2—B1—C1—T Ⅰ--Ⅱ--Ⅲ --Ⅳ: Q—A2—B1—C1—T Q--A3—B1—C1—T Q--A3—B2—C2—T 3 4 7
决策为 xk 时的指标,则它就是第 k 段指标函
数,简记为vk 。 (2)过程指标函数(也称目标函数) 用f(sk , xk)表示第k子过程的指标函数。表
示处于第 k 段 sk 状态且所作决策为xk时,
从 sk 点到终点的距离。由此可见, f(sk , xk)
不仅跟当前状态 sk 有关,
还跟该子过程策略 pk(sk) 有关,严格说来,应
(6) 指标函数
用来衡量策略或子策略或决策的效果的 某种数量指标,就称为指标函数。它是定义 在全过程或各子过程或各阶段上的确定数量 函数。对不同问题,指标函数可以是诸如费 用、成本、产值、利润、产量、耗量、距离、 时间、效用,等等。
(1)阶段指标函数(也称阶段效应)
用vk(sk , xk)表示第 k 段处于状态 sk且所作
资规划, 排序问题和生产过程的最优控制
等问题;
§7.2 动态规划的基本概念和基本思想
一、基本概念
使用动态规划方法求解决策问题首先要将 问题改造成符合动态规划求解要求的形式, 要涉及以下概念: (1)阶段 (3)决策与策略 (2)状态 (4)状态转移方程
动态规划-动态规划-美国数学家贝尔曼-动态规划领域
物品
1 2 … j …n
重量(公斤/件) a1 a2 … aj … an
每件使用价值 c1 c2 … cj … cn
类似问题:工厂里的下料问题、运输中的 货物装载问题、人造卫星内的物品装载问题等。
生产决策问题:企业在生产过程中,由于需求 是随时间变化的,因此企业为了获得全年的最佳 生产效益,就要在整个生产过程中逐月或逐季度 地根据库存和需求决定生产计划。
描述状态的变量称为状态变量,它可用一个数、 一组数或一向量(多维情形)来描述,第k阶段 的状态变量常用sk表示,通常一个阶段有若干个 状态。
第k阶段的状态就是该阶段所有始点的集合, 用Sk表示。在第1阶段状态变量s1是确定的,称初 始状态。如引例中:
S1 A,S2 B1, B2, B3,S3 C1,C2,C3,S4 D1, D2
min
4
9
12
决策点为B3
AB3
f2
B3
3 9*
f1(A)=12说明从A到E的最短距离为12,最短路 线的确定可按计算顺序反推而得。即
A→B3→C2→D2→E 上述最短路线问题的计算过程,也可借助于图
形直观的表示出来:
12 2 A4
3
11
B1
7 4
6
93
B2 2
4
96
B3
2 5
6
C1 3
多阶段决策过程特点:
(1)根据过程的特性可以将过程按空 间、时间等标志分为若干个互相联系又互相 区别的阶段。
(2)在每一个阶段都需要做出决策,从 而使整个过程达到最好的效果。
(3)在处理各阶段决策的选取上,不仅只 依赖于当前面临的状态,而且还要注意对以后 的发展。即是从全局考虑解决局部(阶段)的 问题。
第10章 动态规划
管理运筹学
7
缺点
①没有统一的处理方法,求解时要根据问题的 性质,结合多种数学技巧。因此实践经验及 创造性思维将起重要的引导作用;
②“维数障碍”,当变量个数太多时,由于计 算机内存和速度的限制导致问题无法解决。 有些问题由于涉及的函数没有理想的性质使 问题只能用动态规划描述,而不能用动态规 划方法求解。
盈利 工厂 设备台数
0 1 2
3 4 5
甲厂
0 3 7 9 12 13
乙厂
0 5 10 11 11 11
管理运筹学
29
第一阶段:只有1个始点A,终点有B1,B2,B3,B4 。对始点和终 点进行分析和讨论分别求A到B1,B2,B3,B4的最短路径问题:
表10-4
本阶段始 点(状态)
A
阶段1 本阶段各终点(决策)
B1
B2
B3
B4
4+12=16 3+13=16 3+14=17 2+12=14
到E的最 本阶段最优终 短距离 点(最优决策)
第四阶段:两个始点D1和D2,终点只有一个;
表10-1
阶段4
本阶段始点 本阶段各终点(决策) 到E的最短距离
(状态)
E
D1
10
10
D2
6
6
分析得知:从D1和D2到E的最短路径唯一。
本阶段最优终点 (最优决策)
E E
管理运筹学
27
第三阶段:有三个始点C1,C2,C3,终点有D1,D2,对始点
和终点进行分析和讨论分别求C1,C2,C3到D1,D2 的最短路
第8章 动态规划《管理运筹学》PPT课件
8.2 动态规划模型建立
下面以投资问题为例介绍动态规划的建模条件。
【例8-2】 某公司现有资金20万元,若投资于三个
8.1 动态规划基础知识
(5)状态转移方程:状态转移方程是确定过程由一
个状态转移到另一个状态的演变过程。动态规划中某一状
态以及该状态下的决策,与下一状态之间具有一定的函数
关系,称这种函数关系的表达式为状态转移方程。如果第
k段的状态为 sk ,该阶段的决策为
的状态就可以用下式来表示:
uk
sk
,则第k+1段
阶段的指标函数,是该阶段最优的指标函数。
8.2 动态规划模型建立
建立动态规划模型,就是在分析实际问题的基础上建 立该问题的动态规划基本方程。成功地应用动态规划方法 的关键,在于识别问题的多阶段特征,将问题分解成为可 用递推关系式联系起来的若干子问题,或者说正确地建立 具体问题的基本方程,这需要经验与技巧。而正确建立基 本递推关系方程的关键又在于正确选择状态变量,保证各 阶段的状态变量具有递推的状态转移关系。
第8章 动态规划
动态规划(DYnamic Programming,缩写为DP)方法 ,是本世纪50年代初期由美国数学家贝尔曼(Richard E ,Bellman)等人提出,后来逐渐发展起来的数学分支, 它是一种解决多阶段决策过程最优化问题的数学规划法 。动态规划的数学模型和求解方法比较灵活,对于连续 的或离散的,线性的或非线性的,确定性的或随机性的 模型,只要能构成多阶段决策过程,便可用动态规划方 法求其最优解。因而在自然科学、社会科学、工程技术 等许多领域具有广泛的用途,甚至一定程度上比线性规 划(LP)、非线性规划(NLP)有成效,特别是对于某 些离散型问题,解析数学无法适用,动态规划方法就成 为非常有用的求解工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Visual FoxPro
k 1 n k 1 n
k 1 n
常用算法与程序设计
5
常用算法与程序设计
3. 最优性原理
最优性原理:“作为整个过程的最优策略具有这样的 性质,无论过去的状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略”。 也就是说,最优决策序列中的任何子序列都是最优的。 最优性原理体现为问题的最优子结构特性。当一个问 题的最优解中包含了子问题的最优解时,则称该问题具 有最优子结构特性。 最优子结构特性是动态规划求解问题的必要条件。
由矩阵的定义可以看出:
1. 两个矩阵的乘积AB亦是矩阵, AB的行数等
于矩阵A的行数, AB的列数等于矩阵B的列
数.
2. 前行乘后列: 乘积矩阵AB中第i行第j列的
元素等于A的第i行与B的第j列对应元素乘积 之和, 简称行乘列的法则。
3.矩阵相乘的数乘次数为:n*m*p
13
常用算法与程序设计
1. 问题描述
dij aik bkj
k 0
n 1
0 i m,0 j p
矩阵相乘的数乘次数为:n*m*p
16
常用算法与程序设计
由于矩阵乘法满足结合律,所以计算 矩阵的连乘可以有许多不同的计算次 序。这种计算次序可以用加括号的方 式来确定。 若一个矩阵连乘积的计算次序完全确 定,也就是说该连乘积已完全加括号, 则可以依此次序反复调用2个矩阵相乘 的标准算法计算出矩阵连乘积
最优的,则原恩的计算次序也不是最优的。
矩阵连乘计算次序问题的最优解包含着其子
问题的最优解。这种性质称为最优子结构性
质。问题的最优子结构性质是该问题可用动 态规划算法求解的显著特征。 22
常用算法与程序设计
•注意: •矩阵连乘计算次序问题的最优解包含着其子问题的最 优解。这种性质称为最优子结构性质。 •在分析问题的最优子结构性质时,所用的方法具有普 遍性:首先假设由问题的最优解导出的子问题的解不 是最优的,然后再设法说明在这个假设下可构造出比 原问题最优解更好的解,从而导致矛盾。 •利用问题的最优子结构性质,以自底向上的方式递归 地从子问题的最优解逐步构造出整个问题的最优解。 最优子结构是问题能用动态规划算法求解的前提。
给定n个矩阵{A0,A1,…,An-1}, 其中Ai
, i=0,…,n-1 的 维 数为 pipi+1 ,并且 Ai 与 Ai+1 是可乘的。考察这 n个矩阵的连 乘积 A0A1…An1 ,由于矩阵乘法满足
结合律,所以计算矩阵的连乘可有许
多不同的计算次序。
14
常用算法与程序设计
1. 问题描述
19
常用算法与程序设计
矩阵连乘问题-穷举搜索法 问题描述:给定n个矩阵{A1,A2,…,An},其
中Ai与Ai+1是可乘的,i=1,2…,n-1。如何确 定计算矩阵连乘积的计算次序,使得依此次序 计算矩阵连乘积需要的数乘次数最少。
穷举法:列举出所有可能的计算次序,并计算
出每一种计算次序相应需要的数乘次数,从中 找出一种数乘次数最少的计算次序。
3.1 矩阵连乘问题
10
常用算法与程序设计
定义 设A=(aij)是m×n矩阵,B=(bij)是n×p矩 阵,则A与B的乘积AB是一个m×p矩阵,这个 矩阵的第i行第j 列位臵上的元素cij等于A 的第i 行的元素与B的第j列的对应元素的乘积的和. 即
cij ai1b1 j ai 2 b2 j ainbnj ,
17
常用算法与程序设计
完全加括号的矩阵连乘积可递归地定义为:
(1)单个矩阵是完全加括号的; (2)矩阵连乘积 A 是完全加括号的,则 A 可 表示为2个完全加括号的矩阵连乘积B 和 C 的乘积并加括号,即 A ( BC)
设有四个矩阵A, B, C , D ,它们的维数分别 A 50 10 B 10 40 C 40 30 D 30 5 是: 总共有五种完全加括号的方式
( A((BC) D )) (((AB)C ) D ) ( A( B(CD ))) (( A( BC))D )
18
(( AB)(CD ))
16000, 10500, 36000, 87500, 34500
常用算法与程序设计 例 4 个 矩 阵 连 乘 积 ABCD , 设 它 们 的 维 数 分 别 为 A:5010,B:1040, C:4030, D:305。
为pi-1×pi。
可以递归地定义m[i,j]为:
0 i j mi, j minmi, k mk 1, j pi 1 pk p j i j i k j
最小的那个位置
24
k的位置只有j-i种可能。k是j-i个位置中使得计算量达到
3
常用算法与程序设计
2一般方法
多阶段决策问题 多阶段决策过程的每一阶段可能有多种可供 选择的决策,必须从中选择一种决策。各阶 段的决策构成一个决策序列。决策序列不同, 所导致的问题的结果可能不同。 多阶段决策的最优化问题就是:求能够获得 问题最优解的决策序列——最优决策序列。
4
常用算法与程序设计
号
for (int i = 1; i <= n - r+1; i++) { int j=i+r-1;
28
常用算法与j] = m[i+1][j]+ p[i-1]*p[i]*p[j];
s[i][j] = i;
for (int k = i+1; k < j; k++) {
2. 多阶段决策过程的求解策略
1)枚举法 穷举可能的决策序列,从中选取可以获得最优解的 决策序列 2)动态规划 20世纪50年代初美国数学家R.E.Bellman等人在研究 多阶段决策过程的优化问题时,提出了著名的最优化 原理(principle of optimality),把多阶段过程转化为一系 列单阶段问题,创立了解决这类过程优化问题的新方 法——动态规划。
20
常用算法与程序设计
2 动态规划方法 -分析最优解的结构
下面我们考虑用求解。
预处理:
将矩阵连乘积AiAi+1...Aj简记为A[i:j ],这里i≤j。 考察计算A[i:j ]的最优计算次序。设这个计算次序
在矩阵Ak和Ak+1之间将矩阵链断开,i≤k<j,则其相 应完全加括号方式为(AiAi+1... Ak)(Ak+1 Ak+2... Aj )。
c11 a11 b11 a12b21 a1n bn1 a1k bk 1
c1 j a11 b1 j a12b2 j a1n bnj a1k bkj
ci1 ai1 b11 ai 2 b21 ain bn1 a ik bk 1
矩阵连乘问题是确定计算矩阵连乘积
的计算次序,使得按照这一次序计算
矩阵连乘积,需要的“数乘”次数最 少。
以矩阵乘法种需要执行的数乘次数作
为两矩阵相乘的计算量。
15
常用算法与程序设计
假设有矩阵A和B,A是m*n矩阵,B是n*p矩
阵,则A和B是可乘的,矩阵乘积D=AB是 m*p矩阵,它的元素
i 1, 2, , m; j 1, 2, , p.
运算过程演示
11
演示
a11 a12 a1n b11 b21 a a i1 i 2 ain am1 am 2 amn bn1
(1) 把所求最优化问题分成若干个阶段,找出最优
解的性质,并刻划其结构特性。 (2) 将问题发展到各个阶段时所处不同的状态表示 出来,确定各个阶段状态之间的递推关系,并确定初 始(边界)条件。 (3) 应用递推求解最优值。 (4) 根据计算最优值时所得到的信息,构造最优解。 构造最优解就是具体求出最优决策序列。通常在计 算最优值时,根据问题具体实际记录更多的信息,根 据所记录的信息构造出问题的最优解。
6
常用算法与程序设计
3.1.2 动态规划求解步骤
1. 利用动态规划求解问题的前提 1) 证明问题满足最优性原理 如果对所求解问题证明满足最优性原理,则说明 用动态规划方法有可能解决该问题 2) 获得问题状态的递推关系式 获得各阶段间的递推关系式是解决问题的关键
7
常用算法与程序设计
2.动态规划求解步骤
常用算法与程序设计
使得上式取最小值的k就是A[i,j]的最
优计算次序中的断开位置,如果将k 保存在s[i][j] 后,可由S构造出相应的
最优解,
25
常用算法与程序设计
26
常用算法与程序设计
计算次序如何确定,在m[i:j]矩阵中按照什么
次序计算使得计算m[i:j]时用到de m[i:k] m[k+1:j]都已经计算出.
int t = m[i][k] + m[k+1][j] + p[i1]*p[k]*p[j]; if (t < m[i][j]) { m[i][j] = t; s[i][j] = k;}
27
常用算法与程序设计 6.算法描述
算法描述:
void MatrixChain(int *p,int n,int **m,int **s)
{
for (int i = 1; i <= n; i++) m[i][i] = 0;//先计算出m[i][i] = 0 for (int r = 2; r <= n; r++)//然后从主对角线上一条次对角线 开始,依次计算m的n-2条对角线,并且记录使得m[i][j]取 最小值的k存在 s[i][j] 中,另用一个函数对矩阵序列添加括