五年级奥数试题(09)

合集下载

五年级下册数学试题-奥数专题培优讲练:09消去法与换元法(5年级培优)教师版

五年级下册数学试题-奥数专题培优讲练:09消去法与换元法(5年级培优)教师版

课堂目标:1、记住用消去法、换元法解题的题型;2、掌握用消去法及换元法解决实际问题重点:消去法、换元法解题 难点:消去法解应用题的过程(消元的方法)换元法:有时候,题目中有两个有一定关联的数量,这两个数量给解题带来不便,我们要从中找到两种数量之间的联系,把两种数量转化成一种数量,从而帮助我们找到解题的方法。

消去法:在较复杂的应用题中,有的包含着两个或两个以上要求的量,解答时,先想法消去一个要求的量,再求出另一个量,然后求出消去的量。

这种方法叫做消去法。

解题方法:利用条件简化法,设法将其中的一个未知量消去,先求出另一个未知量,进而求出消去的未知量。

(等量代换、加减消元法、列表法)【换元法解应用题】一张桌子的价钱等于4把椅子的价钱,买1张桌子和12把椅子共付288元。

求:一张桌子和一把椅子各多少元?【答案】72元;18元 【知识点】换元法解题 【难度】A 【出处】小学数学拓展学案【分析】椅子:()18412288=+÷(元),桌子:72418=⨯(元)3张桌子价钱等于7把椅子价钱。

每把椅子36元,买2张桌子和7把椅子共付多少钱?【分析】42073623736=⨯+⨯÷⨯(元)小华买了3支铅笔和6张图画纸,共付了1.2元,每支铅笔比每张图画纸贵0.1元。

每张图画纸多少元?每支铅笔多少元?【答案】0.1元;0.2元 【知识点】等量代换 【难度】B 【出处】小学数学拓展学案【分析】()()1.06331.02.1=+÷⨯-(元);2.01.01.0=+(元)。

学校买来8块大黑板和12块小黑板共用去300元,一块大黑板的价钱比两块小黑板还要贵2.5元。

大黑板每块多少钱?小黑板每块多少钱?【分析】()[]()5.2221282125.2300=÷+÷÷⨯+(元);()1025.25.22=÷-(元)【消去法解应用题】光明小学买水壶4只、水桶5个,共付出150.5元;实验小学买同样的水壶4只、水桶8个,共付出182元。

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。

答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。

各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。

A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。

第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。

此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。

题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。

每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。

题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。

一楼到六楼走5 层楼梯,用时5×9 = 45 秒。

五年级下册数学竞赛试题-09讲分数应用题综合全国通用(含答案)

五年级下册数学竞赛试题-09讲分数应用题综合全国通用(含答案)

五年下册奥数试题-分数应用题综合姓名得分【知识讲述】分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的占比,以及对应量三者的关系例如:(1)a是b的几分之几,就把数b看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188,因此乙比甲少191889.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199.怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较(比较量与标准量)分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看1。

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。

问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。

如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。

根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。

因此所求的答案为5人。

2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。

但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。

问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。

3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。

x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。

如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。

直到两数相同为止。

问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。

小学五年级下册数学奥数知识点讲解第9课《数学游戏》试题附答案

小学五年级下册数学奥数知识点讲解第9课《数学游戏》试题附答案

小学五年级下册数学奥数知识点讲解第9课《数学游戏》试题附答案第九讲数学游戏游洗对策问题因常与智力游戏相结台,因此具有很大的趣味庄.又由于解题方法灵活,技巧性强.所以对开阔解题思路,提高分析问题解决问题的能力是很有益处的<例1在一个3X3的方格纸中,甲乙两人轮流(甲先)往方格纸中填写L 3、4、5、6、7、8、9、10九个数中的一个,数不能重复.最后甲的得分是不计中间行的上下两行六个数之和,乙的得分是不计中间列的左右两列六个数之和.待分多者为胜.请你为甲找出一种必胜的策略。

例2在4乂4的方格纸上有一粒石子,它放在左下角的方格里.甲乙二人玩游戏,由甲开始,二人交替地移动这粒石子,每次只能向上,问右或向右上方移动一格,谁把石子移到右上角i隹胜・|、可甲能取胜吗?如果要取胜,应采取什么办混例3甲乙两人玩下面的游戏:有两堆玻璃球,一堆8个,另一堆9个,甲乙两人轮流从中拿取,每次只能从同一堆中拿,个数(>0)不限•规定拿到最后一个球的人为输.问如果甲先拿,他有无必胜的策略?答案第九讲数学游戏游戏对策可题因常与智力游戏相结合,因此具有很大的趣味性.又由于解题方法灵活,技巧性强,所以对开阔解题思路,提高分析问题程决问题的能力是很有益处的。

例1在一个3X3的方格纸中,甲乙两人轮流(甲先)往方格纸中填写1、3、4、5、6、7、8、9、10九个数中的一个,数不能重复.最后甲的得分是不计中间行的上下两行六个数之和,乙的得分是不计中间列的左右两列六个数之和,得分多者为胜.清你为甲找出一种必胜的策略。

分析把题中的九个格标上字母:a、b、c、d、e、f、g、h、io甲的得分为:a+b+c+g+h+i=(a十c+g+i)+(b+h);乙的彳导分为;a+d+g+c+f+i=(a+c+g+i)+(d+f)要想使甲的得分高于乙的得分,必须且只需使b+h〉d+f.要想使b+h>d +f,甲有两种策略:一是增强自己的实力一一使b、h格内填的数尽可能弛大;二是削弱对方的实力一一使d,音&内填的数尽可能地小.下面分两神情况进行讨论:取胜的总策略是“增强自己,削弱对方”两者兼顾°为了使叙述方便起见,我们分别用(甲2)和(购分别表示“甲第二 轮"和"在剥填数字5",其余如(乙1),(甲1,bio)等含义美同。

(完整版)小学五年级奥数题及答案(附精讲)

(完整版)小学五年级奥数题及答案(附精讲)

(完整版)⼩学五年级奥数题及答案(附精讲)⼩学五年级奥训练题及答案(精讲)⼀、⼯程问题1.⼀件⼯作,甲、⼄合做需4⼩时完成,⼄、丙合做需5⼩时完成。

现在先请甲、丙合做2⼩时后,余下的⼄还需做6⼩时完成。

⼄单独做完这件⼯作要多少⼩时?2.修⼀条⽔渠,单独修,甲队需要20天完成,⼄队需要30天完成。

如果两队合作,由于彼此施⼯有影响,他们的⼯作效率就要降低,甲队的⼯作效率是原来的五分之四,⼄队⼯作效率只有原来的⼗分之九。

现在计划16天修完这条⽔渠,且要求两队合作的天数尽可能少,那么两队要合作⼏天?3.甲⼄两个⽔管单独开,注满⼀池⽔,分别需要20⼩时,16⼩时.丙⽔管单独开,排⼀池⽔要10⼩时,若⽔池没⽔,同时打开甲⼄两⽔管,5⼩时后,再打开排⽔管丙,问⽔池注满还是要多少⼩时?4.⼀项⼯程,第⼀天甲做,第⼆天⼄做,第三天甲做,第四天⼄做,这样交替轮流做,那么恰好⽤整数天完⼯;如果第⼀天⼄做,第⼆天甲做,第三天⼄做,第四天甲做,这样交替轮流做,那么完⼯时间要⽐前⼀种多半天。

已知⼄单独做这项⼯程需17天完成,甲单独做这项⼯程要多少天完成?5.师徒俩⼈加⼯同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.⼀批树苗,如果分给男⼥⽣栽,平均每⼈栽6棵;如果单份给⼥⽣栽,平均每⼈栽10棵。

单份给男⽣栽,平均每⼈栽⼏棵?7.⼀个池上装有3根⽔管。

甲管为进⽔管,⼄管为出⽔管,20分钟可将满池⽔放完,丙管也是出⽔管,30分钟可将满池⽔放完。

现在先打开甲管,当⽔池⽔刚溢出时,打开⼄,丙两管⽤了18分钟放完,当打开甲管注满⽔是,再打开⼄管,⽽不开丙管,多少分钟将⽔放完?8.某⼯程队需要在规定⽇期内完成,若由甲队去做,恰好如期完成,若⼄队去做,要超过规定⽇期三天完成,若先由甲⼄合作⼆天,再由⼄队单独做,恰好如期完成,问规定⽇期为⼏天?9.两根同样长的蜡烛,点完⼀根粗蜡烛要2⼩时,⽽点完⼀根细蜡烛要1⼩时,⼀天晚上停电,⼩芳同时点燃了这两根蜡烛看书,若⼲分钟后来点了,⼩芳将两⽀蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?⼆.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数⽐兔的腿数少28条,,问鸡与兔各有⼏只?三.数字数位问题1.把1⾄2005这2005个⾃然数依次写下来得到⼀个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是⼩于100的两个⾮零的不同⾃然数。

小学五年级奥数第9课牛吃草问题试题附答案-精品

小学五年级上册数学奥数知识点讲解第9课《牛吃草问题》试题附答案第九讲“牛吃草”问题有这样的问题.如:牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周.那么它可供21头牛吃几周?这类问题称为“牛吃草”问题。

解答这类问题,困难在于草的总量在变,它每天,每周都在均匀地生长,时间愈长,草的总量越多.草的总量是由两部分组成的:①某个时间期限前草场上原有的草量;②这个时间期限后草场每天(周)生长而新增的草量,因此,必须设法找出这两个量来。

下面就用开头的题目为例进行分析.(见下图)27头牛吃6周原有的草6周生长的草23头牛吃9周________________________________________ A _____________原有的草9周生长的草从上面的线段图可以看出23头牛9周的总草量比27头牛6周的总草量多,多出部分相当于3周新生长的草量.为了求出一周新生长的草量,就要进行转化.27头牛6周吃草量相当于27X6=162头牛一周吃草量(或一头牛吃162 周),23头牛9周吃草量相当于23义9二207头牛一周吃草量(或一头牛吃207 周).这样一来可以认为每周新生长的草量相当于(207-162)+(9-6)=15头牛一周的吃草量。

需要解决的第二个问题是牧场上原有草量是多少?用27头牛6周的总吃草量减去6周新生长的草量(即15X6=90头牛吃一周的草量)即为牧场原有草量。

所以牧场上原有草量为27X6-15X6=72头牛一周的吃草量(或者为23X9- 15X9=72)。

牧场上的草21头牛几周才能吃完呢?解决这个问题相当于把21头牛分成两部分.一部分看成专吃牧场上原有的草.另一部分看成专吃新生长的草.但是新生的草只能维持15头牛的吃草量,且始终可保持平衡(前面已分析过每周新生的草恰够15头牛吃一周).故分出15头牛吃新生长的草,另一部分21-15二 6 (头)牛去吃原有的草.所以牧场上的草够吃72+6=12(周),也就是这个牧场上的草够21头牛吃12周.问题得解。

高斯小学奥数五年级上册含答案_第09讲_流水行船问题

第九讲流水行船问题故事中飞机倒飞的情况真的会出现吗?学习完今天的课程,你就知道了.如同飞机在飞行的时候会受到风速的影响一样,当船在水中航行时,也会受到水速的影响,而具体是怎样的影响呢,我们今天就来研究一下.当船在水中航行时,如果水是静止不动的,那船的行驶速度就只由船本身决定,这个速度称为船的静水速度,即船本身的速度.大家可以设想一下,如果船本身停止运动,那么它还是会顺着水流前进,这时的速度等于水流的速度,我们可以把水流的速度简称为水速.当船顺水而行时,船的静水速度和水速会叠加起来,行驶速度会变快,此时的速度我们称之为顺水速度;相反的,如果船逆水而行,水速会抵消掉一部分船本身的速度,行驶速度会变慢,此时的速度我们称之为逆水速度.下面的两个基本公式就给出了对应的计算方法:顺水速度静水船速水速;=+逆水速度静水船速水速;=-很容易的,根据和差问题的计算方法,我们可以得到如下结论:()2=÷水速顺水速度-逆水速度;()2船速顺水速度+逆水速度.=÷这四个公式是流水行船问题中最基本的速度计算公式.下面我们就利用这四个公式,解决几个典型的流水行船问题.例题1.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.【分析】能不能先把顺水速度和逆水速度算出来?一艘飞艇,顺风6小时行驶了900公里;在同样的风速下,逆风行驶600公里,也用了6小时.那么在无风的时候,这艘飞艇行驶1000公里要用多少小时?例题2. 甲河是乙河的支流,甲河水速为每小时3千米,乙河水速为每小时2千米.一艘船沿甲河顺水7小时后到达乙河,共航行133千米.这艘船在乙河逆水航行84千米,需要花多少小时?「分析」要求出船在乙河中航行84千米所用的时间,只需知道船在乙河行驶的速度,那么只需要知道船的静水速度就可以了.能通过船在甲河中的运动过程求出静水速度么?A 、B 两港相距120千米.甲船的静水速度是20千米/时,水流速度是4千米/时.那么甲船在两港间往返一次需要多少小时?在解答流水行船问题时,我们需要牢牢抓住水速对船速的影响.同一艘船在顺水航行与逆水航行中的速度不相同,所以我们在解题时应该把船在不同情况下的运动过程分开考虑. 对于有些问题,如果发现题目中条件不足,可以采用设具体数值的方法来解决.例题3. 轮船从A 城行驶到B 城需要3天,而从B 城回到A 城需要4天.请问:在A 城放出一个无动力的木筏,它漂到B 城需多少天?甲乙84千米 水流方向行驶方向133千米 水 流 方 向行 驶 方 向【分析】我们要求木筏从A城到B城的漂流时间,只需知道木筏漂流的速度即可.由于木筏是无动力的,也就是说木筏漂流的速度就等于水速.但现在只知道时间,不知道任何的速度或者距离,那该怎么办呢?一艘船在A、B两地往返航行,如果船顺水漂流,从A地到达B地需要60小时,而开船从B地到达A地需要30小时.那么这艘船从A地开到B地需要多长时间?对于有些复杂的流水行船问题,我们需要分段考虑.例题4.甲、乙两船分别从A港出发逆流而上驶向180千米外的B港,静水中甲船每小时航行15千米,乙船每小时航行12千米,水流速度是每小时3千米.乙船出发后两小时,甲船才出发,当甲船追上乙船的时候,甲已离开A港多少千米?若甲船到达B港之后立即返回,则甲、乙两船相遇地点离刚才甲船追上乙船的地点多少千米?「分析」乙船比甲船早两小时出发所行驶的距离,就是甲船追乙船时的路程差.练习4:A码头在B码头的上游,两个码头之间的距离是180千米.货船的静水速度是9千米/时,从A码头出发开往B码头;客船的静水速度是15千米/时,与货船同时出发,从B 码头开往A码头.水速是3千米/时.两船相遇后,货船马上掉头,与客船同时开向A码头.那么货船到达A码头的时间比客船晚几小时?下面我们来看看流水行船问题中的相遇与追及问题.通过一些具体的例子我们可以发现,如果两船相向而行,两船的速度和就是静水速度之和;如果两船同向而行,两船的速度差就是静水速度之差.因此,相遇时间和追及时间与水速大小无关.例题5. A 、B 两码头间河流长为300 千米,甲、乙两船分别从A 、B 码头同时起航.如果相向而行 5 小时相遇,如果同向而行10小时甲船追上乙船.求两船在静水中的速度.【分析】不妨设A 码头在上游,B 码头在下游.如果相向而行,甲船的实际速度为甲速+水速,乙船的实际速度为乙速-水速,两船的速度之和就是甲速+乙速,所以相遇时间和水速大小没有关系.如果同向而行,追及时间是不是也与水速大小没有关系呢?例题6. 某人在河里游泳,逆流而上.他在A 处掉了一只水壶,向前又游了20分钟后,才发现丢了水壶,立即返回追寻,在离A 处2千米的地方追到.假定此人在静水中的游泳速度为每分钟60米,求水流速度.【分析】游泳者丢失水壶时,他并没有发觉,仍旧逆流而上,此时游泳者的速度是:-静水速度水速,而水壶则顺流而下,速度和水速相同.两者背向而行,相当于一个相遇问题的逆过程.速度和为“()-+静水速度水速水速”,恰好为游泳者的静水速度.当游泳者返回的时候,他开始追自己的水壶,此时他和水壶的速度又是怎样的?追及时的速度差又是多少呢?帆船帆船起源于欧洲,其历史可以追溯到远古时代。

五年级上册奥数试题-第9讲.立体图形的体积(含解析)人教版

1.掌握立体图形的体积计算常用公式.2.掌握求不规则立体图形体积的常用方法.本讲立体图形的体积计算,与第七讲的立体图形的表面积,是姐妹篇.对于小学几何而言,立体图形的体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试(比如仁华的入学考试,几乎每年必考)都很重视对立体图形的考查.其中,尤其要以“不规则立体图形的体积”为考查重点.立体图形的体积计算常用公式:立体图形示例体积公式相关要素长方体V abh=V Sh=三要素:a、b、h二要素:S、h正方体3V a=V Sh=一要素:a二要素:S、h 第9讲立体图形的体积圆柱体V=Sh二要素:S (或r 、d 、C ) 和h圆锥体V=13Sh 二要素:S 、h不规则形体的体积常用方法:一、 化虚为实法 二、 切片转化法 三、 先补后去法 四、 实际操作法 五、 画图建模法【例 1】 (第五届《小数报》数学竞赛决赛)一个长方体的宽和高相等,并且都等于长的一半(如图).将这个长方体切成12个小长方体,这些小长方体的表面之和为600平方分米.求这个大长方体的体积.【分析】 设大长方体的宽(高)为a 分米,则长为2a ,右(左)面积为2a ,其余面的面积为22a ,根据题意, 22222862600a a a ⨯++⨯= 所以225a =,5a =. 大长方体的体积2555250=⨯⨯⨯=(立方分米).[铺垫] (第十五届“迎春杯”决赛)把一根长2.4米的长方体木料锯成5段(如图),表面积比原来增加了96平方厘米.这根木料原来的体积是_____立方厘米.2.4米[分析] 96812÷=(平方厘米),122402880⨯=(立方厘米).所以这根木料原来的体积为2880立方厘米.【例 2】 (第九届“祖冲之杯”数学邀请赛)有一个长方体的盒子,从里面量长40厘米,宽12厘米,高7厘米,在这个盒子里放长5厘米,宽4厘米,高3厘米的长方体木块.最多可放 块.【分析】 下图表明34⨯的长方形可以填满712⨯的长方形.于是534⨯⨯的长方体可以填满40712⨯⨯的长方体,即盒子中最多可放这种长方体40712(534)56⨯⨯÷⨯⨯=(个).规则立体图形体积的计算444433333[巩固](第九届“迎春杯”数学竞赛决赛)把1个棱长是3厘米的正方体分割成若干个小的正方体,这些小正方体的棱长必须是整厘米数.如果这些小正方体的体积不要求都相等,那么最少可分割成个小正方体.[分析]因为小正方体的棱长只可能是2厘米或1厘米.必须分割出棱长是2厘米的小正方体才能使数量减少.显然,棱长是3厘米的正方体只能切割出一个棱长为2厘米的小正方体,剩余部分再切割出33322227819+=(个)⨯⨯-⨯⨯=-=个棱长是1厘米的小正方体,这样总共可以分割成11920小正方体.现有一张长40厘米、宽20厘米的长方形铁皮,请你用它做一只深是5厘米的长方体无盖铁皮盒(焊接处及铁皮厚度不计,容积越大越好),你做出的铁皮盒容积是多少立方厘米?【分析】如图,在4020⨯的长方形铁皮的四角截去边长5厘米的正方形铁皮,然后焊接成长方形无盖铁皮盒.这个铁皮盒的长405530=--=(厘米).宽205510=--=(厘米),高5=(厘米). 体积301051500=⨯⨯=(立方厘米).如图,在4020⨯长方形铁皮的左侧两角上割下 边长5厘米的正方形(二块),紧密焊接到右侧的中间部分,这样做成的无盖铁皮盒的长40535=-=(厘米),宽205510=--=(厘米), 高5=(厘米),体积351051750=⨯⨯=(立方厘米).如图,在4020⨯的长方形铁皮的左右两侧各割 下一条宽为5厘米的长方形铁皮(共二块),分 别焊到上、下的中间部分,这样做成的无盖铁 皮盒的长40555520=----=(厘米), 宽20=(厘米),高5=(厘米),体积202052000=⨯⨯=(立方厘米). 因此,最后一种容积最大.[铺垫] (第三届“华杯赛”复赛)如图从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2厘米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?[分析] 容器的底面积是(134)(94)45-⨯-=(平方厘米),高为2厘米,所以容器的体积是,45290⨯=(立方厘米).【例 3】 (第七届“华杯赛”决赛)用大小相等的无色透明玻璃小正方体和红色玻璃小正方体拼成一个大正方体1111ABCD A B C D -(如图),大正方体内的对角线1AC ,1BD ,1CA ,1DB 所穿的小正方体都是红色玻璃小正方体,其它部分都是无色透明玻璃小正方体,小红正方体共用了401个,问:无色透明小正方体用了多少个?D 1C 1B 1A 1D CBA【分析】 1AC 、1BD ,1CA ,1DB ,四条对角线都穿过在正中央的那个小正方体.除此而外,每条对角线穿过相同的小正方体,所以每条对角线穿过401111014-+=个小正方体这就表明大正方体的每条边由101个小正方体组成.因此大正方体由3101个小正方体组成,其中无色透明的小正方体有310140110303014011029900-=-=. 即用了1029900个无色透明的小正方体.【例 4】 小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如下图左,从上面看如下图右.那么这个几何体至少用了 块木块.【分析】 这道题很多同学认为答案是26块.这是受思维定势的影响,认为右图中每一格都要至少放一块.其实,有些格不放,看起来也是这样的.如右图,带阴影的3块不放时,小正方体块数最少,为23块.[拓展] 右图是由22个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?[分析] 正方体只可能有两种:由1个小正方体构成的正方体,有22个;由8个小正方体构成的222⨯⨯的正方体,有4个. 所以共有正方体22426+=(个). 由两个小正方体组成的长方体,根据摆放的方向可分为下图所示的上下位、左右位、前后位三种,其中上下位有13个,左右位有13个,前后位有14个,共有13131440++=(个).【例 5】 有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标A 的为黑色,图中共有黑色积木多少块?【分析】 分层来看,如下图(切面平行于纸面)共有黑色积木17块.A不规则立体图形体积的计算[拓展]这个图形,是否能够由112⨯⨯的长方体搭构而成?[分析]每一个112⨯⨯的长方体无论怎么放,都包含了一个黑色正方体和一个白色正方体,而黑色积木有17块,白色积木有15块,所以该图形不能够由112⨯⨯的长方体搭构而成.【例 6】一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm.把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm.酒瓶的容积是多少?(π取3)253015【分析】观察前后,酒瓶中酒的总量没变,即瓶中液体体积不变.当酒瓶倒过来时酒深25cm,因为酒瓶深30cm,这样所剩空间为高5cm的圆柱,再加上原来15cm 高的酒即为酒瓶的容积.酒的体积:101015π375π22⨯⨯=瓶中剩余空间的体积1010 (3025)π125π22-⨯⨯=酒瓶容积:375π125π500π1500(ml)+==[巩固]输液100毫升,每分钟输毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?[分析]100毫升的吊瓶在正放时,液体在100毫升线下方,上方是空的,容积是多少不好算.但倒过来后,变成圆柱体,根据标示的格子就可以算出来.由于每分钟输毫升,12分钟已输液2.51230⨯=(毫升),因此开始输液时液面应与50毫升的格线平齐,上面空的部分是50毫升的容积.所以整个吊瓶的容积是10050150+=(毫升).【例 7】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【分析】8010(8016)12.5⨯÷-=,因为12.512>,所以此时水已淹没过铁块,8010(8016)1232⨯--⨯=,32800.4÷=,所以现在水深为120.412.4+=厘米[铺垫]一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?[分析] 根据等积变化原理:用水的体积除以水的底面积就是水的高度.(法1):808(8016)6406410⨯÷-=÷=(厘米);(法2):设水面上升了x 厘米.根据上升部分的体积=浸入水中铁块的体积列方程为:8016(8)x x =+,解得:2x =,8210+=(厘米). (提问“圆柱高是15厘米”,和“高为12厘米的长方体铁块”这两个条件给的是否多余?)[拓展] 一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【分析】 玻璃杯剩余部分的体积为80(1513)160⨯-=立方厘米,铁块体积为1612192⨯=立方厘米,因为160192<,所以水会溢出玻璃杯,所以现在水深就为玻璃杯的高度15厘米总结铁块放入玻璃杯会出现三种情况①放入铁块后,水深不及铁块高.②放入铁块后,水深比铁块高但未溢出玻璃杯,③水有溢出玻璃杯.小故事 教师可以在此穿插一个关于阿基米德测量黄金头冠的体积的故事.一天国王让工匠做了一顶黄金的头冠,不知道工匠有没有掺假,必须知道黄金头冠的体积是多少,可是又没有办法来测量.(如果知道体积,就可以称一下纯黄金相应体积的重量,再称一下黄金头冠的重量,就能知道是否掺假的结果了)于是,国王就把测量头冠体积的任务交给他的大臣阿基米德.(小朋友们,你们能帮阿基米德解决难题吗?)阿基米德苦思冥想不得其解,就连晚上沐浴时还在思考这个问题. 当他坐进水桶里,看到水在往外满溢时,突然灵感迸发,大叫一声:“我找到方法了……”,就急忙跑出去告诉别人,大家看到了一个还光着身子的阿基米德.他的方法是:把水桶装满水,当把黄金头冠放进水桶,浸没在水中时,所收集的溢出来的水的体积正是头冠的体积.【例 8】 (武汉明心杯数学挑战赛)如图所示,一个555⨯⨯的立方体,在一个方向上开有115⨯⨯的孔,在另一个方向上开有215⨯⨯的孔,在第三个方向上开有315⨯⨯的孔,剩余部分的体积是多少?表面积为多少?【分析】 求体积:开了315⨯⨯的孔,挖去31515⨯⨯=,开了115⨯⨯的孔, 挖去11514⨯⨯-=;开了215⨯⨯的孔, 挖去215(22)6⨯⨯-+=,剩余部分的体积是:555(1546)100⨯⨯-++=.(另解)将整个图形切片,如果切面平行于纸面,那么五个切片分别如图:得到总体积为:22412100⨯+=. 求表面积:表面积可以看成外部和内部两部分.外部的表面积为55612138⨯⨯-=,内部的面积可以分为前 后、左右、上下三个方向,面积分别为()22515121320⨯⨯+⨯-⨯-⨯=、 ()2153513132⨯⨯+⨯-⨯-=、()2151511214⨯⨯+⨯-⨯-=,所以总的表面积为 138203214204+++=.(另解)运用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数: 前后方向:32上下方向:30 左右方向:40总表面积为()⨯++=.2323040204 Array[巩固]一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通,右图就是抽空的状态.右图中剩下的小正方体有多少个?[分析]解法一:(用“容斥原理”来解)由正面图形抽出的小正方体有5525⨯=个,由侧面图形抽出的小正方体有5525⨯=个,由底面图形抽出的小正方体有4520⨯=个,正面图形和侧面图形重合抽出的小正方体有1221228⨯+⨯+⨯=个,正面图形和底面图形重合抽出的小正方体有⨯+⨯+⨯=个,三个面的⨯+⨯=个,底面图形和侧面图形重合抽出的小正方体有121122713227图形共同重合抽出的小正方体有4个.根据容斥原理,252520877452++---+=,所以共抽出了52个小正方体.1255273-=,所以右图中剩下的小正方体有73个.注意这里的三者共同抽出的小正方体是4个,必须知道是哪4块,这是最让人头疼的事.但你可以先构造空的两个方向上共同部分的模型,再由第三个方向来穿过“花墙”.这里,化虚为实的思想方法很重要.解法二:(用“切片法”来解)可以从上到下切五层,得:(1)从上到下五层,如图:(2)或者,从右到左五片,如图:请注意这里的挖空的技巧是:先认一种方向.比如:从上到下的每一层,首先都应该有第一层的空四块的情况,即——如果挖第二层:第(1)步,把中间这些位置的四块挖走如图:第(2)步,把从右向左的两块成线地挖走.(请注意挖通的效果就是成线挖去),如图:第(3)步,把从前向后的一块(请注意跟第二层有关的只是一块!)挖成线!如图:总结一下“切片法”: 全面打洞(例如本题,五层一样)挖块成线(例如本题,在前一次的基层上,一条线一条线地挖). 这里体现的思想方法是:化整为零,有序思考!【例10】 如图,已知A 、B 、C 分别是相邻的三条棱的中点.沿三个中点连成一个正三角形,把原来的立方体切掉一角.如果原来的立方体棱长为8,求:⑴切掉的小部分的体积是多少?⑵剩下的大部分的体积是多少?【分析】 本题应用相关体积公式.⑴2111244103323V Sh ==⨯⨯⨯=锥⑵3185013V V =-=剩锥⑴教师可以沿三个不相邻的顶点再切一下,求小的图形与大的图形的体积各是多少?小的是:21118885323⨯⨯⨯=;大的是:24263.⑵教师可以提问:去掉一个角上的部分后,它的体积是原立方体体积的几分之几?【例11】 如图,是一个正方体,将正方体的A 、C 、B '、D '四个顶点两两连接就构成一个正四面体,已知正方体的边长为3,求正四面体的体积.D′C′B′A′DC BA【分析】 这个正四面体可以看作由正方体切掉A '、C '、B 、D 四个角后得到的,如图所示:B C AD′D′D′D′C′B′B′B′B′A′DC CBA AA A所以正四面体的体积1133343332718932⎛⎫=⨯⨯-⨯⨯⨯⨯⨯=-= ⎪⎝⎭.【例12】 如图是一个四棱锥的展开图,该展开图由正三角形和正方形构成,其中正方形的面积为8平方厘米,那么该四棱锥的体积为多少?【分析】 知道四棱锥的底面面积,只要知道四棱锥的高就能求得四棱锥的体积.将四棱锥沿对角线和顶点构成的平面剖开,剖面是一个三角形.该三角形的斜边等于正方形的对角线,直角边等于正方形和等边三角形的边长,所以三角形是一个等腰直角三角形,它的高等于对角线的一半,根据对称性,这条高也等于四棱锥的高.本题,我们要想知道四棱锥的高,如果仅仅通过操作法,可能无法准确得知.我们隆重推出“画图建模法”,比如:请注意在一个正方体中如何作等边三角形,这一经验,会让我们“类比联想”到,如何让四个等边三角形围绕一个正方形,得到四棱锥.另外,这个四棱锥的高正好等于原正方体棱长的一半.根据小正方形面积是8推得,大正方形面积是小正方形的2倍, 所以大正方形面积是16,所以大正方体的边长是4. 所以小正方体的棱长为2. 即四棱锥的高度为2.四棱锥的体积为168233⨯÷=立方厘米.1.(第十一届“迎春杯”)有一个长方体,长是宽的2倍,宽是高的3倍;长的12与高的13之和比宽多1厘米.这个长方体的体积是 立方厘米.【分析】 长的12即宽,所以高的13就是1厘米,高是3厘米,宽是339⨯=厘米,长是9218⨯=厘米,体积是3918486⨯⨯=(立方厘米).2. (第六届“华杯赛”决赛口试)某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条(如图所示)在三个方向上的加固.所用尼龙编织条分别为365厘米,405厘米,485厘米.若每个尼龙加固时接头重叠都是5厘米.问这个长方体包装箱的体积是多少立方米?【分析】 长方体中高+宽1(3655)1802=-=, ⑴高+长1(4055)2002=-=, ⑵长+宽1(4855)2402=-=, ⑶⑵-⑴:长-宽20=, ⑷ ⑷+⑶:长130=,从而宽110=, 代入⑴得高70=. 所以长方体体积为701101301001000⨯⨯=(立方厘米) 1.001=(立方米)3. 有三个大小一样的正方体,将接触的面用胶粘接在一起成图示的形状,表面积比原来减少了16平方厘米.求所成形体的体积.【分析】 三个小正方体拼接成图中的样子,减少了小正方体的4个侧面正方形的面积,表面积减少了16平方厘米,每个正方形侧面为1644÷=平方厘米,每个正方体棱长为2厘米,三个小正方体体积(即所成形体的体积)是33224⨯=立方厘米.4. 一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【分析】 由已知条件知,第二个图上部空白部分的高为752cm -=,从而水与空着的部分的比为4:22:1=,由图1知水的体积为104⨯,所以总的容积为()4022160÷⨯+=立方厘米. 5.有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图).依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?高宽长33223323322323111111【分析】 第一层如下图,第二层、第三层依次比上面一层每格都多1(见下图).765434565第三层654323454第二层第一层343212345上面的9个数之和是27,由对称性知,上面、前面、右面的所有数之和都是27.同理,下面的9个数之和是45,下面、左面、后面的所有数之和都是45.所以六个面上所有数之和是(2745)3216+⨯=.6.把一个长方体形状的木料分割成3小块,使这3小块的体积相等.已知这长方体的长为15厘米,宽为12厘米,高为9厘米.分割时要求只能锯两次,如图1就是一种分割线的图.除这种分割的方法外,还可有其他不同的分割方法,请把分割线分别画在图2的各图中.图1图2【分析】 分割方法很多,如图3,给出以下9种分割方法:图3低地的价值加州海岸的一座城市中,所有适合建筑的土地在不断的开发中都已经被开发,并予以利用,城市的地皮不断飙升着。

高斯小学奥数五年级上册含答案_第09讲_流水行船问题

第九讲流水行船问题故事中飞机倒飞的情况真的会出现吗?学习完今天的课程,你就知道了.如同飞机在飞行的时候会受到风速的影响一样,当船在水中航行时,也会受到水速的影响,而具体是怎样的影响呢,我们今天就来研究一下.当船在水中航行时,如果水是静止不动的,那船的行驶速度就只由船本身决定,这个速度称为船的静水速度,即船本身的速度.大家可以设想一下,如果船本身停止运动,那么它还是会顺着水流前进,这时的速度等于水流的速度,我们可以把水流的速度简称为水速.当船顺水而行时,船的静水速度和水速会叠加起来,行驶速度会变快,此时的速度我们称之为顺水速度;相反的,如果船逆水而行,水速会抵消掉一部分船本身的速度,行驶速度会变慢,此时的速度我们称之为逆水速度.下面的两个基本公式就给出了对应的计算方法:顺水速度静水船速水速;=+逆水速度静水船速水速;=-很容易的,根据和差问题的计算方法,我们可以得到如下结论:()2=÷水速顺水速度-逆水速度;()2船速顺水速度+逆水速度.=÷这四个公式是流水行船问题中最基本的速度计算公式.下面我们就利用这四个公式,解决几个典型的流水行船问题.例题1.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.【分析】能不能先把顺水速度和逆水速度算出来?一艘飞艇,顺风6小时行驶了900公里;在同样的风速下,逆风行驶600公里,也用了6小时.那么在无风的时候,这艘飞艇行驶1000公里要用多少小时?例题2. 甲河是乙河的支流,甲河水速为每小时3千米,乙河水速为每小时2千米.一艘船沿甲河顺水7小时后到达乙河,共航行133千米.这艘船在乙河逆水航行84千米,需要花多少小时?「分析」要求出船在乙河中航行84千米所用的时间,只需知道船在乙河行驶的速度,那么只需要知道船的静水速度就可以了.能通过船在甲河中的运动过程求出静水速度么?A 、B 两港相距120千米.甲船的静水速度是20千米/时,水流速度是4千米/时.那么甲船在两港间往返一次需要多少小时?在解答流水行船问题时,我们需要牢牢抓住水速对船速的影响.同一艘船在顺水航行与逆水航行中的速度不相同,所以我们在解题时应该把船在不同情况下的运动过程分开考虑. 对于有些问题,如果发现题目中条件不足,可以采用设具体数值的方法来解决.例题3. 轮船从A 城行驶到B 城需要3天,而从B 城回到A 城需要4天.请问:在A 城放出一个无动力的木筏,它漂到B 城需多少天?甲乙84千米 水流方向行驶方向133千米 水 流 方 向行 驶 方 向【分析】我们要求木筏从A城到B城的漂流时间,只需知道木筏漂流的速度即可.由于木筏是无动力的,也就是说木筏漂流的速度就等于水速.但现在只知道时间,不知道任何的速度或者距离,那该怎么办呢?一艘船在A、B两地往返航行,如果船顺水漂流,从A地到达B地需要60小时,而开船从B地到达A地需要30小时.那么这艘船从A地开到B地需要多长时间?对于有些复杂的流水行船问题,我们需要分段考虑.例题4.甲、乙两船分别从A港出发逆流而上驶向180千米外的B港,静水中甲船每小时航行15千米,乙船每小时航行12千米,水流速度是每小时3千米.乙船出发后两小时,甲船才出发,当甲船追上乙船的时候,甲已离开A港多少千米?若甲船到达B港之后立即返回,则甲、乙两船相遇地点离刚才甲船追上乙船的地点多少千米?「分析」乙船比甲船早两小时出发所行驶的距离,就是甲船追乙船时的路程差.练习4:A码头在B码头的上游,两个码头之间的距离是180千米.货船的静水速度是9千米/时,从A码头出发开往B码头;客船的静水速度是15千米/时,与货船同时出发,从B 码头开往A码头.水速是3千米/时.两船相遇后,货船马上掉头,与客船同时开向A码头.那么货船到达A码头的时间比客船晚几小时?下面我们来看看流水行船问题中的相遇与追及问题.通过一些具体的例子我们可以发现,如果两船相向而行,两船的速度和就是静水速度之和;如果两船同向而行,两船的速度差就是静水速度之差.因此,相遇时间和追及时间与水速大小无关.例题5. A 、B 两码头间河流长为300 千米,甲、乙两船分别从A 、B 码头同时起航.如果相向而行 5 小时相遇,如果同向而行10小时甲船追上乙船.求两船在静水中的速度.【分析】不妨设A 码头在上游,B 码头在下游.如果相向而行,甲船的实际速度为甲速+水速,乙船的实际速度为乙速-水速,两船的速度之和就是甲速+乙速,所以相遇时间和水速大小没有关系.如果同向而行,追及时间是不是也与水速大小没有关系呢?例题6. 某人在河里游泳,逆流而上.他在A 处掉了一只水壶,向前又游了20分钟后,才发现丢了水壶,立即返回追寻,在离A 处2千米的地方追到.假定此人在静水中的游泳速度为每分钟60米,求水流速度.【分析】游泳者丢失水壶时,他并没有发觉,仍旧逆流而上,此时游泳者的速度是:-静水速度水速,而水壶则顺流而下,速度和水速相同.两者背向而行,相当于一个相遇问题的逆过程.速度和为“()-+静水速度水速水速”,恰好为游泳者的静水速度.当游泳者返回的时候,他开始追自己的水壶,此时他和水壶的速度又是怎样的?追及时的速度差又是多少呢?帆船帆船起源于欧洲,其历史可以追溯到远古时代。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 【简便运算】3.9×0.14÷(
2.1×0.13) 1.72×10361+7
3.8×542
2. 【解方程】0.3(x +1.6)=7.8-1.7x 7.8-1.7x =0.3(x +1.6)
3. 【长方体和正方体】一根长8分米的长方体木料,垂直于它的长正好锯成4个一样的正方体,表面积一共增加了( )平方分米。

4. 为配合“书香进校园”活动的开展,学校决定为各班级添置书柜,原计划用4000元购买若干个书柜,由于市场价格变化,每个价格上涨20元,实际购买时多花了400元。

书柜原来的单价是( )元。

5. 【列方程解决问题】小明在330米长的环形跑道上跑了一圈,已知他前一半时间每秒跑6米,后一半时间每秒跑5米,那么后一半路程小明跑了( )秒。

6. 【巧算面积】下图中5个阴影部分所示的图形都是正方
形,所标的数字是邻居线段的长度。

那么阴影部分的总面
积是多少?
7.【探索规律】用同样大小的黑色棋子按如图所示的规律摆放:
(1)第5个图形中有多少颗黑色棋子?
(2)第n个图形又多少颗棋子?
(3)第几个图形中有2013颗黑色棋子?
8.【还原与轴对称】将一张正方形纸连续对折两次,并在折后的纸中间打一个圆孔(如图所示),再将纸展开,则展开后是()。

请为不同的折法选择展开后的图形。

9.【钟面问题】在9时和3时,时针和分针的夹角相同,下面四个答案中,()两针的夹角也相同。

A.9时半和3时半
B.11时和12时5分
C.8时半和3时半
D.6时和12时半
10.【阅读理解】“摄氏度”和“华氏度”都是用来计量温度的单位,他们之间的换算关系是“华氏度=32+摄氏度×1.8”。

如果某人的体温是101.48华氏度,那么也就是()摄氏度。

相关文档
最新文档