分式定义
高中分式及其运算

高中分式及其运算
摘要:
1.分式的定义与基本概念
2.分式的运算法则
3.分式的应用与实际问题解决
正文:
一、分式的定义与基本概念
分式是代数学中的一种表达式,表示一个整体被划分为若干部分,其中的一部分或几部分的比值。
分式通常由两个整式相除构成,其中分子是一个整式,分母是另一个整式。
分式中,分子表示被划分的部分,分母表示整体被划分成的部分。
在代数学中,分式可以进行各种运算,如加、减、乘、除等。
二、分式的运算法则
1.加法:将两个分式的分子相加,分母保持不变,即(a/b) + (c/d) = (ad + bc) / bd。
2.减法:将两个分式的分子相减,分母保持不变,即(a/b) - (c/d) = (ad - bc) / bd。
3.乘法:将两个分式的分子相乘,分母相乘,即(a/b) * (c/d) = (ac) / (bd)。
4.除法:将两个分式的分子相除,分母相除,即(a/b) / (c/d) = (ad) / (bc)。
三、分式的应用与实际问题解决
分式在实际问题中有广泛应用,例如在物理、化学、生物等科学领域中,
经常需要用分式表示各种比例关系。
掌握分式的运算法则,有助于更好地解决实际问题。
例如,在物理学中,我们可能会遇到这样的问题:一个物体在竖直方向上受到两个力的作用,其中一个力为F1,另一个力为F2,物体在两个力的作用下上升的高度之比为h1:h2,求两个力的大小之比。
通过设分式,我们可以很容易地解决这个问题。
分式知识点归纳

分式知识点归纳一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子$\frac{A}{B}$就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是,分式的分母不能为 0,因为除数不能为 0。
如果分母 B 的值为 0,那么分式$\frac{A}{B}$就没有意义。
例如,$\frac{x}{y}$是一个分式,其中 x 是分子,y 是分母;而$\frac{5}{3}$就不是分式,因为它的分母 3 是一个常数,不含字母。
二、分式有意义的条件分式有意义的条件是分母不为 0。
即对于分式$\frac{A}{B}$,当$B \neq 0$ 时,分式有意义。
例如,对于分式$\frac{x + 1}{x 2}$,要使其有意义,则$x2 \neq 0$,即$x \neq 2$。
三、分式值为 0 的条件分式值为 0 的条件是分子为 0 且分母不为 0。
即对于分式$\frac{A}{B}$,当$A = 0$ 且$B \neq 0$ 时,分式的值为 0。
例如,若分式$\frac{x^2 1}{x + 1}$的值为 0,则$x^2 1 =0$ 且$x + 1 \neq 0$。
由$x^2 1 = 0$ 可得$x =\pm 1$,又因为$x + 1 \neq 0$,所以$x \neq 1$,因此$x = 1$ 时,该分式的值为 0。
四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
用式子表示为:$\frac{A}{B} =\frac{A \times C}{B \times C}$,$\frac{A}{B} =\frac{A \div C}{B \div C}$($C \neq 0$)例如,$\frac{x}{y} =\frac{x \times 2}{y \times 2} =\frac{2x}{2y}$,$\frac{3a}{5b} =\frac{3a \div 3}{5b \div 3} =\frac{a}{\frac{5}{3}b}$五、约分把一个分式的分子和分母的公因式约去,叫做约分。
分式的定义

分式的定义分式是由两个整式构成的比值,它通常写成$\frac{A(x)}{B(x)}$的形式,其中$A(x)$和$B(x)$是两个整式,$B(x)$不等于0。
分子$A(x)$是分式的分子,分母$B(x)$是分式的分母。
分数可以表示为带分数或小数,但分式只能表示为分式形式。
分子和分母都是整式的分式称为代数分式,而分子或分母中含有实数或变量的分式称为含有实数或变量的分式。
分数是初中数学中最简单和最重要的概念之一。
分式的含义是把一个整体分成若干份,并取其中的一份或几份,或者将分子分数与分母分数的比较简单的方法。
分式的定义把两个多项式的表达式用除法来表示,分母是被除数的表达式,分子是除数的表达式。
分式中的分式在代数上的意义是相同的。
例如,$\frac{2}{3}$和$\frac{4}{6}$表示相同的数值,它们都代表同一个比值。
分式中不能出现分母为0的情况,因为任何数除以0都无法得到一个有意义的结果。
如果分母为0,那么分式就没有定义。
一个分式是简单分式,当分母和分子都为一次多项式时。
一个分式是复杂分式,当分子或分母中至少有一个高于一次的多项式时。
如果一个分子中的每一个项都是分母的因数,则该分式被称为真分式。
如果一个分式的分子是一个多项式,这个多项式可以被分解成独立的因子,每个因子都不是分母的因子,那么这个分式被称为带余式。
分式的基本运算要比整式复杂得多,因为要注意分母不能为零。
对于分式的四则运算来说,最重要的原则是分母化通,即把每个分式的分母化为相同的多项式,这样就能进行加减乘除了。
例如,如果要计算$\frac{a}{b}+\frac{c}{d}$,那么需要把分母化为相同的多项式,最终结果才能以分式的形式表示。
因此,可以将分母通分为$bd$,然后得到等效的分式$\frac{ad+bc}{bd}$。
总之,分式是代数学中一个非常重要的概念,它被广泛应用于各种数学方面,包括高等数学,物理和工程学。
了解分式的基本概念和运算方法是理解更高级数学理论的关键。
分式必考知识点

分式是数学中的一个重要知识点,也是许多学生在学习数学过程中较为困惑的部分。
本文将从基础概念、分式的基本运算、简化分式以及分式方程等方面,逐步介绍分式的必考知识点。
一、基础概念1.分式的定义:分式是指一个整体被分为若干等份,每份的大小用分母表示,总份数用分子表示。
分子在上,分母在下,二者之间用一条水平线隔开,如:1/2。
2.分子和分母:在分式中,分子表示被分割的整体中的一份,分母表示整体被分割成的份数。
3.分式的值:分式的值等于分子除以分母的结果。
例如,1/2表示整体被分为2份,其中的1份。
二、基本运算1.分式的加减法:分式的加减法要求分母相同,通过找到分式的最小公倍数,将分式的分母转换为相同的数,然后对分子进行加减。
例如,1/3 +1/4 = 4/12 + 3/12 = 7/12。
2.分式的乘法:分式的乘法要求将分子与分母分别相乘。
例如,1/2 ×2/3 = (1 × 2)/(2 × 3) = 2/6 = 1/3。
3.分式的除法:分式的除法可以转化为乘法的倒数运算。
将除法转换为乘法,并将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘。
例如,1/2 ÷ 2/3 = 1/2 × 3/2 = 3/4。
三、简化分式1.约分:将分式的分子与分母同时除以它们的最大公约数,得到一个等价的最简分式。
例如,4/8可以约分为1/2,因为4和8的最大公约数是4。
2.整数部分化为分数:将整数转化为分数形式,分子为整数,分母为1。
例如,2可以表示为2/1。
四、分式方程1.分式方程的定义:分式方程是含有分式的等式。
分式方程的求解过程与一元一次方程类似。
2.分式方程的求解步骤:–对分式方程的两边进行通分,将分式方程转化为整式方程。
–将方程两边的分式化为最简分式。
–化简方程两边的整式,并合并同类项。
–通过移项和合并同类项,将方程化为一元一次方程。
–求解方程,得到未知数的值。
初二数学分式

初二数学分式一、 知识要点1:分式的定义:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子BA 叫做分式,A 为分子,B 为分母且B 不能为0。
2:分式的基本性质:分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
3:分式的约分:把分式分子分母因式分解,然后约去分子与分母的公因。
①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。
4:最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
5: 分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
注意:分式的分母为多项式时,一般应先因式分解。
6:整数指数幂:引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。
即n m n m a a +=⋅a ()mn n m a a =()n n n b b a a = n m n m a a -=÷a (0≠a )n n b a b a =⎪⎭⎫ ⎝⎛nn a 1=-n a (0≠a ) 10=a (0≠a ) (任何不等于零的数的零次幂都等于1)其中m ,n 均为整数。
7:分式方程的解的步骤⑴去分母,把方程两边同乘以各分母的最简公分母。
(产生增根的过程)⑵解整式方程,得到整式方程的解。
⑶检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。
产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。
8:应用题的几种类型:(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题。
(2)、工程问题 基本公式:工作量=工时×工效。
分式讲义

分式一、基本知识1、分式定义:形如BA的式子叫分式,其中A 、B 是整式,且B 中含有字母。
(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。
(2)分式的值为0:A=0,B ≠0时,分式的值等于0。
(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是把分子、分母因式分解,再约去公因式。
(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
分式运算的最终结果若是分式,一定要化为最简分式。
(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
(6)最简公分母:各分式的分母所有因式的最高次幂的积。
(7)有理式:整式和分式统称有理式。
2、分式的基本性质: (1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M MB M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。
(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
(3)除:除以一个分式等于乘上它的倒数式。
(4)乘方:分式的乘方就是把分子、分母分别乘方。
二、例题讲析 1、 (2011黑龙江黑河,18,3分)分式方程=--11x x)2)(1(+-x x m 有增根,则m 的值为 ( )A 0和3B 1C 1和-2D 3 【答案】D2、 (2011年铜仁地区,4,4分)小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm ,则据题意列出的方程是( )A.60512601015-=+x x B.60512601015+=-x x C.60512601015-=-x x D.5121015-=+x x .【答案】A3、(2011内蒙古包头,17,3分)化简122144112222-++÷++-⋅-+a a a a a a a ,其结果是 . 【答案】11-a 4. (2011广西梧州,24,10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?【答案】解:(1)设今年甲型号手机每台售价为x 元,由题意得, 80000x+500=60000x . 解得x =1500. 经检验x =1500是方程的解.故今年甲型号手机每台售价为1500元. (2)设购进甲型号手机m 台,由题意得, 17600≤1000m +800(20-m )≤18400, 8≤m ≤12.因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案. (3)方法一: 设总获利W 元,则W =(1500-1000)m +(1400-800-a )(20-m ), W =(a -100)m +12000-20a .所以当a =100时,(2)中所有的方案获利相同. 方法二:由(2)知,当m =8时,有20-m =12.此时获利y 1=(1500-1000)×8+(1400-800-a )×12=4000+(600-a )×12 当m=9时,有20-m=11此时获利y 2=(1500-1000)×9+(1400-800-a )×11=4500+(600-a )×11 由于获利相同,则有y 1= y 2.即4000+(600-a )×12=4500+(600-a )×11,解之得a =100 .所以当a =100时,(2)中所有方案获利相同. 5. (2011贵州黔南,21,10分)为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:单位 清淤费用(元/m 3) 清淤处理费(元)甲公司18 5000 乙公司20 0 (1)若剑江河首批需要清除的淤泥面积大约为1.2万平方米,平均厚度约为0.4米,那么请哪个清淤公司进行清淤费用较省,请说明理由。
分式(分式的概念、性质及计算)
学好分式三步走:1.分式的概念,分式何时有意义,何时值为零2.分式的基本性质,约分,通分3.分式的加、减、乘、除、乘方运算1.分式的概念,分式何时有意义,何时值为零①分式的定义:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式,其中A 叫分子,B 叫分母且B ≠0 。
②分式有意义(或分式存在)的条件:分式的分母不等于零即 B ≠0 。
③分式的值为零的条件:分式的值为零是指分式在有意义的前提下分式的分子为零。
即当A =0且B ≠0时,0AB =。
【例1】 ⑴若分式25x -有意义,则x 的取值范围是( )⑵分式211x x --的值为0,则x 的值为( )2.分式的基本性质,约分,通分①分式的基本性质:分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变。
()0A A M A MM B B M B M ÷==÷×≠×②利用分式的基本性质,约去分子和分母的公因式,但不改变分式的值,这样的分式变形叫做分式的约分。
分子分母中没有公因式的分式叫做最简分式。
③通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个分式变成分母相同的分式。
为了通分,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母。
【例2】 ⑴化简222a b a ab -+的结果为( )分 式⑵化简2244xy y x x --+的结果为( )3.分式的加、减、乘、除、乘方运算分式的乘法 a c a c b d b d⋅⋅=⋅ 分式的除法 a c a d a d b d b c b c ⋅÷=⋅=⋅分式的乘方 nnn a a b b ⎛⎫= ⎪⎝⎭同分母分式相加减 a b a bc c c ±±=异分母分式相加减 acadbc ad bcb d bd bd bd ±±=±=0指数幂 01(0)a a =≠ 负整数指数幂 1p p a a -= (a ≠0,且p 为正整数)【例3】 化简22226211296x x x x x x x x -++++÷--+-思想方法吐血大总结:1.分式是否有意义、何时值为零以及基本性质都和分数相近。
数学中分式的定义是什么
数学中分式的定义是什么分式(fēn shì)是指有除法运算,而且除数中含有未知数的有理式。
如果A、B表示两个整式,并且B中含有字母(B≠0),那么式子A / B 就叫做分式,其中A叫做分子,B叫做分母。
分式是不同于整式的另一类式子。
数学中分式的定义是什么?以下是店铺为大家整理的关于分式的定义,欢迎大家前来阅读!分式的概念定义形如,A、B是整式,B中含有字母且B不等于0的式子叫做分式(fraction)。
其中A叫做分式的分子,B叫做分式的分母。
如是分式,还有也是分式。
要使分式有意义,则y不等于0.注意掌握分式的概念应注意:判断一个式子是否是分式,不要看式子是否是A/ B的形式,关键要满足:(1)分式的分母中必须含有字母。
(2)分母的值不能为零。
若分母的值为零,则分式无意义。
由于字母可以表示不同的数,所以分式比分数更具有一般性。
整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式无理式和有理式统称代数式有意义的条件(1)分式有意义条件:分母不为0(2)分式无意义条件:分母为0;(3)分式值为0条件:分子为0且分母不为0;(4)分式值为正(负)数条件:同号得正,异号得负。
分式性质介绍1.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:,(A,B,C为整式,且B、C≠0)。
2.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
约分的关键是确定分式中分子与分母的公因式。
3.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
4.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式。
八年级数学分式概念
密度是物体的质量与其体积的比值,也可以用分式表示。例如,水的密度是1千克每升, 即$frac{1}{1} = 1$千克每升。
压强计算
压强是压力与受力面积的比值,同样可以用分式表示。例如,大气压强为101千帕,即 $frac{101}{1} = 101$千帕。
化学中的应用
01 02
化学反应速率
分式的性质
01
02
03
分式的值不变
当分子和分母同时乘以或 除以同一个非零数时,分 式的值不变。
分式的值域
分式的值域是其定义域的 子集,取决于分母的值。
分式的化简
通过约分和通分,可以将 分式化简为更简单的形式。
分式的约分与通分
约分
将分子和分母的最大公约数约去 ,使分式化简。
通分
将两个或多个分式化为相同的分 母,以便进行加减运算。
同分母分式相加减时,分母不变,分 子直接相加减。
异分母分式相加减
分数和小数的转换
在进行分式加减法时,可以将分数转 换为小数,或者将小数转换为分数, 以方便计算。
异分母分式相加减时,需要先通分, 再按照同分母分式的加减法进行运算。
混合运算
顺序法则
在进行分式的混合运算时,应遵 循先乘除后加减的顺序进行运算。
感谢您的观看
化简方程
通过合并同类项、约分等 手段,化简方程到最简形
式。
去分母
通过乘以公分母,将分数 项去掉,得到一个整式方
程。
验根
将得到的解代入原方程进 行验证,确保解是正确的。
分式方程的应用
实际问题建模
求解方程
验证解的合理性
应用解
将实际问题转化为数学模 型,通常是通过设立未知 数和建立方程来实现。
分式化简知识点总结
分式化简知识点总结一、分式的定义分式是由分子和分母组成的数学表达式,通常表示为a/b的形式,其中a为分子,b为分母,b不能为0。
分式表示了两个数之间的比例关系,它可以用来表示比例、比率、百分数、概率等。
二、化简分式的规则化简分式是指将分式表达式化为最简形式,即分子与分母都不能再被约分的形式。
化简分式的规则如下:1. 将分子和分母的公因式约去。
2. 分式中的各项均不能再被约分为整数。
3. 如果分子和分母中含有指数,可以利用指数的性质进行化简。
例如,对于分式3/6,它可以化简为1/2;对于分式6x/9x,它可以化简为2/3。
三、分式的运算分式的运算包括加减乘除四则运算,下面我将分别介绍这四种运算的规则。
1. 分式的加法和减法:分式的加法和减法规则如下:1. 找到两个分式的公分母,并将它们化为相同的形式。
2. 将分子相加或相减,并保持分母不变。
例如,对于分式1/2 + 1/3,首先找到它们的最小公倍数为6,然后将它们化为相同的形式,得到3/6 + 2/6,最后将分子相加得到5/6。
2. 分式的乘法:分式的乘法规则如下:1. 将分式的分子和分母相乘,得到新的分子和分母。
2. 将新的分子和分母化为最简形式。
例如,对于分式1/2 * 2/3,将分子和分母相乘得到2/6,化简为1/3。
3. 分式的除法:分式的除法规则如下:1. 将分式的分子乘以倒数,得到新的分子。
2. 将新的分子和分母化为最简形式。
例如,对于分式1/2 ÷ 3/4,将分子乘以倒数得到1/2 * 4/3 = 4/6,化简为2/3。
四、分式方程分式方程是指方程中包含分式的等式。
解分式方程的一般步骤如下:1. 将方程中的分式化为最简形式。
2. 经过等式两边的乘除法,使得方程中的分式消失。
3. 求解方程得到分式的值。
例如,对于分式方程(2x-1)/3 = 1/3,首先将分式化为最简形式,得到(2x-1)/3 = 1/3,然后经过等式两边的乘除法,将分式消失,得到2x - 1 = 1,最后求解方程得到x=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.1.1.分式的概念
一、素质教育目标
(一)知识储备点
理解并掌握分式、有理式的概念,正确识别分式是否有意义,能掌握分式的值是否等于零的方法.
(二)能力培养点
通过分数类比,概括出分式的概念,培养学生观察、猜想、类比的能力,通过有理式概念的归纳,培养学生归纳、分析问题的能力,通过整式与分式的区别,培养学生分类问题的能力.
(三)情感体验点
分式、有理式的概念,渗透数学概念的简洁美与对称美,学生在学习过程中自主探索,在类比中得出新的知识,让学生在自主探索中得到成功的喜悦,形成良好的学习氛围,得到数学能力的最大满足.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辩证观点的再认识.
二、教学设想
1.重点:使学生理解并掌握分式、有理式的概念.
2.难点:正确识别分式是否有意义,通过类比分数的意义,•加强对分式意义的理解.3.疑点:分式的值在什么情况下等于零.
4.课型与基本教学思路:新授课.本节课通过具体例题,•由分数的表示类比分式的表示法,得出分式的概念,归纳出有理数的概念,并能识别分式是否有意义及分式的值是否等于零.
三、媒体平台
教具、学具准备:自制投影胶片.
四、课时安排
1课时
五、教学步骤
(一)教学流程
1.情境导入
(投影显示)问题:
(1)面积为2m2的长方形,一边长3m,则它的另一边长为多少?
(2)面积为Sm2的长方形,一边长am,则它的另一边长为多少?
(3)一箱苹果售价为P元,总量m千克,箱重n千克,则每千克苹果的售价是多少?
2.课前热身
(复习提问)
(1)把下列两个数相除的形式表示成分数的形式:3÷4;4÷3;8÷7;-8÷3;3÷(-8)(2)分数中的分子、分母与除式中的被除数、除数是什么关系?
(3)为什么分数的分母不能为零?
3.合作探究
(1)整体感知:A.让学生通过问题讨论并回答:①面积为2m2的长方形,一边长3m,则它的另一边长为m;②面积为Sm2的长方形,一边长am,则它的另一边长为m;
③一箱苹果售价为P元,总重m千克,箱重n千克,则每千克苹果的售价是元.学生发现两个整式相除,不能整除时结果可用分数表示.B.教师总结:形如(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.其中A叫做分式的分子,B•叫做分式的分母.整式和分式统称有理数,即
有理式
(2)四边互动
互动1
师:教师在讲述分式的概念之后,就小学时零不能做除法,提示学生注意分式中应注意哪一个问题,学生互相讨论,回答.
生甲:在分式中,分母的值不能是零,因为零不能做分母.
生乙:如果分母的值是零,则分式就没有意义了.。