(一)带电粒子在匀强电场中的运动

合集下载

2021届高三物理一轮复习——带电粒子在匀强电场中的运动

2021届高三物理一轮复习——带电粒子在匀强电场中的运动

2021届高三物理一轮复习——带电粒子在匀强电场中的运动带电粒子(不计重力)在匀强电场中的运动类型:(1)直线运动:初速度方向与电场方向在同一直线或由静止出发,一般用牛顿第二定律与运动学公式结合处理或用动能定理处理;(2)类平抛运动:初速度方向与电场方向垂直,一般从运动的分解的角度处理,也可用动能定理处理能量问题;(3)斜抛运动:初速度方向与电场方向有一定夹角,一般从运动的分解的角度处理.1.(2019·河南省八市重点高中联盟第三次模拟)如图1,矩形ABCD 区域存在沿A 至D 方向的匀强电场,场强为E ,边长AB =2AD ,质量为m 、带电荷量q 的正电粒子以恒定的速度v 从A 点沿AB 方向射入矩形区域,粒子恰好从C 点以速度v 1射出电场,粒子在电场中运动时间为t ,则( )图1A .若电场强度变为2E ,粒子从DC 边中点射出B .若电场强度变为2E ,粒子射出电场的速度为2v 1C .若粒子入射速度变为v 2,则粒子从DC 边中点射出电场 D .若粒子入射速度变为v 2,则粒子射出电场时的速度为v 122.(2020·安徽安庆市调研)如图2所示,一充电后的平行板电容器的两极板相距l .在正极板附近有一质量为M 、电荷量为q (q >0)的粒子;在负极板附近有另一质量为m 、电荷量为-q 的粒子,在电场力的作用下,两粒子同时从静止开始运动.已知两粒子同时经过一平行于正极板且与其相距25l 的平面.若两粒子间相互作用力可忽略,不计重力,则M ∶m 为( )图2A .3∶2B .2∶1C .5∶2D .3∶13.(2019·福建龙岩市3月质量检查)如图3所示,平行边界PQ 、MN 间存在竖直向下的匀强。

带电粒子在匀强电场中的运动

带电粒子在匀强电场中的运动

带电粒子在匀强电场中的运动【教学结构】一、带电粒子在电场中加速1.电场力对带电粒子做功如图1所示的匀强电场,场强为E,AB之间电势差为U,把带电量为q的正电荷放在A处,设初速度为零,在电场力作用下,q从A加速运动到B,设到达B处速度为υ.带电粒子从A运动到B,电场力对带电子做正功,W=Uq.电场力做功使电势能减少Uq,而转化成为动能.因而带电粒子获得动能为Uq.2.动能定理(1)因为带电粒子的重力很小,远远小于电场力,可以忽略不计.(2)外力对带电粒子的总功就等于电场力的功:Uq.(3)根据动能定理Uq=12mυ2(4)如带电粒子到达A点时速度不为O,而是υ0,则Uq=12mυ2-12mυ23.计算加速后带电粒子速度如图2所示,一对平行金属板AB,中间有小孔MN,AB 与电源相连,A板接负极,两板间电压为U,电子在M处初速为零,经电场加速后从N孔穿出,穿出时速度υ=?Uq=12mυ2υ=2Uqm,若在M处初速为υ0,则,Uq=12mυ2-12mυ2υ=υ22+Uqm二、带电粒子在电场中偏移1.分析带电粒子在电场中运动过程如图3所示,平行金属板与电压为U的电源相连,板间为匀强电场,板长为L,两板间距离为d,质量为m,带电量为q的正电荷以初速υ0沿两板中轴线进入电场.设轴线方向为x,与轴线垂直方向为y.在x方向带电粒子不受力,应做匀速运动.在y方向:带电粒子应受电场力,若y方向为竖直方向,还应受重力,但带电粒子重力很小可忽略不计.故只受沿正y方向的电场力,带电粒子沿正y方向做初速为零的匀加速运动.综上所示,粒子运动轨迹与平抛运动很相似,故又称类平抛运动.2.研究带电粒子偏转规律(1)借此机会复习平抛运动研究方法,提高解决平抛问题的能力.(2)根据处理平抛运动的方法,分两个方向研究运动过程x方向:L=υ0 t,带电粒子穿出电场时位移为L,所用时间为t.y方向:y=12at2,y为离开电场时,在y方向上的位移,有的书称为横向位移.a是在电场力作用下产生加速度.a =Uq dm .认真分析:E =U d ,F=Eq =Uq d ,a =F m =Uq dm y =Uqmd L 22υ02.利用运动学知识进一步推进.在y 方向带电粒子离开电场时的速度:υy=at =UqL dm υ0.带电粒子离开电场中偏转角φ的决定式: t g φ =υυy0=gUL md υ02.注意:带电粒子离开电场后应以υυυ=+y 202,作匀速直线运动,方向为与υ0成φ角.作速度υ的反向延长线与平行金属板轴线相交于O 点,正好是轴线的中点,如图5所示.可想像成经过偏转电场的粒子都是从两板正中点射出来的.证明如下,设板的边缘与O 间距离为x ,y=x ·tg φx=y/tg φ=Uqmd L UqL md L 22202υ02υ=. (3)带电粒子能离开偏转电场的条件.当偏转电场装置一定,即L 、d 不变,带电粒子m 、q 、υ0一定,带电粒子能否离开电场,就取决于两板电压U .y =UqLdm d υ022<,即U d m qL <20222υ.如U 大于此值粒子打在板的某处而不能出偏转电场.当偏转电场装置一定,板间电压一定,粒子m 、q 一定,带电粒子能否离开电场,就取决于带电粒子射入电场时υ0大小(υ0方向沿轴线方向).当υ0222>UqLmd 时,带电粒子可离开偏转电场.【课余思考】1.电场使带电粒子加速和偏转的原理是什么,点电荷电场能否给带电粒子加速?2. 带电粒子离开偏移电场时的横向位移,偏转角,横向速度表达式是什么?【解题点要】例一、如图6所示,B 板电势为U ,质量为m 的带电粒子以速度υ0水平射入电场,若粒子带-q 电量,则粒子到达B 板时速度大小为 ,若粒子带+q 电量,它到达B 板时速度大小为 .解析:A 板接地电势为零,B 板电势为U ,高于A 板电势.板间电场方向从B 向A ,负电荷受电场力方向为由A 向B ,带电粒子由A 板到达B 板电场力做正功,动能增大,根据电场加速原理:Uq =1212202m m υυ- υυ=+022Uq m.带电粒子带正电时,电场力做负功,-Uq =1212202m m υυ- υυ1022=-Uq m.电场力对带电粒子做正功时,把电势能转化为动能,电场力做负功时,把动能转化为电势能.从能量角度更容易理解带电粒子在电场中加速.例二、一个初动能为2000e v的电子,垂直电场线方向进入场强为5×104v/m 的匀强电场,离开电场时偏转距离为1cm,那么电子离开电场时的动能为.解析:本题是研究带电粒子在电场中加速还是偏转?粒子的初速度与场强方向垂直,电场作用方向与场强方向为同一条直线上,能用电场对带电粒子加速的公式吗?从题给的条件里很容易理解为带电粒子在电场中偏转,仔细审题便知.本题的要求还是电场对电子做功而使电子动能变化,求出所求,应是电子在电场中加速.速度是矢量当方向不同时,速度之和满足平行四边形法则,动能是标量、无方向问题,不能认为速度方向即是动能方向.动能之和用代数和的方法就可求.本题解应为:电场力的功:W=Eed=e·5×104×10-2=e·5×102=500e vW=E K-EK0E K=W+EK0=5×102+2000=2500e v例三、如图7所示,电子从负极板边缘垂直电场线方向射入匀强电场恰好从正极板的边缘射出,今使两极板间距离增大为原来的2倍,而电子仍以同样的速度射入,也恰好从正极板的边缘射出这时两板电势差为原来的()A.2倍B.4倍C.2倍D.相等解析:什么叫电子恰好从正极板边缘射出,前后两种情况有何变化?本题很明显是解决电子在电场中偏转问题,刚好从边缘射出,指的是在沿垂直场强方向位移为板长时,沿场强方向位移为两板间的距离.设板长为L,板间距离为d,两板间电压为U,带电粒子质量为m,电量为e,射入电场速度为υ0,题中给出两种情况是L、m、e、υ0均不变,试求当d变为2d时,U如何变.故有dUeLdmdU eLdmUU==⋅=222222224υυ与两式相比可得'',故选B.例四、如图8所示,电子在加速电压为U1的电场中,由静止开始加速,然后射入电压为U2的两块平行板间的偏转电场中.入射方向跟极板平行,整个装置处在真空中,重力可以忽略.在满足电子能射出平行极板区域的条件下.下述四种情况中,一定能使电子的偏转角φ变大的是()A.U1变大、U2变大B.U1变小、U2变大C.U1变大、U2变小D.U1变小、U2变小解析:电子经过加速电场和偏转电场的偏转角度φ与U1、U2的关系是什么?解决这个问题后,选项很容易确定.电子经加速电场加速后速度由零增到υ,U1e=12mυ2υ=21U em.电子以速度υ进入偏转电场,经过后偏转角:tg φ=U eL md 22把υ=21U e m代入上式可得:tg φ=U L U d 212.L 、d 为不变的量,所以tg φ∝U U 21.U U 21增大时,φ增大.A 选项,U 1、U 2都增大,U U 21不一定增大,φ不一定变大;不能选.选项B ,U 1变小、U 2变大,U 2/U 1一定变大,B 选项正确.C 、D 选项都不能保证φ一定增大故不能选.答案:B .解答这类题不能猜,应根据学过的公式,准确确定φ与U 1、U 2的关系,最好有表达式,如:tg φ=U L U d212.以此为依据便能准确选择.【同步练习】1.原来都静止的质子(氢原子核11H )和α粒子(氦原子核24He ),经过同一电压的加速后,它们的速度大小之比为( )A .1 : 1B .1 : 2C .1 : 4D .2 : 12.如图9所示,电子经加速电场(电压为U 1)后进入偏转电场(电压为U 2),然后飞出偏转电场,要使电子飞不出偏转电场可采取的措施有( )A .增大U 1,其它条件不变B .减小U 1,其它条件不变C .增大U 2,其它条件不变D .减小U 2,其它条件不变 3.如图10所示,三个质量相等,分别带正电、负电和不带电的小球从带电平行金属板的P 点以相同的速率沿垂直于电场方向射入电场,它们分别落在A 、B 、C 三点上( )A .A 带正电,B 不带电,C 带负电B .三个小球在电场中运动时间相等C .三个小球在电场中的加速度大小关系是a C >a B >a AD .三个小球到达正极板时的动能的关系是E A >E B >E C4.如图11中,MN 为两块竖直放置的平行金属板,带电微粒紧靠着M 板以速度υ0竖直向上射入MN 两板之间.当滑动变阻器AB 的滑动触头在AB 中心位置时,带电微粒恰好垂直打在N 板上,这时速度大小和υ0相等.现将N 板移近M 板,使得其间距离减为原来的一半.求:(1)带电微粒打到N 板时速度大小.(2)欲使带电微粒仍然以垂直方向打到N 板上,应如何移动滑动变阻器的滑动头?这时打到N 板上的微粒的速度又是多大.【参考答案】1.D 2.BC 3.AC 4.(1)52υ0(2)滑动头距A为全长的18,速度为2.。

带电粒子在电场中的运动

带电粒子在电场中的运动

带电粒子在电场中的运动
带电粒子在匀强电场中运动时,若初速度与场强方向平行,它的运动是匀加速直线运动,其加速度大小为。

若初速度与场强方向成某一角度,它的运动是类似于物体在重力场中的斜抛运动。

若初速度与场强方向垂直,它的运动是类似于物体在重力场中的平抛运动,是x 轴方向的匀速直线运动和y 轴方向的初速度为零的匀加速直线运动的叠加,在任一时刻,x 轴方向和y 轴方向的速度分别为
位置坐标分别为
从上两式中消去t,得带电粒子在电场中的轨迹方程
若带电粒子在离开匀强电场区域时,它在x轴方向移动了距离l,它在y轴方向偏移的距离为
这个偏移距离h与场强E成正比,因此只要转变电场强度的大小,就可以调整偏移距离。

带电粒子进入无电场区域后,将在与原来运动方向偏离某一角度的方向作匀速直线运动。

可知

所以偏转角为
示波管中,就是利用上下、左右两对平行板(偏转电极)产生的匀强电场,使阴极射出的电子发生上下、左右偏转。

转变平行板间的电压,就能转变平行板间的场强,使电子的运动发生相应的变化,从而转变荧光屏上亮点的位置。

《带电粒子在电场中的运动》高中物理教案

《带电粒子在电场中的运动》高中物理教案

《带电粒子在电场中的运动》高中物理教案一、教学目标1.知识与技能:o理解带电粒子在电场中受到的电场力,知道电场力对带电粒子运动的影响。

o掌握带电粒子在匀强电场中的运动规律,包括直线运动和偏转运动。

o能够应用电场知识和牛顿运动定律分析带电粒子在电场中的运动问题。

2.过程与方法:o通过实验和模拟演示,让学生直观感受带电粒子在电场中的运动情况。

o引导学生通过分析和讨论,理解带电粒子在电场中运动的规律,并能应用于实际问题。

3.情感态度与价值观:o激发学生对电场和带电粒子运动的兴趣和好奇心。

o培养学生的物理直觉和逻辑推理能力,鼓励学生在科学探究中积极尝试。

二、教学重点与难点1.教学重点:带电粒子在匀强电场中的运动规律,包括直线运动和偏转运动。

2.教学难点:带电粒子在电场中的偏转运动,特别是侧移量和偏转角的计算。

三、教学准备1.实验器材:电场演示仪、带电粒子加速器模型、示波器等。

2.多媒体课件:包含带电粒子在电场中运动的模拟动画、实验演示视频、例题解析等。

四、教学过程1.导入新课o回顾电场和电场力的相关知识,引出带电粒子在电场中运动的主题。

o提问学生:“如果有一个带电粒子进入电场,它会受到怎样的影响?它的运动会发生怎样的变化?”2.新课内容讲解o带电粒子在电场中受到的电场力:根据电场强度的定义和库仑定律,推导带电粒子在电场中受到的电场力公式。

o带电粒子在匀强电场中的直线运动:分析带电粒子初速度与电场线方向相同和垂直两种情况下的直线运动规律。

o带电粒子在匀强电场中的偏转运动:通过类比平抛运动,讲解带电粒子在垂直于电场线方向上的匀速直线运动和沿电场线方向上的匀加速直线运动,进而推导侧移量和偏转角的计算公式。

3.实验探究o演示带电粒子在电场中的运动实验,让学生观察带电粒子的运动轨迹和偏转情况。

o引导学生分析实验数据,验证带电粒子在电场中运动的规律,并尝试计算侧移量和偏转角。

4.课堂练习与讨论o出示相关练习题,让学生运用所学知识分析带电粒子在电场中的运动问题,并进行计算。

高考物理 考点一遍过 考点 带电粒子在匀强电场中的运动(含解析)

高考物理 考点一遍过 考点 带电粒子在匀强电场中的运动(含解析)

取夺市安慰阳光实验学校带电粒子在匀强电场中的运动一、带电粒子(带电体)在电场中的直线运动 1.带电粒子在匀强电场中做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动。

(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动。

2.用动力学方法分析mF a 合=,dU E =;v 2–20v =2ad 。

3.用功能观点分析匀强电场中:W =Eqd =qU =21mv 2–21m 20v非匀强电场中:W =qU =E k2–E k14.带电体在匀强电场中的直线运动问题的分析方法 5.处理带电粒子在电场中运动的常用技巧(1)微观粒子(如电子、质子、α粒子等)在电场中的运动,通常不必考虑其重力及运动中重力势能的变化。

(2)普通的带电体(如油滴、尘埃、小球等)在电场中的运动,除题中说明外,必须考虑其重力及运动中重力势能的变化。

二、带电粒子在电场中的偏转 1.粒子的偏转角(1)以初速度v 0进入偏转电场:如图所示设带电粒子质量为m ,带电荷量为q ,以速度v 0垂直于电场线方向射入匀强偏转电场,偏转电压为U 1,若粒子飞出电场时偏转角为θ则tan θ=y xv v ,式中v y =at =mdqU1·0vL ,v x =v 0,代入得结论:动能一定时tan θ与q 成正比,电荷量一定时tan θ与动能成反比。

(2)经加速电场加速再进入偏转电场若不同的带电粒子都是从静止经同一加速电压U 0加速后进入偏转电场的,则由动能定理有:,得:。

结论:粒子的偏转角与粒子的q 、m 无关,仅取决于加速电场和偏转电场。

2.带电粒子在匀强电场中的偏转问题小结(1)分析带电粒子在匀强电场中的偏转问题的关键①条件分析:不计重力,且带电粒子的初速度v 0与电场方向垂直,则带电粒子将在电场中只受电场力作用做类平抛运动。

②运动分析:一般用分解的思想来处理,即将带电粒子的运动分解为沿电场力方向上的匀加速直线运动和垂直电场力方向上的匀速直线运动。

带电粒子在匀强电场中的运动

带电粒子在匀强电场中的运动

带电粒子的加速与减速
带电粒子在电场中会受到电场力的作用,根据电场的方向和粒子的电荷性质,粒子 会加速或减速。
加速器是利用电场对带电粒子的加速作用,使粒子获得高能量。加速器在科学研究、 工业应用和医疗等领域有广泛应用。
减速器是利用电场对带电粒子的减速作用,使高速运动的粒子逐渐减速。减速器在 粒子束技术、电子显微镜等领域有重要应用。
粒子的偏转角与速度的关系
总结词
粒子的偏转角与速度的关系是指带电粒子在 匀强电场中的运动轨迹与粒子速度之间的关 系。
详细描述
当带电粒子以不同速度进入匀强电场时,其 运动轨迹的偏转角会发生变化。通过分析粒 子的受力情况和运动轨迹,可以得出粒子的 偏转角与速度之间的关系。这种关系对于理 解带电粒子在电场中的运动规律和实验设计
总结词
带电粒子在垂直于初速度方向的恒定电场力作用下,将做偏转运动。
详细描述
带电粒子在匀强电场中受到的电场力恒定,根据牛顿第二定律,粒子的加速度也恒定。当电场力方向与初速度方 向垂直时,粒子将在垂直于初速度的方向上做类平抛运动,即偏转运动。
03 带电粒子在匀强电场中的 能量分析
电场力做功与能量转化
电场力做功
带电粒子在电场中运动时,电场力对 粒子做功,将电能转化为粒子的动能 或势能。
能量转化方向
电场力做正功时,粒子的动能增加; 电场力做负功时,粒子的动能减少。
电势能与动能的关系
电势能与动能相互转化
带电粒子在匀强电场中运动时,电势能和动能之间相互转化,总能量保持不变。
能量守恒
带电粒子在电场中运动时,总能量守恒,即粒子的动能和电势能之和保持不变。
能量守恒与转化
能量守恒定律
在任何封闭的系统中,能量既不会创生也不会消灭,只会从一种形式转化为另一种形式,或从一个物 体转移到另一个物体。

带电粒子在三种典型电场中的运动问题解析

带电粒子在三种典型电场中的运动问题解析

带电粒子在三种典型电场中的运动问题解析张路生淮安贝思特实验学校 江苏 淮安 邮编:211600淮安市经济开发区红豆路8号 tel:带电粒子在电场中的运动是每年高考的热点和重点问题,带电粒子在电场中的运动主要有直线运动、往复运动、类平抛运动等。

考查的类型主要有:带电粒子在点电荷电场中的运动、带电粒子在匀强电场中的运动和带电粒子在交变电场中的运动。

这类试题可以拟定不同的题设条件,从不同角度提出问题,涉及力学、电学的很多关键知识点,要求学生具有较强的综合分析能力。

下面笔者针对三种情况分别归纳总结。

初速度与场强方向的关系 运动形式 υ0∥E 做变速直线运动 υ0⊥E 可能做匀速圆周运动 υ0与E 有夹角 做曲线运动【例1】如图1所示,在O 点放置正点电荷Q ,a 、b 两点连线过O 点,且Oa=ab ,则下列说法正确的是A 将质子从a 点由静止释放,质子向b 点做匀加速运动B 将质子从a 点由静止释放,质子运动到b 点的速率为υ,则将α粒子从a 点由静止释放后运动到b 点的速率为2/2υC 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为2υD 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为2/2υ 〖解析〗:由于库仑力变化,因此质子向b 做变加速运动,故A 错;由于a 、b 之间电势差恒定,根据动能定理有2/2qU m υ=,可得2/qU m υ=,由此可判断B 正确;当电子以O 为圆心做匀速圆周运动时,有22Qq k m r r υ=成立,可得/kQq mr υ=,据此判断C 错D 对。

答案:BD2、根据带电粒子在电场的运动判断点电荷的电性【例2】 如图2所示,实线是一簇未标明方向的由点电荷Q 产生的电场线,若带电粒子q (|Q|>>|q |)由a 运动到b ,电场力做正功。

带电粒子在电场中的运动知识点

带电粒子在电场中的运动知识点

带电粒子在电场中的运动知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN(一)带电粒子的加速1.运动状态分析带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做加速(或减速)直线运动。

2.用功能观点分析粒子动能的变化量等于电场力做的功。

(1)若粒子的初速度为零,则qU=mv 2/2, V=2qU m (2)若粒子的初速度不为零,则qU=mv 2/2- mv 02/2, V=202qU V m+ (二)带电粒子的偏转(限于匀强电场)1.运动状态分析:带电粒子以速度V 0垂直电场线方向飞入匀强电场时,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动。

2.偏转问题的分析处理方法:类似平抛运动的分析处理,应用运动的合成和分解知识分析处理。

(1)垂直电场方向的分运动为匀速直线运动:t=L/V 0;v x =v 0 ;x=v 0t(2)平行于电场方向是初速为零的匀加速运动:v y =at ,y=12 at 2经时间t 的偏转位移:y=qU 2md (x V 0 )2; 粒子在t 时刻的速度:Vt=V 02+V y 2 ;时间相等是两个分运动联系桥梁;偏转角:tg φ=V y V 0 =qUx mdv 02 (三)先加速后偏转若带电粒子先经加速电场(电压U 加)加速,又进入偏转电场(电压U 偏),射出偏转电场时的侧移22222012244qU L qU L U L y at dmV dqU dU ====偏偏偏加加偏转角:tg φ=V y V 0 =U 偏L 2U 加d带电粒子的侧移量和偏转角都与质量m 、带电量q 无关。

(四)示波管原理1.构造及功能如图8-5所示图8-2(1)电子枪:发射并加速电子.(2)偏转电极YY':使电子束竖直偏转(加信号电压)偏转电极XX':使电子束水平偏转(加扫描电压)(3)荧光屏.2.原理:○1YY'作用:被电子枪加速的电子在YY'电场中做匀变速曲线运动,出电场后做匀速直线运动打到荧光屏上,由几何知识'22L l y Ly +=,可以导出偏移20'()tan ()22L ql L y l l U mV d θ=+=+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在匀强电场中的运动(一)
一、知识点击:
1.带电粒子的加速(或减速)运动
(1)从运动状态分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做匀加(减)速直线运动,可以用牛顿第二定律求解。

(2)从功能观点分析:粒子动能的变化量等于电场力所做的功(电场可以是匀强电场或非匀强电场,即:qU mv mv t =-2022
121 2.带电粒子的偏转(仅限于匀强电场)运动
(1)从运动状态分析:带电粒子以速度垂直于电场线方向飞入匀强电场时,受到恒定的与初速度方向垂直的电场力的作用而做匀变速曲线运动,其轨迹一定是一条抛物线,是类平抛运动。

此时可用平抛运动的相关公式求解。

(2)运动的几个特点:
①运动过程中速度的偏转角度的正切为位移偏转角度正切的两倍;
②带电粒子飞出电场好像是从电场的中点飞出一样;
3.平衡
带电粒子在电场中处于平衡状态,则一定所受合力为零,mg=qE=qU/d 。

二、能力激活:
题型一:电场力做功是粒子动能增加的原因:
示例1:氢核(质子)和氦核(α粒子)由静止开始经相同的电压加速后,则有( )
A .α粒子速度较大,质子的动能较大;
B .α粒子动能较大,质子的速度较大;
C .α粒子速度和动能都较大;
D .质子的速度和动能都较大。

题型二:以用动力学方法解决:
示例2:一个质量为m 电量为e 的电子,以初速度v 0与电场线平行的方向射入匀强电场,经过t 秒时间,电子具有的电势能与刚好入射到电场的动能相同(取电子刚进入电场时的位置为零电势能处),则此匀强电场的电场强度E =_____________;带电粒子在电场中所通过的总路程是__________。

题型三:用平抛的运动规律解决: 示例3:水平放置的两块平行金属板A 、B 、,板长L ,相距为d ,使它们分别带上等量的异种电荷,两板间的电压为U ,有一质量为m ,带电量为-q 的粒子以速度v 0沿水平方向紧靠着B 板射入电场,如图所示,在电场中,
粒子受的电场力F =___,方向___,带电粒子在电场中做____,在水平方向上做____运动,在竖直方向上做___运动,加速度a =_____,方向_____,带电粒子飞越电场的时间t =______,水平方向的分速度v x =_________带电粒子离开电场时在竖直方向上的分速度v y =_____,带电粒子离开电场时的速度v =______,其方向与水平方向的夹角θ=_______,带电粒子离开电场时在竖直方向的侧位移y=__________。

A V 0
B
题型四:初速度为零的不同带电粒子经同一加速电场后进入同一偏转电场,离开偏转电场时偏转角和侧向位移均相同:
示例4:初速度为零的带电粒子经加速电场加速后垂直进入两平行金属板间的偏转电场,要使它离开偏转电场时偏转角增大,可采用的办法有()
A.增加带电粒子的电量;B.降低加速电压;
C.提高偏转电压;D.减小两平行板间的距离。

题型五:应用侧向位移计算时要注意平行带电板间的距离在等式两边都有:
示例5:一质量m,电量q的微观粒子垂直场强方向从中央射入两平行带电板之间,当粒子的入射速度为v0时,恰好能穿越平行板电场。

为使其入射速度减半时仍恰能穿越电场,则必须使得()
A.粒子的电量减半;B.两板间电压减半;
C.两板间距加倍;D.两板间距减半。

题型六:电场力对同一带电粒子所做的功与带电粒子经过的电势差成正比:
示例6:一个初动能为E K的带电粒子以速度v垂直电场线方向飞入平行板电容器,飞出电容器时动能为2E K,若这个带电粒子的入射初速度为原来的2倍,则该粒子飞出电容器时的动能应为()
A.4 E K;B.4.25 E K;C.4.5 E K;D.5 E K。

题型七:类平抛运动中,运动时间既由匀速分运动决定,也由匀加速分运动决定:
示例7:如图所示,相距为d的两块平行金属板M、N分别与电Array源正、负极相连,电键K闭合,M、N间为一匀强电场。

一带
电微粒垂直于电场方向从M板边缘射入电场,恰好打在N板中
央。

不计重力,其它条件不变,为使带电微粒能刚好飞出电场,
N板应下移多少?
三、小试身手:
1.一带电粒子在电场中只受电场力作用,它不可能出现的运动状态是( )
A .匀速直线运动;
B .匀加速直线运动;
C .匀变速曲线运动;
D .匀速圆周运动。

2.如图所示,两平行金属板间的距离为d ,两板的电压为U 。

现有
一电子从两板间的O 点沿着垂直于极板的方向射出,到达A 点后即返回,若OA 距离为h ,则此电子具有的初动能为
A .edh /U ;
B .ed /U ;
C .eU /dh ;
D .ehU /d 。

3.带电粒子以初速度v 0从两平行金属板形成的匀强电场的正中间垂直射入,恰穿过电场而不碰金属板,欲使入射速度为v 0/2的同一粒子也恰好穿过电场而不碰金属板,则必须( )
A .使带电粒子电量减为原来的1/2;
B .使两板间的电压减为原来的1/4;
C .使两板间的距离减为原来的1/2;
D .使两板间的距离增大为原来的4倍。

4、如图所示,质量为m 、带电量为q 的带电小球用绝缘丝线悬挂于O 点,匀强电场方向水平向右,场强为E 。

开始时让小球从最低点位置静止释放,小球摆过α
角并继续向右摆动。

在小球由最低点摆过α角的过程中,设它的重力势能的增量为ΔE m ,静电势能的增量为ΔE e ,两者的代数和用表示ΔE ,
即ΔE =ΔE m +ΔE e ,则它们的变化关系为( )
A .ΔE m >0 ,ΔE e <0 ,ΔE>0;
B .ΔEm>0 ,ΔEe<0 ,ΔE=0;
C .ΔE m >0 ,ΔE e <0 ,ΔE<0;
D .Δ
E m <0 ,ΔE e >0 ,ΔE=0。

5.如图所示,竖直放置的平行金属板A 、B 间的电压为450V ,有一质量为
5×10-7kg 、电量为-2×10-8C 的小球由静止开始从A 板中间的小孔经0.2s 到达
B 板,不计空气阻力和浮力,则小球由A 到B 的过程中电场力做功
_________J ,运动过程中电荷增加的动能是_____________J 。

6.在与x 轴平行的匀强电场中,一带电量为1.0×10-8C 、质量为2.5×10-3kg
的物体在光滑水平面上沿着x 轴做直线运动,其位移与时间的关系为
x=0.16t-0.02t 2,式中x 以米作单位,t 以秒作单位。

从开始运动到5s 末,物体经过的路程为___________m ,克服电场力所做的功为_______________。

7.一带正电的物体静止置于绝缘水平面上,现加一水平向右的匀强电场后物体开始向右运动,如图,已知物体与绝缘水平面之间的滑动摩擦力为电
场力的1/3,经一段时间后,物体的动能为E k ,此时,突然
使电场方向反向,大小不变,再经过一段时间后,物体回
到原出发点,其动能变为________;两段时间内物体通过
的路程之比为S 1:S 2=________。

8.在光滑绝缘的水平面上放一弹簧,其左端与一质量为10g 、
带电量为2×10–3C 的小球靠近,如图所示。

若在空间加上
E =2×103V/m 、水平向右的匀强电场后,小球最多能将弹簧压缩
8cm ,此时撤去电场,小球能获得的最大速度为 m/s 。

9.在光滑水平面上有一质量m =1.0×10-3kg 电量q =1.0×1O -10C 的带正电小球,静止在O 点,以O 点为原点,在该水平面内建立直角坐标系Oxy ,现突然加一沿x 轴正方向,场强大小E =2.0×106V/m 的匀强电场,使小球开始运动经过1.0s ,所加电场突然变为沿y 轴正方向,场强大小仍为E =2.0×106V/m 的匀强电场再经过1.0s ,所加电场又突然变为另一个匀强电场,A B α E O A
使小球在此电场作用下经1.0s速度变为零。

求此电场的方向及速度变为零时小球的位置。

10.如图所示,在一足够厚的铅屏A的右表面上的P处有一放
射源,放射源释放的β射线(高速电子流) 的速度为v0=107m/s,
在B处放置一平行于铅屏的金属网,网和铅屏之间加一水平向
左的匀强电场,其电场强度E=3.64×104N/C,AB相距d=2×10-2m,
荧光屏M和B平行,相距s=10-2m,求荧光屏上能观察到的β
射线的范围。

四、生活中的物理:
闪电为什么是弯弯曲曲的
大家都知道,带异性电的两块云接近时放出闪电,闪道中因高温使空气体积迅速膨胀、水滴汽化而发出强烈的爆炸声,这就是我们常说的“闪电雷鸣”。

闪电为什么总是弯弯曲曲的呢?美国国家气象局的内泽特·赖德尔认为,每当暴风雨来临,雨点即能获得额外的电子。

电子是带负电的,这些电子会追寻地面上的正电荷。

额外的电子流出云层后,要碰撞别的电子,使别的电子也变成游离电子,因而产生了传导性轨迹。

传导的轨迹会在空气中散布着的不规则形状的带电离子群中间跳跃着迂回延伸,而一般不会是直线。

所以,闪电的轨迹总是蜿蜒曲折的。

相关文档
最新文档