复合材料种类
举例日常生活中用到的复合材料并说明它的制备应用

举例日常生活中用到的复合材料并说明它的制备应用复合材料是由两种或两种以上的不同材料组合而成的材料,具有优于单一材料的特性和性能。
下面是一些日常生活中用到的复合材料以及它们的制备方法和应用。
1.碳纤维复合材料:制备方法:将预浸的碳纤维布固定于特定形状的模具上,然后将其浸渍于环氧树脂基体,并经高温烘干固化。
应用:碳纤维复合材料轻质高强,广泛应用于航空航天、汽车、体育器材等领域,如飞机机身、汽车车身以及高尔夫球杆等。
2.玻璃钢复合材料:制备方法:在玻璃纤维布上涂覆树脂,通过手工层叠、模压或者喷涂等方式制备而成。
应用:玻璃钢复合材料具有耐腐蚀、高强度等特点,常应用于建筑、船舶、化工设备等领域,如泳池、船体以及储罐等。
3.铝塑板:制备方法:将涂覆有胶粘剂的铝箔与聚乙烯塑料薄膜复合而成。
应用:铝塑板重量轻、耐热耐腐蚀,广泛应用于装饰、广告标牌、室内隔断等领域。
4.聚合物基复合材料:制备方法:将纤维或者颗粒等增强材料与热塑性或者热固性聚合物基体混合,并加热熔融、塑炼或固化成型。
应用:聚合物基复合材料具有良好的机械性能、尺寸稳定性和耐磨性,常用于汽车制造、电子设备以及家居用品等领域。
5.金属基复合材料:制备方法:将金属基体与非金属相如陶瓷、纤维等相结合,常使用粉末冶金、堆叠压制、熔融浸渍等方法制备。
应用:金属基复合材料具有高温强度、耐磨损等优点,被广泛应用于航空、能源、汽车等领域,如航空发动机叶片、刀具等。
以上仅是日常生活中复合材料的一些例子,复合材料的种类繁多,各种不同的制备方法和应用领域都有。
复合材料的制备过程通常涉及到材料选择、预处理、原料混合、成型、加工等多个步骤,以满足不同应用的需求。
对于复合材料的研发和应用有助于提高材料的性能和降低材料的成本,具有重要的科学意义和经济价值。
复合材料包括什么

复合材料包括什么复合材料是由两种或两种以上的材料组成的,具有明显界面的复合材料。
它是由增强材料和基体材料组成的,增强材料可以是玻璃纤维、碳纤维、有机纤维等,基体材料可以是树脂、金属、陶瓷等。
复合材料具有轻质、高强度、耐腐蚀、抗疲劳、设计自由度高等优点,因此在航空航天、汽车、建筑、体育器材等领域得到了广泛的应用。
首先,复合材料包括增强材料。
增强材料是复合材料中起到增强作用的材料,其种类繁多。
常见的增强材料有玻璃纤维、碳纤维、芳纶纤维等。
这些增强材料具有高强度、高模量、耐疲劳等特点,能够有效地提高复合材料的强度和刚度,使其具有更好的性能。
其次,复合材料包括基体材料。
基体材料是复合材料中起到粘结作用的材料,其种类也非常丰富。
常用的基体材料有环氧树脂、聚酰亚胺树脂、聚丙烯、金属、陶瓷等。
这些基体材料具有良好的粘结性能和耐腐蚀性能,能够有效地固定增强材料,使其形成整体。
另外,复合材料还包括界面剂。
界面剂是用来提高增强材料和基体材料之间粘结强度的物质,常见的界面剂有硅烷偶联剂、聚氨酯树脂等。
界面剂能够有效地提高复合材料的界面结合强度,防止增强材料和基体材料之间的剥离和开裂,从而提高复合材料的整体性能。
此外,复合材料还包括填料和添加剂。
填料是用来改善复合材料性能的材料,常见的填料有碳黑、纳米粒子等。
添加剂是用来改善复合材料加工性能和使用性能的物质,常见的添加剂有抗氧化剂、光稳定剂、阻燃剂等。
填料和添加剂能够有效地改善复合材料的力学性能、耐老化性能和阻燃性能,使其更加适用于不同的工程领域。
综上所述,复合材料包括增强材料、基体材料、界面剂、填料和添加剂等多个组成部分。
这些组成部分相互作用,共同发挥作用,使复合材料具有轻质、高强度、耐腐蚀、抗疲劳等优良性能,广泛应用于航空航天、汽车、建筑、体育器材等领域。
复合材料的不断发展和应用将为人类社会带来更多的创新和进步。
复合材料的种类定义

复合材料的种类定义复合材料是由两种或多种不同性质的基材通过粘结、覆盖和混合等方法组合而成的新型材料。
它的优点是能够充分发挥各种基材的优势,综合性能更好,应用范围更广泛。
根据基材的不同,复合材料可以分为以下几种类型:纤维复合材料、颗粒复合材料、膜复合材料和箔复合材料。
1.纤维复合材料:纤维复合材料是指由纤维作为增强材料,与基体材料结合形成的材料。
纤维可以是无机纤维,如玻璃纤维和碳纤维;也可以是有机纤维,如聚酰胺纤维和聚酯纤维等。
基体材料可以是金属、树脂、陶瓷等。
纤维复合材料具有高强度、高模量、耐腐蚀、耐高温等特点,广泛应用于航空航天、汽车、建筑等领域。
2.颗粒复合材料:颗粒复合材料是由颗粒作为增强材料,与基体材料结合形成的材料。
常见的颗粒有金属、陶瓷、碳纳米管等。
基体材料可以是金属、塑料、陶瓷等。
颗粒复合材料具有重量轻、强度高、导热性好等特点,被广泛应用于制造汽车零部件、电子器件等。
3.膜复合材料:膜复合材料是由薄膜作为增强材料,与基体材料结合形成的材料。
薄膜可以是无机材料,如二氧化硅膜;也可以是有机材料,如聚酯膜或聚四氟乙烯膜。
基体材料可以是金属、塑料、陶瓷等。
膜复合材料具有高强度、高韧性、耐腐蚀、耐高温、阻隔性好等特点,广泛应用于包装行业、建筑行业等。
4.箔复合材料:箔复合材料是由箔片作为增强材料,与基体材料结合形成的材料。
箔片可以是金属箔片,如铝箔、铜箔;也可以是塑料薄膜,如聚酯薄膜。
基体材料可以是金属、塑料等。
箔复合材料具有轻、薄、柔韧性好、导电性好等特点,常用于电子元器件、食品包装等领域。
总之,复合材料具有结构轻、强度高、耐腐蚀、阻燃、导热、绝缘等优点,被广泛应用于航空航天、汽车、建筑、电子、包装等各个领域,并在未来的发展中具有广阔的应用前景。
(完整版)复合材料的种类及特点

复合材料的种类及特点用塑性材料将另一种高强度的纤维按受力方向粘接在一起,以获得一定的综合性能,这种材料则被称为复合材料。
但是在近年来复合材料的定义又有了更广泛的含义。
由两种或两种以上的材料复合在一起,并获得了新性能的材料都可以称其为复合材料。
基体一般为一种连续相的材料,它把纤维或者是粒子等等的增强材料固结成为一个整体,所以在不同的基体和不同的增强材料下可以组成不同类型的复合材料。
复合材料的分类方法有四种:第一种则是利用构成材料进行分类;第二种则是按照复合性质进行分类; 第三种则是利用复合效果进行分类;第四种则是按照结构特点进行分类。
通过这四种不同的分类方法可以将制备成型的复合材料进行有规律的分类。
在我国复合材料拥有良好的发展空间,其首要的原因则是由于能源的短缺,不少陆地资源陆续出现枯竭的现象,同时随着社会的进步和发展所带来的工业化发展和人口急剧增加都会造成环境恶化等严重的问题;另一方面人们将步入高度的信息化社会,同时伴随着人们生活质量的提高。
最后是我国国防事业的大力发展,在这些方面上都提供了复合材料发展的机遇。
在复合材料领域中,由高比强度、比模量的高性能纤维作为增强体的树脂基复合材料被称为先进树脂基复合材料,它一直是发达国家对复合材料应用和研究的主体。
先进树脂基复合材料具有比强度和比刚度高,可设计性强,抗疲劳断裂性能好,耐腐蚀,结构尺寸稳定性好以及便于大面积整体成形的独特优点,充分体现了集结构承载和功能于一身的鲜明特点。
所以在研究领域发展先进树脂基复合材料成为至关重要的一项课题。
先进树脂基复合材料中包含有热固性树脂基复合材料和热塑性树脂基复合材料。
其中热固性树脂基体在制备过程中产生交联反应,在理想的交联反应中不但能形成体型交联结构,而且在交联反应中能形成附加的刚性环结构,大大提高了热固性复合材料在极端恶劣环境下的使用,所以在大多数己经成型的研究中热固性树脂己经成为主要的研究对象,其在航空航天领域、能源工业方面、电子工业方面、体育日用品方面、建筑结构工程方面都做出了杰出的贡献。
复合材料的分类

二、复合材料的性能特点
1. 比强度和比模量高 纤维增加材料的比强度及比模量远高于 金属材料,特别是碳纤维-环氧树脂复合材 料比强度是钢的8倍,比模量是钢的4倍。 2. 抗疲劳和破断安全性好 纤维增强复合材料对缺口及应力集中的 敏感性小,纤维与基体界面能阻止疲劳裂纹 的扩展,改变裂纹扩展的方向。
3. 高温性能优良 大多数增强纤维在高温下仍保持高的强 度,如铝合金在400℃时弹性模量已降至近于 0,而碳纤维增强后,在此温度下强度和弹性 模量基本未变。 4. 减振性能好 复合材料的比模量大,故自振频率也高, 可避免构件在工作状态下产生共振。 纤维与基体界面有吸收振动能量的作用, 所以纤维增强复合材料具有很好的减振性能。
2. 碳纤维 将有机纤维(如粘胶纤维、聚丙烯腈纤维、 沥青纤维等)在惰性气氛中经高温碳化而 制成wC>90%以上的纤维; 密度低、强度和模量高; 高、低温性能好(1500℃,-180℃); 化学稳定性高,能耐浓盐酸、硫酸、磷酸、 苯、丙酮等;热胀系数小,热导率高,导 电性、自润滑性好; 缺点:脆性大,易氧化,与基体结合力差。
金属基复合材料非金属基复合材料铝基复合材料钛基复合材料铜基复合材料塑料基复合材料橡胶基复合材料陶瓷基复合材料纤维增强塑料玻璃钢纤维增强橡胶轮胎纤维增强陶瓷纤维增强金属金属陶瓷弥散强化金属纤维增强复合材料颗粒增强复合材料叠层复合材料双层金属复合材料三层复合材料复合材料二复合材料的性能特点纤维增加材料的比强度及比模量远高于金属材料特别是碳纤维环氧树脂复合材纤维增强复合材料对缺口及应力集中的敏感性小纤维与基体界面能阻止疲劳裂纹的扩展改变裂纹扩展的方向
应用
主要用于制作飞机机身、雷达天线罩、 火箭发动机外壳、快艇等。
复合材料在波音飞机上的应用
新型复合材料的种类有哪些

新型复合材料的种类有哪些复合材料是由两种或以上不同性质的材料组合而成,形成了新的材料。
在新材料领域,复合材料具有许多独特的特性,如轻质、高强度、耐腐蚀、耐磨损、导电、导热、隔热、阻燃等。
因此,复合材料在许多领域中得到了广泛应用,如航空、汽车、建筑、体育用品、医疗设备等。
下面是常见的新型复合材料种类及其特点。
一、纳米复合材料纳米复合材料是由纳米颗粒和基质材料组成的。
纳米颗粒的尺寸在1-100纳米之间,因其具有高比表面积和量子效应等独特的性质,可以在材料基质中形成新的界面和相互作用。
这些特性使得纳米复合材料具有优异的力学性能、导电性能、热稳定性和化学稳定性等。
例如,纳米碳管复合材料在导电性和力学性能方面具有优异的表现,可用于电子器件和结构材料。
二、高分子基复合材料高分子基复合材料是以高分子材料为基体,添加其他材料而形成的材料。
这种复合材料具有高分子材料的特性,如可塑性、韧性、耐化学性、耐热性等,并且由于添加了其他材料,具有更高的强度、硬度、导电性、导热性等性能。
例如,碳纤维增强聚合物复合材料在航空、航天等领域中得到了广泛应用。
三、金属基复合材料金属基复合材料是由金属基体和其他材料组成的。
这种复合材料通常具有优异的力学性能和导热性能,但也容易发生热膨胀不匹配和腐蚀等问题。
为解决这些问题,近年来出现了许多新型金属基复合材料,如纳米晶金属复合材料、金属基纤维复合材料、金属基碳纤维复合材料等。
四、陶瓷基复合材料陶瓷基复合材料是以陶瓷为基体,添加其他材料而形成的材料。
陶瓷基复合材料具有优异的耐磨性、耐腐蚀性和高温稳定性等特性,因此在航空航天、能源、化工、医疗等领域中得到了广泛应用。
例如,碳化硅纤维增强陶瓷复合材料可以用于高温部件和高速机械设备。
五、纤维增强复合材料纤维增强复合材料是由纤维和基质组成的。
纤维可以是碳纤维、玻璃纤维、芳纶纤维等,基质可以是聚合物、金属、陶瓷等。
纤维增强复合材料具有高强度、高刚度、轻质等特性,因此广泛应用于汽车、航空、体育器材等领域。
复合材料种类 应用

复合材料种类应用复合材料种类及应用一、复合材料的定义和分类复合材料是由两种或两种以上的不同材料组合而成的材料,具有优越的综合性能。
根据不同的组合方式和材料性质,可以将复合材料分为多种类型,包括纤维增强复合材料、颗粒增强复合材料、层状复合材料等。
二、纤维增强复合材料纤维增强复合材料是指以纤维作为增强物,与基体材料组合而成的复合材料。
常见的纤维增强复合材料有碳纤维复合材料、玻璃纤维复合材料和芳纶纤维复合材料等。
1. 碳纤维复合材料碳纤维复合材料是以碳纤维为增强物,树脂为基体的复合材料。
具有高强度、高模量、耐热、耐腐蚀等优点,广泛应用于航空航天、汽车、体育器材等领域。
2. 玻璃纤维复合材料玻璃纤维复合材料是以玻璃纤维为增强物,树脂为基体的复合材料。
具有良好的电绝缘性、耐腐蚀性和低吸水性等特点,常用于建筑、船舶、电子等领域。
3. 芳纶纤维复合材料芳纶纤维复合材料是以芳纶纤维为增强物,树脂为基体的复合材料。
具有高强度、高模量、耐高温等特性,被广泛应用于航空航天、军事、电子等领域。
三、颗粒增强复合材料颗粒增强复合材料是指以颗粒状材料作为增强物,与基体材料组合而成的复合材料。
常见的颗粒增强复合材料有陶瓷颗粒增强复合材料和金属颗粒增强复合材料等。
1. 陶瓷颗粒增强复合材料陶瓷颗粒增强复合材料是以陶瓷颗粒作为增强物,金属或陶瓷为基体的复合材料。
具有高硬度、耐磨、耐腐蚀等特点,广泛应用于切削工具、航空发动机等领域。
2. 金属颗粒增强复合材料金属颗粒增强复合材料是以金属颗粒作为增强物,金属为基体的复合材料。
具有高强度、高导热性等特性,常用于汽车零部件、机械零件等领域。
四、层状复合材料层状复合材料是由多层材料通过粘结、热压等工艺组合而成的复合材料。
常见的层状复合材料有层压板、夹层板等。
1. 层压板层压板是由多层纤维增强复合材料和树脂基体材料交替叠压而成的复合材料板。
具有高强度、阻燃、耐磨等特点,广泛应用于建筑、航空航天、交通工具等领域。
《复合材料》 知识清单

《复合材料》知识清单一、什么是复合材料在现代材料科学领域,复合材料正扮演着越来越重要的角色。
那么,到底什么是复合材料呢?复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。
简单来说,它不是单一的一种材料,而是多种材料的组合。
这些组合在一起的材料,各自保持着自己的特性,同时又相互协同,使得复合材料具有了单一材料无法达到的优越性能。
二、复合材料的分类复合材料的种类繁多,常见的分类方式有以下几种:1、按基体材料分类金属基复合材料:以金属为基体,如铝基、钛基等,具有高强度、高韧性等特点。
陶瓷基复合材料:基体是陶瓷,具有耐高温、耐磨损等性能。
聚合物基复合材料:基体为高分子聚合物,比如环氧树脂、聚酯等,重量轻、耐腐蚀。
2、按增强材料分类纤维增强复合材料:常见的纤维有玻璃纤维、碳纤维、芳纶纤维等。
纤维的加入大大提高了材料的强度和刚度。
颗粒增强复合材料:例如碳化硅颗粒增强铝基复合材料,能改善材料的耐磨性。
晶须增强复合材料:晶须具有很高的强度,能显著提高材料的性能。
3、按用途分类结构复合材料:主要用于承受载荷,如飞机的机身、桥梁的结构件等。
功能复合材料:具有特殊的功能,如导电、导热、吸波等,常用于电子、航空航天等领域。
三、复合材料的特点1、性能可设计性这是复合材料的一个显著优点。
通过选择不同的基体和增强材料,以及调整它们的比例、分布和排列方式,可以定制出满足各种特定需求的材料性能。
2、比强度和比刚度高比强度是指材料的强度除以其密度,比刚度是指材料的刚度除以其密度。
复合材料在这两个方面往往表现出色,使其在轻量化设计中具有很大的优势。
3、抗疲劳性能好由于复合材料中的纤维能够阻止裂纹的扩展,所以它们通常具有较好的抗疲劳性能,能够在长期循环载荷下保持较好的性能。
4、耐腐蚀性强许多复合材料对化学腐蚀和电化学腐蚀具有良好的抵抗能力,适用于恶劣的环境条件。
四、复合材料的制备方法1、手糊成型这是一种比较传统的方法,工人将纤维增强材料和树脂等基体材料手工涂抹在模具上,然后固化成型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2石墨烯/聚合物纳米复合材料种类
最近几年,以聚丙烯、聚甲基丙烯酸甲酯、聚苯胺、环氧树脂、硅橡胶等为基体的石墨烯复合材料的研究都有所报道。
其中出现了较多,关于石墨烯在高分子基体中达到纳米水平分散的研究。
这里简要介绍一些主要的石墨烯/聚合物纳米复合材料。
(1)聚苯胺(PANI)/石墨烯纳米复合材料
聚苯胺(PANI)/石墨烯纳米纤维复合材料是用原位聚合方法,在酸性条件下,氧化石墨烯与苯胺单体聚合得到的[1]。
然后,使用水合肼还原不同氧化石墨烯质量比的PANI/氧化石墨烯复合材料。
最后,对还原的PANI再氧化和质子化生成PANI/石墨烯纳米复合材料。
Bhadra等[2]也报道过纯PANI这种类型的热降解。
PANI和PANI/石墨烯复合材料样品在同一温度范围内质量损失分别是40%和25%。
结果表明,PANI/石墨烯纳米复合材料热稳定性较之纯的PANI提高了。
同时,复合材料的导电率也有很大的增加。
(2)聚氨酯/石墨烯纳米复合材料
使用原位聚合的方法制备功能化的石墨烯(FGS)/水性聚氨酯(WPU)纳米复合材料[3]。
由于FGS粒子在WPU基体中的均匀分散使纳米复合材料电导率比初始WPU增加了105倍。
由于导电通道的形成,在高分子基体中引发了电导率的突变。
当填充FGS仅为2%(Wt)时,可得到渗滤阀值。
(3)环氧树脂/石墨烯纳米复合材料
Kuilla等[4]用原位插层聚合制备了环氧树脂石墨烯纳米复合材料环氧树脂的热导率很小。
但是,加入石墨烯后其热导率得到了显著提高。
填充5%(Wt)GO 的环氧树脂基复合材料其热导率是1W/mK,这是纯环氧树脂热导率的4倍。
当填充20%(Wt)GO的环氧树脂基复合材料其热导率增加到6.44W/mK。
这些结果表明石墨烯复合材料用于散热是一种很有前途的热界面材料。
(4)聚碳酸酯/石墨烯纳米复合材料
通过熔融复合法,制备石墨和功能化石墨烯(FGS)增强的聚碳酸酯(PC)复合材料[5]。
聚碳酸酯/石墨烯纳米复合材料中,FGS呈现高度的片状剥离状态。
导电性能测试表明,产生导电性渗流阈值时FGS 的添加量比石墨的添加量要低。
PC/ FGS纳米复合材料的拉伸模量高于纯PC的拉伸模量。
并且,随着FGS 的填充复合材料的热膨胀系数(CTE)大幅度地下降。
(5)聚乙烯醇(PV A)/石墨烯纳米复合材料
Liang 等[6]报道了用水作为溶剂,把GO加入PV A基体中制备出PV A/石墨烯纳米复合材料。
PV A/石墨烯纳米复合材料的机械性能优于纯PV A。
例如,GO 含量仅为0.7 wt%时,拉伸强度和杨氏模量分别增加了76%和62%。
这是由于石墨烯片层的大的宽高比,PV A 基体中石墨烯片层分子水平的分散和石墨烯与PV A 间氢键引起的强界面粘结。
[1] Zhang K, Zhang LL, Zhao XS, et al. Graphene/polyaniline nanoriber composites
as super capacitor electrodes [J]. Chemistry of Materials, 2010, 22 (4):1392-1401 [2] Bhadra S, Khastgir D, Singha NK, et al. Progress in preparation, processing and
applications of polyaniline [J]. Progress in Polymer Science, 2009, 34
(8):783-810.
[3] Lee Y R, Raghu A V, Jecong H M, Kim B K. Macromol Chem Phys, 2009,
(210) :1247~1254.
[4] Kuilla T, Srivastava S K, Bhowmick A K. [J] Appl Polym Sci,2009,(111):635~
641.
[5]Kim H, Macosko C W. Polymer, 2009,(50):3797~3809.
[6] Liang JJ, Huang Y, Zhang L, et al. Molecular-level dispersion of graphene into
poly(vinyl alcohol) and effective reinforcement of their nanocomposites [J].
Advanced Functional Materials, 2009, 19 (14): 2297-2302.。