stochastic processes-3
随机过程教学大纲

《随机过程》教学大纲一、课程信息课程代码:060148课程名称:随机过程英文名称:Stochastic Processes课程类别:专业核心课适用专业: 应用统计学总学时:48 学时理论学时:40 学时实践学时:8学时学分:3 学分(理论2.5学分,实践0.5学分)开设学期:第4学期考核方式:考试先修课程:概率论、高等数学二、课程简介《随机过程》是统计学专业的专业必修课程。
随机过程通常被视为概率论的动态部分,即研究的是随机现象的动态特征。
着重对随时间和空间变化的随机现象提出各种不同的模型并研究其内在的性质与相互联系,具有较强的理论性。
该学科在社会科学、自然科学、经济和管理等各个领域中都有广泛的应用。
课程性质为选修课,主要讲述随机过程的基本知识,课程的主要教学教学目的是培养学生运用随机过程分析和解决问题的能力,使学生掌握主要几种随机过程的基本概念与处理随机现象的方法。
课程内容包括:随机过程基本概念、Poisson过程、更新过程、Markov链、鞅、布朗运动。
三、教学内容及要求第一章预备知识教学重点和难点:重点和难点是概率空间,矩母函数和特征函数的定义及性质、条件期望、收敛性、极限定理等。
实践环节:无建议使用的教学方法与手段:多媒体与板书结合教学学时:(理论学时3学时)(实践学时0学时)教学目标和要求:通过本章的学习,复习并扩展概率论课程的内容,为学习随机过程打下良好的基础,提供必备的数学工具。
第一节概率空间1. 概率空间定义2. 概率的性质第二节随机变量与分布函数1. 随机变量2. 常见概率分布第三节数字特征、矩母函数与特征函数1. Riemann-Stieltjes积分2. 数字特征3. 关于概率测度的积分4. 矩母函数5. 特征函数第四节收敛性1. 收敛性2. 积分号下取极限的定理第五节独立性与条件期望1. 独立性2. 独立随机变量和的分布3. 条件期望第二章随机过程的基本概念和基本类型教学重点和难点:重点和难点是随机过程的概念,有限维分布族,柯尔莫哥洛夫存在定理。
csc学习计划(外文)【范本模板】

Study PlanMuyao Wang1, BackgroundMajored in Finance, I received two scholarships for mastering essential skills of financial analysis and mathematics calculation。
Through learning microeconomics, marketing and security investment,I was exposed to the big picture of financial markets. The demanding math courses allowed me to establish a very solid background in optimization and probability, which are fundamental to risk management. Moreover, Skills learned from the courses on statistics and econometrics helped me succeed in financial risk modeling。
In addition, I was fortuitous to have an opportunity to conduct research on grain yield in Henan province. This research program enabled me to collect data efficiently and utilize them to modify the information system to find the most influential factor.Participating in one intensive exchange program in the USA adapts me to a multicultural environment and expands my global perspective. At the Oklahoma State University , I confirmed my passion on asset allocation,pricing model,risk management and stock valuation in investment class. The mathematics statistics course and elementary statistics for business and economics course taught me how to apply statistics in the financial industry. As the few student who participated once in an exchange program,I feel fortunate to come across with different people and classes in various environments, which make me more confident to deal with the study in USA.Not content with simple simulations in the school, thereafter I took internships in real —world companies. Have accumulated diverse experiences in different areas, I learned how to apply theory into real work, which will do good benefits in this program。
Stochastic Processes SolutionbookII 随机过程习题解答

,
Xti − Xti−1
i=1
2
=
i=1 n k=1 ti
k σs
k dWs
+
ti−1
µs ds
n ti ti−1 ti 2 k k σs dWs ti ti−1 l l σs dWs
m
=
i=1
+2
k,l=1,k=l k k σs dWs
+2
ti−1
µs ds
k=1
+
ti−1
µs ds
As thus
Π
→ 0, we have Var Wtik − Wtik−1 E [W i , W j ]t
Wtik − Wtik−1
Wtjk − Wtjk−1
= 0 and
n k=1 i j [W , W ]t =
Wtjk − Wtjk−1 = 0.
converges to its expectation, and thus
t
f (t, x) = eαx− 2 α t ,
1
2
α ∈ R.
f (t, Bt ) = f (0, B0 ) −
0 t
1 2 α f (s, Bs ) ds + 2
t
αf (s, Bs ) dBs +
0
1 2
t
α2 f (s, Bs ) ds
0
=1+
0
αf (s, Bs ) dBs
t 0 αf (s, Bs ) dBs t≥0
S 1 2 E(YS YS ) = E 0 S 2 1 Yu dYu + 0 S S 1 2 Yu dYu + 0 S
课程大纲-金融随机分析

附件:大纲模板研究生课程教学大纲(Course Outline)课程名称(Course Name in Chinese):金融随机分析英文名称(Course Name in English):Stochastic Modeling in Finance开课系财务金融系教学小组负责人马成虎开课学期□春季X 秋季学分 3一、课程的教学目的 (Course Purpose)This course is an advanced treatment of no-arbitrage approach of stochastic modeling in finance. We shall put special emphasis on continuous time modeling. Fundamental theorem and various applications in option pricing and term structure of interest rates (TSIR) will be thoroughly covered.二、教学内容及基本要求(Teaching Content and Requirements)Topics include:(a)Stochastic processes and stochastic calculus(b)Trading strategy and market span(c)No arbitrage and martingale pricing: The Fundamental Theorem(d)Black-Scholes option pricing model(e)Classical no arbitrage modeling on TSIR(f)Heath-Jarrow-Morton’s approach on TSIR(g)TSIR in presence of Levy jumps三、考核方式及要求 (Grading)There will be no final examination. Students will be assessed on the basis of class participation, a mid-term test and a term paper.Class participation 10%Mid-term test 20%Term paper 70%Total 100%四、学习本课程的前期课程要求(Required Courses in advance)Asset Pricing, Econometrics/Statistics, Optimization五、教材 (Textbook)马成虎:高级资产定价理论。
崔利荣 (博士,教授) - 国立清华大学统计学研究所

Continued to 003.pdf
3. Ion-Channel Modeling & Related ASP
(3)Two ways for studying ASP for Ion Channel
Method 1: Laplace & Laplace-Stieltjes transform, in details, there are two ways: (a). Alan G. Hawkes’ way, to use physical explanations to show the results (Proc. R. Soc. London B). (b). Frank Ball’s way, to use mathematical derivation to give the results (JAP, AAP) Method 2: Direct way, Rubino & Sericola’s way (to use the uniformation technique for Markov Chain, direct to Semi-Markov Chain) (JAP, RESS)
Note: (1) computation problems faced for Method 1 are mainly inversion of Laplace or Laplace-Stieltjes transforms, fortunately, this hand has been some very good results, e.g. (Int. J. Numer. Method Eng. 2004, 60:979-993). However, method 2 usually needs more complicated algorithms. (2) Both methods need some matrix theory knowledge.
信息与计算科学专业课程简介

信息与计算科学专业课程简介课程代码:3112001131.课程名称:解析几何 Analytic Geometry总学时: 64 周学时: 4学分: 3 开课学期:一修读对象:必修预修课程:无内容简介:《解析几何》是学科基础课程,是所有数学专业及应用数学专业的主要的基础课。
它是用代数的方法来研究几何图形性质的一门学科。
《解析几何》包括向量与坐标,轨迹与方程,平面与空间直线,柱面、锥面、旋转曲面与二次曲面,二次曲线的一般理论与二次曲面的一般理论等。
选用教材:吕林根,许子道,《解析几何》(第四版),高等教育出版社,2006年。
参考书目:周建伟,《解析几何》,高等教育出版社,2005年。
课程代码:311200214、311200314、311200616、3112007152.课程名称:数学分析Ⅰ-Ⅳ Mathematical AnalysisⅠ-Ⅳ总学时:334 周学时:4,4,6,5学分: 18 开课学期:一,二,三,四修读对象:必修预修课程:无内容简介:《数学分析》是学科基础课程,是所有数学专业及应用数学专业第一基础课。
它提供了利用函数性质分析和解决实际问题的方法, 培养学生严谨的抽象思维能力,为学习其他学科奠定基础。
主要内容有:实数、函数、极限论,函数的连续性。
一元函数微分学,微分学基本定理。
一元微分学应用,实数完备性基本定理,闭区间上连续函数性质的证明,不定积分,定积分及应用,非正常积分。
数项级数,函数列与函数项级数,幂级数,付里叶级数,多元函数的极限与连续,多元函数微分学。
隐函数定理及其应用,重积分,含参量非正常积分,曲线积分与曲面积分。
选用教材:华东师范大学数学系,《数学分析》(第三版)(上、下册),高等教育出版社,2001年。
参考书目:① 陈纪修,《数学分析》(第二版),高等教育出版社2004年。
② 刘玉琏,傅沛仁,《数学分析讲义》(第三版),高等教育出版社,1992年。
课程代码:311200416、3112005153.课程名称:高等代数Ⅰ-Ⅱ Advanced AlgebraⅠ-Ⅱ总学时:198 周学时:6,5学分: 11 开课学期:二,三修读对象:必修预修课程:无内容简介:《高等代数》是学科基础课程。
StochasticProcessesinPhysicsandChemistry
PY542INFORMATION Fall2008Instructor:Sidney Redner(321SCI,x2618)Office Hours:Tues.&Fri.9-10:30am,and by appointment.General:This course treats non-equilibrium statistical mechanics and transport phenom-ena.Because of the rapid developments in thefield,the breadth of topics,and the lack of an established formalism,most of the classic texts no longer seem appropriate for this course.For this reason,the“unofficial”course text is a book that I am currently writing with2co-authors.It is continuously being updated and individual chapters are posted on the course website.Other books that should be helpful during the semester include:(i)N.G.Van Kampen,Stochastic Processes in Physics and Chemistry(North-Holland). This gives an excellent treatment of stochastic processes.Buy it used if you can.I would have assigned this as the text if the price was a factor2smaller.(ii)S.Redner,A Guide to First-Passage Processes(Cambridge University Press).This book gives background on random walks and diffusion processes,as well as a reference for the portion of the course onfirst-passage phenomena.If you purchase the hardcover version,I will refund you my royalty(approximately$5.50per book),but the paperback version is much cheaper.I will also post relevant excerpts on the course website. (iii)F.Reif,Statistical and Thermal Physics(McGraw-Hill).A standard advanced un-dergraduate text for statistical mechanics.The last few chapters provide a particularly useful introduction to various aspects of non-equilibrium processes.(iv)K.Huang,Statistical Mechanics2nd edition(Wiley).Relevant chapters are3and 5that deal with kinetic theory and transport phenomena.(i)N.Wax(editor),Selected Papers on Noise and Stochastic Processes(Dover).This book contains reprints of some of the most important classic research articles on stochas-tic processes.Although out of print,it may be possible to obtain used somewhere.How-ever,the book contains reprints of articles that are generally available on the web.The most useful is“Stochastic Problems in Physics in Astronomy”by S.Chandrasekhar, Rev.Mod.Phys.15,1–89(1943).Other useful articles include“On the Theory of the Brownian Motion”,by G.E.Uhlenbeck and L.S.Orenstein,Phys.Rev.26,823–41(1930)&“On the Theory of the Brownian Motion II”by M.C.Wang and G.E. Uhlenbeck,Rev.Mod.Phys.17,323–42(1945).(v)R.Kubo,M.Toda and N.Hashitsume,Statistical Physics II(Springer-Verlag). Contains a particularly good discussion of linear response theory and thefluctuation-dissipation theorem.(vi)J.A.McLennan,Introduction to Non-Equilibrium Statistical Mechanicsi(Prentice-Hall).This book contains a thorough discussion of the Boltzmann transport equation. (vii)H.J.Kreuzer,Non-Equilibrium Thermodynamics and its Statistical Foundations (Oxford University Press).Comprehensively treats transport theory from the macro-scopic viewpoint and has an excellent discussion of the Rayleigh-B´e nard instability.Course organization:Lectures:Lectures will be held on Tuesdays and Thursdays from2:00—3:30in SCI B58.The accompanying outline represents a rough approximation to the material that will be covered this semester.Discussion:Sections will be held weekly starting Wed.Sept.3at2:00pm in PRB365.Homework:Approximately10assignments will be handed out.While some collab-oration on homework is acceptable,what is turned in should represent your personal effort.Exams and Grading:The average of the homeworks will count approximately30±5% of the total class grade.I will give one midterm exam(exact format to be determined) that will count approximately30±5%of the total class grade.For thefinal,I am currently planning a take-home but time-limitedfinal exam that will count for the approximately remaining40%of the total course grade.。
工程随机过程_3_马尔可夫过程(Markov)
College of Science, Hohai University
Stochastic Processes
定理2 若随机变量序列{X(n),n0}对任何n 均满足下式,则该序列为马氏链。
P{ X (0) i0 , X (1) i1 ,, X ( n) in }
P { X ( 0) i 0 } P{ X (1) i1 | X (0) i0 } P{ X ( 2) i2 | X (1) i1 } P { X ( 3 ) i 3 | X ( 2) i 2 } P{ X ( n) in | X ( n 1) in1 }
Pn ( P1 )
n
College of Science, Hohai University
Stochastic Processes
初始概率分布: 马氏链在初始时刻(即零时刻)取各状态 的概率分布 p0 ( i0 ) P{ X (0) i0 } i E 0 称为它的初始概率分布。 绝对概率分布: 马氏链在第n时刻(n 0)取各状态的概 率分布 p ( j ) P{ X (n) j } j E
第三章
马尔可夫过程 (Markov)
College of Science, Hohai University
Stochastic Processes
Markov过程是一个具有无后效性的随机过程. 无后效性: 当过程在时刻tm所处的状态为已知时, 过程在 大于tm的时刻t所处状态的概率特性只与过程在 tm时刻所处的状态有关, 而与过程在tm时刻之前 的状态无关. (1)参数和状态都离散 -----马氏链 (2)参数离散, 状态连续 -----马氏序列 (3)其余皆为马氏过程.
随机过程2016quiz及答案3
• Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit. Do not write in the table to the right.
Stochastic Processes
Quizz 3: The Poisson Award - Page 4 of 9
14/12/16
3. (20 points) A coin with probability p of Heads is flipped repeatedly. For (a) and (b), suppose that p is a known constant, with 0 < p < 1. (a) (5 points) What is the expected number of flips until the pattern HT is observed? (b) (5 points) What is the expected number of flips until the pattern HH is observed? (c) (10 points) Now suppose that p is unknown, and that we use a Beta(a, b) prior to reflect our uncertainty about p (where a and b are known constants and are greater than 2). In terms of a and b, find the corresponding answers to (a) and (b) in this setting.
9-连续时间Markov过程
j 0,1, 2
* ** p* [ r V (n 1)]} ij ij j
利用这种迭代, 可知本月无定单, 采用最优 策略,4个月后最大利润为134(万元).
转移概率矩阵: 0 q1 0 0 0 0 P 0 0 0 0 0 0 0 q2 0 0 0 0 0 0 q3 0 0 0 0 0 0 q4 1 0 r1 r2 r3 r4 0 1
令n ,可知 0 为(*)最小正根.
下证(*)有根的条件 : 设G ' (1) (数学期望) . G( z) 构造函数 : f ( z ) , 0 z 1. z G' ( z) z G( z) 显然, f (0) , f (1) 1, f ' ( z ) (0 z 1). 2 z 考虑左右导数: f ' (0) , f ' (1) 1. f "( z) (G" ( z ) z G ' ( z ) G ' ( z ))z 2 2 z (G ' ( z ) z G ( z )) (0 z 1). 4 z 1 3 ( k 0 p k [k (k 1) 2k 2]z k ) 0. z
利润预测 :某玩具商每月至多接 受2份定单. X (n)表示第n个月的定单数,可设是 齐次 Markov链, 根据过去经营的资料分 析, 接受定单的转移概率为 p 00 P p 10 p 20 r00 R r10 r 20 p 02 0.1 0.3 0.6 p12 0.3 0.3 0.4 , 0.3 0.1 0.6 p 21 p 22 I 0 1 2表示接受的定单数 .相应于P报酬矩阵为 p 01 p11 r02 20 10 20 r11 r12 10 20 40 r00 20表明 10 40 60 r21 r22 这个月无定单 , 下个月还无定单公司赔 20万元. r01
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (x | B), 则E( X | B) = ∫ xf (x | B)dx.
−∞
+∞
注: 若 与 独 ,即 X B 立 ∀x ∈R, P{X ≤ x, B} = P{X ≤ x}P(B), 则 ( X | B) = EX. E
例 . 设 为 .v., 对 定 常 t0 > 0, 记 件 1 X r 给 的 数 事 B = {X > t0},若 ~ ε (λ), 求 ( X | B). X E
σ1 a + r σ2 σ2 σ1
) (x − a),σ (1− r )).
2 1 2 2 2 2
( y −b),σ (1− r ) ,
例6. 某段时间到达商场客人数N ~ π (λ), 每位顾客 消费X ~ U(a, b).每位顾客之间的消费相互独 立 且与N独立求该段时间销售额的数学期望 , . .
k itxk
⋅ pk .
当 为 续 r.v., X的 .d. f .为 (x), 则 X 连 型 p f
ϕ(t) = ∫ e f (x)dx.
itx −∞
+∞
2. 性 质
1 ϕ(0) =1, ϕ(t) ≤ ϕ(0),ϕ(t) = ϕ(−t).
0
2 ϕ(t)在 −∞,+∞)上一致连续 ( .
0
定 : ϕ(t)在 间 上 致 续 若 ε > 0, ∃δ > 0, 义 称 区 C 一 连 , ∀ 当h < δ时 对 t ∈C有ϕ(t + h) −ϕ(t) < ε成 . , ∀ 立
i
P( X = xi ,Y = y) . = ∑g(xi ) P(Y = y) i
若 X ,Y)为连续型r.v., 对∀y, s.t. fY ( y) > 0有 ( f (x, y) E[g( X ) | y] = ∫ g(x) f X|Y (x | y)dx = ∫ g(x) dx. −∞ −∞ fY ( y)
2.一些重要公式
10 全数学期望公式
设X为r.v.,{Bi }为一组事件 P(Bi ) > 0(i =1,2,L, n), ,
n
UB = Ω, B B
i i i=1
j
= Φ(i ≠ j), 则有EX = ∑P(Bi )E( X | Bi ).
i=1
n
2 条件全数学期望公式 设X为r.v.,{Bi }为一组事件 P( ABi ) > 0(i =1,2,L, n), ,
3 ϕ(t)是非负定的 .
0
定 : ϕ(t)是 负 的 若 n∈Z 及 t1,Ltn ∈R, 义 称 非 定 , ∀ ∀
r X1 2 2 例 设X = ~ N(a1, a2 ,σ1 ,σ2 , r), 求 5. X2 2 E( X1 | X2 ), E( X2 | X1),E( X12 | X2 ), E( X2 | b + r
X |Y = y ~ N
0
= ∫ L∫ g(x1,L, xn ) f (x1,L, xn )dx1Ldxn.
−∞ −∞
+∞
+∞
二、数学期望的性质
1.若 ≥ 0,且 存 ,则 ≥ 0. X EX 在 EX
2. 若 存 ,则EX ≤ E X . EX 在
3. 若 ≤ X ≤ Y,且 存 ,则 ≤ EY. 0 EY 在 EX
4. 若 ( X )(k > 0)存 ,则 ( X )(0 ≤ r ≤ k)存 . E 在 E 在
2. 方 阵 差 r r r r rτ VarX = E( X − EX )( X − EX ) ˆ = (E( Xi − EXi )( X j − EX j ))n×n ˆ
= (Cov( Xi , X j ))n×n
r X1 r r 2 2 例 . 设 = ~ N(a1, a2 ,σ1 ,σ2 , r), 求 X,VarX. 1 X E X2
3 若X,Y独立 则E[g( X ) | Y] = E[g( X )]. ,
0
推 . E[C | Y] = EC = C (C为 数 论 常 ).
40 E[g( X )h(Y)| Y] = h(Y)E[g( X )| Y]. 5 E[h(Y)| Y] = h(Y).
0
6 E[E(g( X )| Y)] = E[g( X )].
§3 随机向量的数字特征
X1 Y r r 1 设X = M ,Y = M 分别为 概率空 (Ω, ℑ, P)上 n维 间 的 X Y n m 和m维随机向 量
1. 均 (阵 值 )
X1 EX1 r EX = E M = M ˆ X EX n n
0
UB = Ω, BB
i i i=1 n i=1
n
j
= Φ(i ≠ j), 则有
E( X | A) = ∑P(Bi | A)E( X | ABi ).
3 X为 .v., A, B为 r 事件 B , 的示 函数 性
0
1 ω ∈B IB (ω) = , 0 ω ∉B 则 E(IB ) = P(B), 1) 2)E(I A | B) = P( A| B), 3)E( XIB ) = P(B)E( X | B)
2 E[a1g1( X1) + a2 g2 ( X2 ) | Y]
0
= a1E[g1( X1) | Y] + a2E[g2 ( X2 ) | Y].
推论1. 若g1(•) ≤ g2 (•),则E[g1( X )| Y] ≤ E[g2 ( X )| Y].
推 2. E[g( X )| Y] ≤ E[ g( X ) | Y]. 论
∞ ∞
注:1 E[g( X ) | y]是y的一个函数 .
0
2 E[g( X )| Y] = E[g( X )| y]|y=Y 称 g( X )关 为 于
0
Y的 件 学 望 条 数 期 .
3 E[g( X )| Y]是Y的一个函数 .
0
2.条 期 的 质 件 望 性
10 若g(•) ≥ 0,则E[g( X ) | Y] ≥ 0.
−∞ −∞ +∞ +∞
X 注: 若 的p.d. f .为f X (x), 则 10 变 为 EY = Eg( X ) = ∫ g(x) f X (x)dx.
−∞ +∞
若 X1,L, Xn )的p.d. f .为 (x1,L, xn ), ( f 则 变为 2 EY = Eg( X1,L, Xn )
0
空间上比较具体 、易于研究的Stieltjes 积分 .
2 利 定 1, 令 (x) = x,当 x dFX (x) < +∞时 用 理 g , ∫
0 −∞ +∞
定 1 定 2是 致 . 义与 义 一 的
r.v. 定 2. 1 设 X的 . f .为 X (x), g(x)为 元 理 d F 一 Borel
k r
5.若 ( X ), E(Y )存 ,则 ( XY)存 ,且 在 E 在 E
2 2
[E(XY)]
2
≤ E( X )E(Y )
2 2
E( XY) ≤ E XY ≤ E( X 2 )E(Y 2 ) ——Cauchy - Schwarz不 式 等
§2 条件数学期望及其性质
一、关于事件的条件数学期望
1.定义: 若X是(Ω, ℑ, P)上的一个r.v., B为事件 且 , P(B) > 0, X关于事件B的条件分布函数为 F(x | B), 则定义X关于B的条件数学期望为 E( X | B) = ∫ xdF(x | B).
−∞ +∞
特例: 当X为离散型r.v., X关于B的条件分布列为 1
0
P{X = xi | B},则E( X | B) = ∑xi P{X = xi | B}. 2 当X为连续型r.v., X关于B的条件p.d. f .为
§1 关于数学期望的一些说明
一、概念
定义 : 设X的d. f .为FX (x), 且∫ x dFX (x) < +∞,则称 1
−∞
+∞
EX = ∫ xdFX (x)为X的数学期望 .
−∞
+∞
( 定义2 : 设X的 Ω, ℑ, P)上的一个r.v.,如果X在Ω上关 于概率测度P的积分存在 则称此积分为X , 的数学期望 记为EX = ∫ X (ω)dP. ,
Ω
定理 积分转化定理)设X为 Ω, ℑ, P)上的一个r.v., 1.( ( , X的d. f .为FX (x), g(x)为Borel函数 则
∫ g[X (ω)]dP = ∫
Ω
R
1
g(x)dFX (x).
上式两端一个存在 则另一个存在且二者相 , 等 .
注: 由定理 可以把概率空间上的积分转化为欧氏 1 1
0
注: (重 望 式)取 (x) = x, 有 [E( X | Y)] = E( X ). 期 公 g E
若 是 续 r.v., EX = E[E( X | Y)] Y 连 型 = ∫ E( X | y) fY ( y)dy.
−∞ +∞
若Y是离散型r.v., EX = E[E( X | Y)] = ∑E( X | Y = y j )P{Y = y j } .
0 itx itx −∞ +∞
函 ϕ(t)存 . 数 在
3 ϕ(t) = ∫ eitxdF(x)
0 −∞ +∞ +∞ +∞
= ∫ cos txdF(x) + i∫ sin txdF(x).
−∞ −∞
40 当X为离散型r.v., X的分布列为pk = P{X = xk }, k =1,2,L,则ϕ(t) = ∑e