multisim正弦波转化成方波电路

合集下载

multisim仿真教程 正弦波脉宽调制(SPWM)逆变电路

multisim仿真教程  正弦波脉宽调制(SPWM)逆变电路
11.8正弦脉宽调制( SPWM)逆变电路
精品课件
11.8.1正弦脉宽调制(SPWM)逆变电路工作原理
1. SPWM控制的基本原理 图11.8.1(a)示出正弦彼的正半周波形,
并将其划分为N等份,这样就可把正弦半波看成 由N个彼此相连的脉冲所组成的波形。这些脉冲 的宽度相等,都等于π/ N,但幅值不等,且 脉冲顶部是曲线,各脉冲的幅值按正弦规律变 化。
方向变化,所得到输出电压的PWM波形也只在 一个方向变化的控制方式称为单极性PWM控制 方式。 3. 双极性PWM控制方式
精品课件
图11.8.2的单相桥式逆变电路采用双极性PWM 控制方式的波形如图11.8.4所示。在双极性方
式中ur的半个周期内,三角波载波是在正、负
两个方向变化的,所得到的PWM波形也是在两
精品课件
当它与正弦波的调制信号波相交时,所
得到的就是SPWM波形。如在交点时刻控制电
路中开关器件的通断,就可以得到宽度正比
于信号波幅值的脉冲。这正好符合SPWM控制
的要求。
精品课件
2. 单极性PWM控制方式
一个电压型单相桥式逆变电路如图11.8.2
所示,采用电力晶体管作为开关器件。设负载
为电感性,对各晶体管的控制按下面的规律进
个方向变化的。在ur的一周期内,输出的PWM 波形只有±UD两种电平,仍然在调制信号ur和 载波信号uc的交点时刻控制各开关器件的通断。
精品课件
在ur的正负半周,对各开关器件的控制规律相 同。当ur>uc时,给晶体管VT1和VT4以导通信 号,给VT2、 VT3以关断信号,输出电压uo=UD。 当ur<uc时,给VT2 、VT3以导通信号,给VT1 和VT4以关断信号,输出电压Uo=-UD。可以

multisim仿真教程正弦波脉宽调制(SPWM)逆变电路

multisim仿真教程正弦波脉宽调制(SPWM)逆变电路

multisim仿真教程正弦波脉宽调制(SPWM)逆变电路multisim仿真教程11.8正弦脉宽调制( SPWM)逆变电路multisim仿真教程11.8.1正弦脉宽调制(SPWM)逆变电路工作原理1. SPWM控制的基本原理图11.8.1(a)示出正弦彼的正半周波形,并将其划分为N等份,这样就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。

这些脉冲的宽度相等,都等于π / N,但幅值不等,且脉冲顶部是曲线,各脉冲的幅值按正弦规律变化。

multisim仿真教程如果将每一等份的正弦曲线与横轴所包围的面积用一个与此面积相等的等高矩形脉冲代替,就得到图11.8.1(b)所示的脉冲序列。

这样,由N个等幅而不等宽的矩形脉冲所组成的波形与正弦波的正半周等效,正弦波的负半周也可用相同的方法来等效。

multisim仿真教程SPWM(Sine Pulse Width Modulation正弦波脉宽调制)的控制思想,就是利用逆变器的开关元件,由控制线路按一定的规律控制开关元件的通断,从而在逆变器的输出端获得一组等幅、等距而不等宽的脉冲序列。

其脉宽基本上按正弦分布,以此脉冲列来等效正弦电压波。

multisim仿真教程图11.8.1 SPWM控制的基本原理multisim仿真教程SPWM正弦波脉宽调制的特点是输出脉冲列是不等宽的,宽度按正弦规律变化,故输出电压的波形接近正弦波。

SPWM是采用一个正弦波与三角波相交的方案确定各分段矩形脉冲的宽度。

通常采用等腰三角波作为载波,因为等腰三角波上下宽度与高度成线性关系且左右对称。

multisim仿真教程当它与正弦波的调制信号波相交时,所得到的就是SPWM波形。

如在交点时刻控制电路中开关器件的通断,就可以得到宽度正比于信号波幅值的脉冲。

这正好符合SPWM控制的要求。

multisim仿真教程2. 单极性PWM控制方式一个电压型单相桥式逆变电路如图11.8.2所示,采用电力晶体管作为开关器件。

multisim仿真教程 正弦波脉宽调制(SPWM)逆变电路(业界精制)

multisim仿真教程  正弦波脉宽调制(SPWM)逆变电路(业界精制)
方向变化,所得到输出电压的PWM波形也只在 一个方向变化的控制方式称为单极性PWM控制 方式。
3. 双极性PWM控制方式
技术教育
16
图11.8.2的单相桥式逆变电路采用双极性PWM 控制方式的波形如图11.8.4所示。在双极性方
式中ur的半个周期内,三角波载波是在正、负
两个方向变化的,所得到的PWM波形也是在两
技术教育
9
如负载电流较大,那么直到使VT4再一次导通之 前,VD3一直持续导通。如负载电流较快地衰减 到零,在VT4再一次导通之前,负载电压也一直
为零。这样,负载上的输出电压uo就可得到零
和UD交替的两种电平。
技术教育
10
同样,在负半周期,让晶体管VT2保持导 通。当VT3导通时,负载被加上负电压一 UD;当VT3关断时, VD4续流,负载电压为
技术教育包围的面 积用一个与此面积相等的等高矩形脉冲代替, 就得到图11.8.1(b)所示的脉冲序列。这样, 由N个等幅而不等宽的矩形脉冲所组成的波形 与正弦波的正半周等效,正弦波的负半周也可 用相同的方法来等效。
技术教育
3
SPWM(Sine Pulse Width Modulation正弦波 脉宽调制)的控制思想,就是利用逆变器的 开关元件,由控制线路按一定的规律控制开 关元件的通断,从而在逆变器的输出端获得 一组等幅、等距而不等宽的脉冲序列。其脉 宽基本上按正弦分布,以此脉冲列来等效正 弦电压波。
零,负载电压uo可得到一UD和零两种电平。
这样,在一个周期内,逆变器输出的PWM 波形就由±UD和0三种电平组成。
技术教育
11
图11.8.2 电压型单相桥式逆变电路
技术教育
12
图11.8.3单极性PWM控制方式

multisim仿真教程 正弦波脉宽调制(SPWM)逆变电路

multisim仿真教程  正弦波脉宽调制(SPWM)逆变电路

对话框设置如图11.8.6所示。
图中采用LM339AJ比较器作为SPWM调制电路, A2 3545AM作为反相放大器,产生的波形如图 11.8.9(c)所示。在负载电阻R4上的输出波 形如图11.8.9(d)所示。
(a)SPWM驱动信号产生电路
(b)SPWM逆变电路
(c)SPWM逆变电路驱动信号
号极性相反,处于互补工作方式。

在电感性负载的情况下,若VTT1和VT4处
于导通状态时,给VT1或VT4以关断信号,而给
VT2和VT3以开通信号后,则VT1或VT4立即关断,
因感性负载电流不能突变,VT2和VT3并不能立
即导通,二极管VD2和VD3导通续流。
当感性负载电流较大时,直到下一次VT1 和VT4重新导通前,负载电流方向始终未 变,VD2和VD3持续导通,而VT2和VT3始终 未开通。当负载电流较小时,在负载电流 下降到零之前,VD2和VD3续流,之后VT2 和VT3开通,负载电流反向。
为零。这样,负载上的输出电压uo就可得到零
和UD交替的两种电平。
同样,在负半周期,让晶体管VT2保持导 通。当VT3导通时,负载被加上负电压一 UD;当VT3关断时, VD4续流,负载电压为
零,负载电压uo可得到一UD和零两种电平。
这样,在一个周期内,逆变器输出的PWM 波形就由±UD和0三种电平组成。
图11.8.7 XFG1和XFG2 产生的波形
图11.8.8 通过比较器产生的波形
11.8.3 SPWM逆变电路

SPWM逆变电路如图11.8.9(a)(b)所
示。图中函数发生器XFG1产生1kHz的三角波信
号作为载波信号uc,函数发生器XFG1产生50Hz

multisim仿真教程正弦波脉宽调制SPWM逆变电路业界精制

multisim仿真教程正弦波脉宽调制SPWM逆变电路业界精制

技术教育
1
如果将每一等份的正弦曲线与横轴所包围的面 积用一个与此面积相等的等高矩形脉冲代替, 就得到图11.8.1(b)所示的脉冲序列。这样, 由N个等幅而不等宽的矩形脉冲所组成的波形 与正弦波的正半周等效,正弦波的负半周也可 用相同的方法来等效。
技术教育
2
SPWM(Sine Pulse Width Modulation正弦波 脉宽调制)的控制思想,就是利用逆变器的 开关元件,由控制线路按一定的规律控制开 关元件的通断,从而在逆变器的输出端获得 一组等幅、等距而不等宽的脉冲序列。其脉 宽基本上按正弦分布,以此脉冲列来等效正 弦电压波。
方向变化,所得到输出电压的PWM波形也只在 一个方向变化的控制方式称为单极性PWM控制 方式。
3. 双极性PWM控制方式
技术教育
15
图11.8.2的单相桥式逆变电路采用双极性PWM 控制方式的波形如图11.8.4所示。在双极性方
式中ur的半个周期内,三角波载波是在正、负
两个方向变化的,所得到的PWM波形也是在两
11.8.1正弦脉宽调制(SPWM)逆变电路工作原理
1. SPWM控制的基本原理 图11.8.1(a)示出正弦彼的正半周波形,
并将其划分为N等份,这样就可把正弦半波看成 由N个彼此相连的脉冲所组成的波形。这些脉冲 的宽度相等,都等于π/ N,但幅值不等,且 脉冲顶部是曲线,各脉冲的幅值按正弦规律变 化。
技术教育
8
如负载电流较大,那么直到使VT4再一次导通之 前,VD3一直持续导通。如负载电流较快地衰减 到零,在VT4再一次导通之前,负载电压也一直
为零。这样,负载上的输出电压uo就可得到零
和UD交替的两种电平。
技术教育
9

最新multisim仿真教程 正弦波脉宽调制(SPWM)逆变电路精品课件

最新multisim仿真教程  正弦波脉宽调制(SPWM)逆变电路精品课件
第二十页,共33页。
不论(bùlùn)VD2和VD3导通,还是VT2和VT3开通, 负载电压都是一UD。从VT2和VT3开通向VT1和VT4 开通切换时,VD1和VD4的续流情况和上述情况类 似。
第二十一页,共33页。
图11.8.4 双极性PWM控制(kòngzhì)方
式的波形
第二十二页,共33页。
第二十六页,共33页。
图11.8.8 通过(tōngguò)比较器
第二十七页,共33页。
11.8.3 SPWM逆变(nì biàn)电路
SPWM逆变电路如图11.8.9(a)(b)所示。
图中函数发生器XFG1产生1kHz的三角波信号作为载
波信号uc,函数发生器XFG1产生50Hz的正弦波信号
作为调制(tiáozhì)信号ur ,XFG1和XFG2对话框设
第十四页,共33页。
当 ur<uc时使VT4关断,uo=0;在ur的负半 周,VT1关断,VT2保持(bǎochí)导通,当ur< uc时使VT3导通,uo=一UD,当ur>uc时使VT3 关断,uo=0。这样,就得到了PWM波形uo。图 中虚线uof表示uo中的基波分量。
第十五页,共33页。
像这种在ur的半个周期内三角波载波只在一个 方向(fāngxiàng)变化,所得到输出电压的PWM 波形也只在一个方向(fāngxiàng)变化的控制方 式称为单极性PWM控制方式。
第四页,共33页。
图11.8.1 SPWM控制(kòngzhì)的 基本原理
第五页,共33页。
SPWM正弦波脉宽调制的特点是输出脉
冲列是不等宽的,宽度按正弦规律变化,
故输出电压的波形接近正弦波。SPWM是采
用一个正弦波与三角波相交的方案确定各

正弦波合成方波

正弦波合成方波

正弦波合成方波
正弦波合成方波是一种常见的信号处理技术,在电子学、通信和音频领域有着广泛的应用。

方波是一种特殊的周期信号,其波形由多个等宽矩形脉冲组成,这些脉冲的上升沿和下降沿是垂直的,且持续时间相等。

要合成一个方波信号,我们可以利用正弦波的特性。

正弦波是一种连续的周期信号,由于其波形是平滑曲线,无法直接得到方波。

但是,我们可以通过合成多个不同频率的正弦波,来逼近方波的波形。

首先,我们需要选择一种基础频率,即最低频率的正弦波。

通常情况下,选择的基础频率应为我们要合成的方波的基频。

基频是方波的最低频率分量,决定了方波的周期。

接下来,我们需要选择一系列的奇次谐波分量。

奇次谐波是指频率为基频的奇数倍的正弦波。

这些谐波分量的振幅和相位需要根据方波的要求来确定。

然后,我们将基频和奇次谐波分量的正弦波相加。

由于正弦波是周期性的,所以它们会按照各自的频率周期性地重复出现。

当我们将它们相加时,它们的周期会相互重叠,形成一个逼近方波的波形。

最后,我们可以通过调整各个正弦波分量的振幅和相位,来进一步改善合成的方波信号的质量。

通过适当的调整,我们可以使合成的波形更接近理想的方波。

正弦波合成方波是一种简单而有效的方法,用于合成方波信号。

通过选择适当的正弦波分量和调整它们的振幅和相位,我们可以得到高质量的方波信号。

这种技术在音频合成、调制解调、数字通信等领域都有广泛的应用。

无论是在实际应用中还是在理论研究中,正弦波合成方波都是一个重要的概念,对于深入理解信号处理和波形合成有着重要的意义。

模拟电子电路课程设计——正弦波-三角波-方波函数发生器

模拟电子电路课程设计——正弦波-三角波-方波函数发生器

课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目:正弦波-三角波-方波函数发生器初始条件:具备模拟电子电路的理论知识;具备模拟电路基本电路的设计能力;具备模拟电路的基本调试手段;自选相关电子器件;可以使用实验室仪器调试。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、频率范围三段:10~100Hz,100 Hz~1KHz,1 KHz~10 KHz;2、正弦波Uopp≈3V,三角波Uopp≈5V,方波Uopp≈14V;3、幅度连续可调,线性失真小;4、安装调试并完成符合学校要求的设计说明书时间安排:一周,其中3天硬件设计,2天硬件调试指导教师签名:年月日系主任(或责任教师)签名:年月日目录1.综述...........................................................1 1.1信号发生器概论...................................................1 1.2 Multisim简介....................................................21.3集成运放lm324简介...............................................32.方案设计与论证...............................................4 2.1方案一...................................................4 2.2方案二..................................................42.3方案三..................................................53.单元电路设计..............................................6 3.1正弦波发生电路的工作原理...............................6 3.2正弦波变换成方波的工作原理.............................8 3.3方波变换成三角波的工作原理.............................93.4正负12V直流稳压电源的设计............................104.电路仿真................................................124.1总波形发生电路............................................124.2正弦波仿真................................................134.3方波仿真...................................................144.2三角波仿真...............................................145.实物制作与调试..........................................155.1焊接过程.............................................155.2 实物图...............................................155.3调试波形.............................................186.数据记录................................................197.课设总结................................................208.参考书目................................................219.附录....................................................22 本科生课程设计成绩评定表....................................241.综述1.1信号发生器概论在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档