三角波产生及三角波—正弦波转换电路及音频功率放大电路

合集下载

lm358正弦波方波三角波产生电路

lm358正弦波方波三角波产生电路

《LM358正弦波、方波、三角波产生电路设计与应用》一、引言在电子领域中,波形发生器是一种非常重要的电路,它可以产生各种不同的波形信号,包括正弦波、方波和三角波等。

LM358作为一款宽幅增益带宽产品电压反馈运算放大器,被广泛应用于波形发生器电路中。

本文将探讨如何利用LM358设计正弦波、方波和三角波产生电路,并简要介绍其应用。

二、LM358正弦波产生电路设计1. 基本原理LM358正弦波产生电路的基本原理是利用振荡电路产生稳定的正弦波信号。

通过LM358的高增益和频率特性,结合RC滤波电路,可以实现较为稳定的正弦波输出。

2. 电路设计(1)LM358引脚连接。

将LM358的引脚2和3分别与电容C1和C2相连,形成反馈电路,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。

(2)RC滤波电路。

在LM358的输出端接入RC滤波电路,通过调节电阻和电容的数值,可以实现所需的正弦波频率和幅值。

3. 电路测试连接电源并接入示波器进行测试,调节RC滤波电路的参数,可以观察到稳定的正弦波信号输出。

三、LM358方波产生电路设计1. 基本原理LM358方波产生电路的基本原理是通过LM358的高增益和高速响应特性,结合反相输入和正向输入,实现对方波信号的产生。

2. 电路设计(1)LM358引脚连接。

将LM358的引脚2和3分别与电阻R1和R2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。

(2)反相输入和正向输入。

通过R1和R2的分压作用,实现LM358反相输入和正向输入,从而产生方波输出。

3. 电路测试连接电源并接入示波器进行测试,调节R1和R2的数值,可以观察到稳定的方波信号输出。

四、LM358三角波产生电路设计1. 基本原理LM358三角波产生电路的基本原理是通过LM358的反相输入和正向输入结合,实现对三角波信号的产生。

2. 电路设计(1)LM358引脚连接。

将LM358的引脚2和3分别与电容C1和C2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。

方波三角波正弦波产生电路ppt课件

方波三角波正弦波产生电路ppt课件

实体电路板
路板只需把元件对照电路图对 号入座插入电路板中,留意正负极 不要插反了。
焊接电路
焊接电路板需求留意:①.检查元件能否安顿正确,特别是极性 不要装错。
②.焊接时间不要过长,容易损坏元器件。 ③.检查能否短路,虚焊等。
调试
调试方法: 〔1〕静态调试 用万用表主要是蜂鸣档对电路板进展静态测试,目的主要是为 了防止虚焊或者漏焊。 〔2〕动态测试 静态调试没有问题之后方可以到实验室进展动态测试,要留意 直流电源的接入方法。 动态测试要逐渐伐节,先测试方波的幅值,输出波形频率范围 等。再对三角波正弦波进展相应的调试。然后对电路进展动态 测试。主要是测试方波、三角波、正弦波的振荡频率的调理范 围。留意用示波器丈量幅值必需把一切的微调都调到顺时针顶 端。在丈量之前必需把波形先调好,只需在波形不失真的情况 下才干丈量参数,否那么所测数据没有任何意义。
原理图
第一部分:将直流电经过 同相滞回比较电路和积分 电路分别转换为方波和三 角波。
方框图
第二部分:三角波经滤 波电路转换为正弦波。
电路分析
1.任务原理:由555定时器组成的多 谐振荡器产生方波,然后由积分电 路将方波转化为三角波,最后用低 通滤波器将方波转化为正弦波,但 这样的输出将呵斥负载的输出正弦 波波形变形,由于负载的变动将拉 动波形的崎变。
元件引见
实物
简介:NE555是属于555系列的计时IC的其中的一种型号, 555系列IC的接脚功能及运用都是相容的,只是型号不同的 因其价钱不同其稳定度、省电、可产生的振荡频率也不大一 样;而555是一个用途很广且相当普遍的计时IC,只需少数 的电阻和电容,便可产生数位电路所需的各种不同频率之脉 波讯号。
由555定时器组成的多谐振荡器产生方波然后由积分电路将方波转化为三角波最后用低通滤波器将方波转化为正弦波但这样的输出将呵斥负载的输出正弦波波形变形由于负载的变动将拉动波形的崎变

模拟信号源测试实验

模拟信号源测试实验

实验一:各种模拟信号源测试实验一.实验目的1.熟悉各种模拟信号源的产生方法,波形和用途。

2.熟练掌握各种模拟信号源电路连接及参数调整方法,为后面通信原理实验作准备。

二.实验仪器1.RZ8621D 实验箱一台2.20MHZ 双踪示波器一台3.平口小螺丝刀一个三.实验电路连接图1-1 同步正弦波产生电路图1-2 非同步三角波、正弦波、方波产生电路图1-3 音乐信号产生电路 图1-4 外接信号源接口TP004TTP004R图1-5 电话接口电路图1-6 音频功率放大电路四.实验预习及测量点说明实验前请先了解模拟信号源模块电路并了解同步正弦波产生电路,非同步三角波,正弦波,方波产生电路,音乐信号产生电路,电话接口电路及音频功率放大电路原理。

1.同步正弦信号发生器同步正弦信号发生器可产生与主时钟同步的2KHx正弦波,它主要用于抽样定理及PAM 通信、PCM编码、∆M编码等实验的模拟输入信号。

由于同步正弦波在频率与相位上与取样时钟、编码时钟保持严格同步。

因此用它作模拟输入信号时,在普通示波器上便能观察到稳定的取样信号及编码信号的波形。

同步正弦信号发生器,由电路图1-7所示,它是从CPLD模块引入2KHx方波、经低通滤波放大得到正弦波,输出的2KHz方波可从TP001观察。

U001A(TL082)及周围电路构成低通滤波器,其截止频率约为2.5KHz,用以滤除2KHz方波的各次谐波。

U001B为反相放大器,W001可改变运放的反馈,用以调节输出正弦波幅度。

TP002为信号输出。

图1-7 同步正弦信号发生器图1-8非同步信号发生器2.非同步信号发生器非同步信号发生器是自激式信号发生器,能产生频率自由调节的正弦波、三角波和方波,非同步信号发生器如图1-8所示,它是由函数信号发生器和放大器组成。

U002(XR2206)是集成函数信号发生器芯片,它与周围电路构成函数发生器,能产生正弦波、三角波和方波信号。

XR2206的11脚能输出方波。

正弦波方波三角波发生电路设计

正弦波方波三角波发生电路设计

正弦波方波三角波发生电路设计正弦波、方波、三角波是最基本且常见的三种波形,它们在电路设计和信号处理中都扮演着重要的角色。

本文将分别介绍正弦波、方波、三角波的定义和性质,以及各自的发生电路设计。

一、正弦波正弦波又称余弦波,是一种连续的周期波形。

它在医学、物理、工程等领域都有广泛的应用,例如在音频信号、交流电电压、电子设备测试等方面。

正弦波的特点是相邻点之间的函数值呈恒定的周期波动,可以表达为如下形式:s(t) = A*sin(ωt + φ)其中,A是振幅,ϖ是角频率,t是时间,φ是初始位相。

正弦波的发生电路通常采用谐振电路,它的原理是在一个由电感L和电容C构成的电路中,电容C和电感L之间的能量不断地在两者之间转换,从而形成一种振荡现象。

二、方波方波是一种以矩形波形为特点的电压或电流信号。

它的主要特点是周期性变化的幅度在等时刻内有两个值,从而形成了一种方形波形。

方波在数字电路设计、计算机科学等领域中广泛应用。

正如所提到的,方波的每个周期平均而言都是0,并且其平均值为周期内所有0和1的幅度之和的平均值。

方波可以由许多方法生成,其中一个常见的方法是使用555定时器。

三、三角波三角波是一种以三角形形状为特征的波形。

它在音频合成、信号处理、电力电子、仪器仪表等方面有广泛的应用。

三角波的每个周期都包含三种状态,即负斜率、零斜率和正斜率,从而创建了像三角形一样的外观。

三角波的发生电路是使用一个以放大器为基础的单元,该单元包含一个与反馈电容相连接的积分器。

作为输入的脉冲波被转换为三角波,而反馈电容C使输出波形的斜率恒定。

可以通过调整计时常数、放大器增益和电容C的大小来调整三角波的频率和振幅。

《三角波发生器》课件

《三角波发生器》课件

三角波发生器
本课件将介绍三角波发生器的原理、电路设计、实验过程、应用、优势与可 优化的方面,以及参考文献。
压波形,其波形上升部和下降部均与一个直线段呈线性关系。
性质
三角波是一种基本波形,可由方波变换而来。其在电子工程和信号处理中具有重要的应用价 值。
三角波发生器原理
实际电路
电路设计
根据原理图设计电路,可通过 Protues仿真实验确定电路参数及 元器件值。
具体元器件及值
实验结果
元器件:555集成电路、电容、 电阻、二极管、电感、三极管等。
通过示波器可以验证电路是否能 够正常激发三角波。
应用场景
三角波在声音合成中的应用
在合成器中,三角波是非常重要的基本波形。可以通过它产生正弦波、方波等。
三角波在图像显示中的应用
三角波能够驱动扫描线产生图案变化。
结论
1 三角波发生器的优劣
三角波发生器具有周期性、可调的优点,并可用于声音合成、图像显示等领域。
2 可优化的方面
需要更优秀的元器件来进行改善,优化结构,提高兼容性和稳定性。
参考文献
1. AES标准中的音频频率计算器 2. RC电路之五:三角波和梯形波发生器 3. 模拟基础知识- 三角波发生器
1
电压比较器
2
作为三角波发生器的关键部件,用于对
反馈电压与比较电压进行比较,达到输
出三角波的目的。
3
整体电路原理图
4
将各部分组合成一个完整的三角波发生 器电路,即可得到三角波波形。
基本电路
由反向并联的开关二极管、电平移位电 路和RC积分电路组成。
振荡器
当电荷积累到一定值时,开关二极管会 扫描回路,振荡器就能输出三角波信号。

正弦波 方波 三角波发生电路

正弦波 方波 三角波发生电路

正弦波方波三角波发生电路----9eef9958-7160-11ec-a078-7cb59b590d7d正弦波方波三角波发生电路正弦波&周期;方波&周期;三角波产生电路一、设计目的及要求:1.1. 设计目的:(1).掌握波形产生电路的设计、组装和调试的方法;(2). 熟悉集成电路:集成运算放大器LM324,掌握其工作原理。

1.2. 设计要求:(1)设计波形产生电路。

(2)信号频率范围:100hz——1000hz。

(3)信号波形:正弦波。

二、实验方案:为了产生正弦波,必须在放大电路里加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。

但是,这样两部分构成的振荡器一般得不到正弦波,这是由于很难控制正反馈的量。

如果正反馈量大,则增幅,输出幅度越来越大,最后由三极管的非线性限幅,这必然产生非线性失真。

反之,如果正反馈量不足,则减幅,可能停振,为此振荡电路要有一个稳幅电路。

为了获得单一频率的正弦波输出,应该有选频网络,选频网络往往和正反馈网络或放大电路合而为一。

选频网络由r、c和l、c等电抗性元件组成。

正弦波振荡器的名称一般由选频网络来命名。

正弦波发生电路的组成:放大电路、正反馈网络、选频网络、稳幅电路。

产生正弦波的条件与负反馈放大电路中产生自激的条件非常相似。

然而,在负反馈放大器电路中,信号频率到达通带的两端,导致足够的附加相移,从而使负反馈变为正反馈。

正反馈加到振荡电路中。

振荡建立后,它只是一个频率的信号,没有额外的相移。

(a)负反馈放大电路(b)正反馈振荡电路图1振荡器的方框图比较图1(a)和(b)就可以明显地看出负反馈放大电路和正反馈振荡电路的区别了。

由于=十、。

由于正负号的变化,正反馈的放大系数为: = 0,因此X振荡电路的输入信号xiif.a,式中a是放大电路的放大倍数,f是反馈网络的放大倍数。

..振荡条件:AF 1.幅度平衡条件:af=1相位平衡条件: AF= a+f=±2n振荡器在刚刚起振时,为了克服电路中的损耗,需要正反馈强一些,即要求|af| 1..这被称为起始条件。

三角波方波正弦波发生电路

三角波方波正弦波发生电路

波形发生电路要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器;指标:输出频率分别为:102H Z、103H Z和104Hz;方波的输出电压峰峰值V PP≥20V 1方案的提出方案一:1、由文氏桥振荡产生一个正弦波信号;2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波;3、把方波信号通过一个积分器;转换成三角波;方案二:1、由滞回比较器和积分器构成方波三角波产生电路;2、然后通过低通滤波把三角波转换成正弦波信号;方案三:1、由比较器和积分器构成方波三角波产生电路;2、用折线法把三角波转换成正弦波;2方案的比较与确定方案一:文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路;当R1=R2、时,F=1/3、Au=3;然而,起振条件为Au略大于3;实际操作时,如果要C1=C2;即f=f满足振荡条件R4/R3=2时,起振很慢;如果R4/R3大于2时,正弦波信号顶部失真;调试困难;RC串、并联选频电路的幅频特性不对称,且选择性较差;因此放弃方案一; 方案二:把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器;比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器;通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用;然而,指标要求输出频率分别为102H Z、103H Z和104Hz;因此不满足使用低通滤波的条件;放弃方案二;方案三:方波、三角波发生器原理如同方案二;比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大;因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形;而且折线法不受频率范围的限制;综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计;3工作原理:1、方波、三角波发生电路原理该电路由滞回比较器和积分器组成;图中滞回比较器的输出电压u01=Uz ±,它的输入电压就是积分电路的输出电压u02;则U1A 的同相输入端的电位:101202up=1212R u R u R R R R +++,令up=un=0,则阀值电压:1022R Ut u Uz R ±==±;积分电路的输入电压是滞回比较器的输出电压u01,而且不是+Uz,就是-Uz,所以输出电压的表达式为:01(10)0202(0)82u t t u u t R C -=-+;设初态时u01正好从-Uz 跃变到+Uz,则:(10)0282Uz t t u Ut R C -=-+,积分电路反向积分,u02随时间的增长线性下降,一旦u02=-Ut,在稍减小,u01将从+Uz 跃变为-Uz,使式变为:(21)0282Uz t t u Ut R C -=-,积分电路正向积分,u02随时间增长线性增大,一旦u02=+Ut,再稍微增大,uo1将从-Uz 跃变为+Uz,回到初态;电路重复上述过程,因而产生自激振荡;由上分析,u01是方波,且占空比为50%,幅值为Uz ±;u02是三角波,幅值为Ut ±;取正向积分过程,正向积分的起始值-Ut,终了值+Ut,积分时间为T/2,代入(21)0282Uz t t u Ut R C -=-,得282Uz T Ut Ut R C +=-,式中12R Ut Uz R =,整理可得:24812R f R R C =; 2、正弦波发生电路原理折线法是用多段直线逼近正弦波的一种方法;其基本思路是将三角波分成若干段,分别按不同比例衰减,所获得的波形就近似为正弦波;下图画出了波形的1/4周期,用四段折线逼近正弦波的情况;图中UImax为输入三角波电压幅值;根据上述思路,可以采用增益自动调节的运算电路实现;利用二极管开关和电阻构成反馈通路,随着输入电压的数值不同而改变电路的增益;在ωt=0°~25°段,输出的“正弦波”用此段三角波近似二者重合,因此,此段放大电路的电压增益为1;由于ωt=25°时,标准正弦波的值为sin25°≈,这里uO=uI=25/90UImax≈,所以,在ωt=90°时,输出的“正弦波”的值应为uO=≈;在ωt=50°时,输入三角波的值为uI=50/90UImax≈,要求输出电压uO=×sin50°≈,可得在25°~50°段,电路的增益应为ΔuO /ΔuI=−/−=;在ωt=70°时,输入三角波的值为uI=70/90UImax≈,要求输出电压uO=×sin70°≈,可得在50°~70°段,电路的增益应为ΔuO /ΔuI=0617−/−=;在ωt=90°时,输入三角波的值为uI=UImax ,要求输出电压uO≈,可得在70°~90°段,电路的增益应为ΔuO /ΔuI=−/1−=;下页图所示是实现上述思路的反相放大电路;图中二极管D3~D5及相应的电阻用于调节输出电压u03>0时的增益,二极管D6~D8及相应的电阻用于调节输出电压u03<0时的增益;电路的工作原理分析如下;当输入电压 uI <时,增益为1,要求图中所有二极管均不导通,所以反馈电阻Rf=R11;据此可以选定Rf=R11=R6的阻值均为1k Ω; 当ωt=25°~50°时,电压增益为,要求D1导通,则应满足:13//110.8096R R R =,解出R13=Ω;由于在ωt=25°这一点,D1开始导通,所以,此时二极管D1正极电位应等于二极管的阈值电压Vth ;由图可得:03141314u VEE Vth VEE R R R --=+,式中u03是ωt=25°时输出电压的值,即为;取UImax=10V ,Uth=,则有100.278(15)14(15)0.74.23614R R ⨯--+-=+解出R14=Ω;电阻取标准值,则R13=Ω,R14=Ω;其余分析如上;需要说明,为使各二极管能够工作在开关状态,对输入三角波的幅度有一定的要求,如果输入三角波的幅度过小,输出电压的值不足以使各二极管依次导通,电路将无法正常工作,所以上述电路采用比列可调节的比例运算电路U3A 模块将输出的三角波的幅值调至10V ±;4元件选择:①选择集成运算放大器由于方波前后沿与用作开关的器件U1A 的转换速率SR 有关,因此当输出方波的重复频率较高时,集成运算放大器A1 应选用高速运算放大器;集成运算放大器U2B 的选择:积分运算电路的积分误差除了与积分电容的质量有关外,主要事集成放大器参数非理想所致;因此为了减小积分误差,应选用输入失调参数VI0、Ii0、△Vi0/△T、△Ii0/△T小,开环增益高、输入电阻高,开环带较宽的运算放大器;反相比例运算放大器要求放大不失真;因此选择信噪比低,转换速率SR 高的运算放大器;经过芯片资料的查询,TL082 双运算放大转换速率SR=14V/us;符合各项指标要求;②选择稳压二极管稳压二极管Dz 的作用是限制和确定方波的幅度,因此要根据设计所要求的方波幅度来选稳压管电压Dz;为了得到对称的方波输出,通常应选用高精度的双向稳压管③电阻为1/4W的金属薄膜电阻,电位器为精密电位器;④电容为普通瓷片电容与电解电容;5仿真与调试按如下电路图连接连接完成后仿真,仿真组图如下仿真完成后开始焊接电路,焊接完成后开始调试,调试组图如下:;5总结该设计完全满足指标要求;第一:下限频率较高:70hz;原因分析:电位器最大阻值和相关电阻阻值的参数不精确;改进:用阻值精密电位器和电阻;第二:正弦波在10000HZ时,波形已变坏;原因分析:折线法中各电阻阻值不精准,TL082CD不满足参数要求;改进:采用精准电阻,用NE5532代替TL082CD;.6心得体会“失败乃成功之母”;从始时的调试到最后完成课程设计经历了多次失败;不能半途而废,永不放弃的精神在自己选择的道路上坚持走下去在这次设计过程中,体现出自己单独设计的能力以及综合运用知识的能力,体会了学以致用;并且从设计中发现自己平时学习的不足和薄弱环节,从而加以弥补;时,这次模拟电子课程设计也让我认识到以前所学知识的不深入,基础不够扎实,以致于这次在设计电路图的时候,需要重复翻阅课本的知识;我深深知道了知识连贯运用的重要性;7参考书目:1、童诗白、华成英,模拟电子技术基础2、吴慎山,电子技术基础实验3、周誉昌、蒋力立,电工电子技术实验4、广东工业大学实验教学部,Multisim电路与电子技术仿真实验8元件清单。

正弦波、方波、三角波发生电路解析

正弦波、方波、三角波发生电路解析

一、设计目的及要求:1.1、设计目的:(1).掌握波形产生电路的设计、组装和调试的方法;(2).熟悉集成电路:集成运算放大器LM324,并掌握其工作原理。

1.2、设计要求: (1)设计波形产生电路。

(2)信号频率范围:100Hz ——1000Hz 。

(3)信号波形:正弦波。

二、实验方案:方案一:为了产生正弦波,必须在放大电路里加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。

但是,这样两部分构成的振荡器一般得不到正弦波,这是由于很难控制正反馈的量。

如果正反馈量大,则增幅,输出幅度越来越大,最后由三极管的非线性限幅,这必然产生非线性失真。

反之,如果正反馈量不足,则减幅,可能停振,为此振荡电路要有一个稳幅电路。

为了获得单一频率的正弦波输出,应该有选频网络,选频网络往往和正反馈网络或放大电路合而为一。

选频网络由R 、C 和L 、C 等电抗性元件组成。

正弦波振荡器的名称一般由选频网络来命名。

正弦波发生电路的组成:放大电路、正反馈网络、选频网络、稳幅电路。

产生正弦波的条件与负反馈放大电路产生自激的条件十分类似。

只不过负反馈放大电路中是由于信号频率达到了通频带的两端,产生了足够的附加相移,从而使负反馈变成了正反馈。

在振荡电路中加的就是正反馈,振荡建立后只是一种频率的信号,无所谓附加相移。

(a)负反馈放大电路 (b)正反馈振荡电路图1 振荡器的方框图比较图1(a) 和 (b)就可以明显地看出负反馈放大电路和正反馈振荡电路的区别了。

由于振荡电路的输入信号i X =0,所以i X =fX 。

由于正、负号的改变,正反馈的放大倍数为:F AA A -=1f,式中A 是放大电路的放大倍数,.F 是反馈网络的放大倍数。

振荡条件:1..=F A幅度平衡条件:|..F A |=1相位平衡条件:ϕAF = ϕA +ϕF = ±2n π振荡器在刚刚起振时,为了克服电路中的损耗,需要正反馈强一些,即要求1|..|>F A 这称为起振条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组号:31号
一、问题重述
题目A:运算放大器的应用
1、任务
基础部分:
1、利用运算放大器,设计制作一个三角波发生电路。

2、将上述三角波经波形转换电路后输出正弦波。

扩展部分:
3、利用集成运算放大器,制作一个功率放大电路,驱动扩音器发声,输入信号为上述正弦
波。

4、使用三极管自搭运算放大器实现3中功能。

2、要求
1、三角波和正弦波频率为6kHz,峰峰值分别为2V和4V,波形无明显失真,测试点分别为U o1和U o2。

2、正弦波经功率放大后驱动额定功率0.5W,阻抗8Ω的扩音器,测试扩音器输入端U o3,波形无明显失真。

二、设计案概述
由于本次题目的模块性非常强,所以本组采用模块化制作法,对每一个小题分别进行仿真与实际焊接,各自设计单独模块,在每一个模块正常工作的情况下对电路进行整合调试。

本组作品共设计制作了四个模块,如下所示:
1.三角波发生电路
2.三角波—正弦波转换电路
3.集成功率放大电路
4.三极管功率放大电路
实物焊接图如下:
图1 实物焊接图
三、单元模块详解
1、三角波发生电路
图2 三角波发生电路图
图2为三角波发生电路图,核心元件为一个LM324集成运算放大器。

本电路可分为三部分,每部分又以LM324的一块电路为核心搭建而成。

第一部分为波产生电路,利用施密特触发器,再增加少量电阻、电容原件,由于波或矩形波的频率成分非常丰富,含有大量的谐波,该波发生器常称为多谐振荡器。

第二部分为积分电路,由第一部分产生的波经积分电路做积分运算即可得到三角波。

第三部分为负反馈电压放大器,由于题目要求三角波频率为6kHz,峰峰值为2V,第二部分输出的三角波频率满足条件,但峰峰值过小只有几百毫伏,因此额外增加了电压放大器。

图3 三角波仿真效果图
图4 三角波实际效果图
2、三角波—正弦波转换电路
图5 三角波—正弦波转换电路
图5为三角波—正弦波转换电路,由差分放大器和电压跟随器器组成,核心元件为LM324运算放大器。

第一部分为差分放大器,差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器,可以有效的抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

第二部分为电压跟随器。

电压跟随器输出电压近似输入电压,并具有输入阻抗高和输出阻抗低的特点,因而对前后级电路起到“隔离”作用,减少后级负载对前级波形的影响。

图6 正弦波仿真效果图
图7 正弦波实际效果图3、集成功率放大电路
图8 集成功放电路
图8为集成功率放大电路,核心元件为LM386集成运算放大器。

功率放大电路的任务是将输入的电压信号进行功率放大,保证输出尽可能大的不失真功率,从而控制某种执行机构(在本题中为扩音器)。

用LM386组成的OTL功放电路如上图所示,信号从3脚同相输入端输入,从5脚经耦合电容(4.7μF)输出。

1脚与8脚所接电容、电阻是用于调节电路的闭环电压增益,电容取值为10μF,电阻R在0~20kΩ围取值,改变电阻值,可使集成功放的电压放大倍数在20~200之间变化,R 值越小,电压增益越大。

输出端5脚所接10Ω电阻和4.7μF电容组成容性校正网络,以抵消负载中的感抗分量,防止电路自激。

图9 集成功放仿真效果图
图10 集成功放实际效果图4、三极管功率放大电路
图11 三极管功放电路
图11为自搭三极管功率放大电路,左侧两个三极管为小信号前置放大电路,右侧两个三极管为功率放大电路。

由于multisim仿真软件中没有8050、8550三极管,故分别用2N5551和2N1132A三极管代替。

右侧功率放大电路输出波形存在大量的直流分量,通过电容C1滤去直流分量后存留的交流信号过小,不足以带动扩音器发声,因此增加左侧的小信号前置放大电路,放大交流信号。

图12 三极管功放仿真效果图
图13 三极管功放实际效果图。

相关文档
最新文档