广东省2020届高三高考模拟考试(一)文科数学试题及答案解析2020.5
2020届广东省广州市高考数学一模(文)试题(整理含标准答案解析版)

2020届广东省广州市高考数学一模(文)试题一、单选题 1.设集合,,则=( )A .B .C .D .2.高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了n 座城市作试验基地,这n 座城市共享单车的使用量(单位:人次/天)分别为x 1,x 2,…x n ,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是( ) A .x 1,x 2,…x n 的平均数 B .x 1,x 2,…x n 的标准差 C .x 1,x 2,…x n 的最大值 D .x 1,x 2,…x n 的中位数3.若复数()21a ia R i-∈+为纯虚数,则3ai -=( ) AB .13C .10D4.设等差数列{}an 的前n 项和为Sn ,若则28155a a a +=-,9S =( )A .18B .36C .45D .605.已知4cos()25πθ+=,322ππθ<<,则sin 2θ的值等于( )A.1225 B.1225-C.2425 D.2425-6.若实数x ,y 满足001x y x y ⎧⎪⎨⎪+⎩………,则2z y x =-的最小值为( ) A.2B.2-C.1D.1-7.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用22()4⨯⨯+=⨯+=勾股股勾朱实黄实弦实-,化简,得222+=勾股弦.设勾股形中勾股比为1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A.134B.866C.300D.5008.已知12121ln ,2x x e -==,3x 满足33ln xe x -=,则( )A.123x x x <<B.132x x x <<C.213x x x <<D.312x x x <<9.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A.aB.2aD.210.已知函数())(0f x x ωϕω=+>,)22ππ-<ϕ<,1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是( ) A.2(23k -,42)3k +,k Z ∈ B.2(23k ππ-,42)3k ππ+,k Z ∈C.2(43k -,44)3k +,k Z ∈ D.2(43k ππ-,44)3k ππ+,k Z ∈11.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( ) A.17(1)a r + B.17[(1)(1)]a r r r +-+ C.18(1)a r +D.18[(1)(1)]a r r r+-+ 12.已知函数f (x )=(k +4k )lnx +24x x-,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为A .(85,+∞) B .(165,+∞) C .[85,+∞) D .[165,+∞)二、填空题13.已知向量()()3,2,,1a b m =-=.若向量()2//a b b -,则m =_____.14.已知数列{}n a 满足11a =,111(*,2)n n a a a n N n -=++⋯+∈…,则当1n …时,n a =__. 15.如图所示,位于A 处的信息中心获悉:在其正东方向40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ=______________.16.已知直三棱柱111ABC A B C -外接球的表面积为52π,1AB =,若ABC ∆外接圆的圆心1O 在AC 上,半径11r =,则直三棱柱111ABC A B C -的体积为_____.三、解答题17.某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),⋯⋯第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分. (1)求第七组的频率,并完成频率分布直方图;(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.18.在等比数列{}n a 中,公比(0,1)q ∈,且满足32a =,132435225a a a a a a ++=. (1)求数列{}n a 的通项公式;(2)设2log n n b a =,数列{}n b 的前n 项和为n S ,当1212n S S S n++⋯+取最大值时,求n 的值. 19.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c,且22sin 30C C -++=. (1)求角C 的大小; (2)若b =,ABC ∆sin A B ,求sin A 及c 的值. 20.如图,四棱锥P ABCD -的底面ABCD 是矩形,侧面PAB 是正三角形,2AB =,BC =PC =E 、H 分别为PA 、AB 的中点.(1)求证:PH AC ⊥; (2)求点P 到平面DEH 的距离.21.已知函数2()f x lnx mx =-,21()2g x mx x =+,m R ∈,()()()F x f x g x =+.(1)讨论函数()f x 的单调区间及极值;(2)若关于x 的不等式()1F x mx -…恒成立,求整数m 的最小值.22.在直角坐标系xOy 中,曲线C的参数方程为cos sin x y αααα⎧=⎪⎨=-⎪⎩(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴,取相同长度单位建立极坐标系,直线l 的极坐标方程为cos 26πρθ⎛⎫+= ⎪⎝⎭. (Ⅰ)求曲线C 和直线l 的直角坐标方程;(Ⅱ)直线l 与y 轴交点为P ,经过点P 的直线与曲线C 交于A ,B 两点,证明:PA PB ⋅为定值. 23.已知函数()12()f x x x m m R =-++∈. (1)若2m =时,解不等式()3f x ≤;(2)若关于x 的不等式()23f x x ≤-在[0,1]x ∈上有解,求实数m 的取值范围.2020届广东省广州市高考数学一模(文)试题1. 【答案】B【解析】试题分析:集合,故选B.【考点】集合的交集运算. 2. 【答案】B【解析】根据平均数、标准差、中位数、最值的实际意义逐一判断即可. 【详解】因为平均数、中位数、众数描述样本数据的集中趋势, 方差和标准差描述其波动大小. 所以,表示一组数据12,,...n x x x 的稳定程度的是方差或标准差.故选B . 【点睛】本题主要考查平均数、标准差、中位数的实际意义,意在考查对基础知识掌握的熟练程度,以及灵活运用所学知识解答问题的能力,属于基础题. 3. 【答案】A【解析】由题意首先求得实数a 的值,然后求解3ai -即可。
广东省2020届高三普通高中招生全国统一考试模拟(一)数学(文)试题 Word版含解析

2020年普通高等学校招生全国统一考试广东省文科数学模拟试题(一)本试卷5页,23小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的县(市、区)、学校、姓名、考生号、考场号和座位号填写在答题卡上.将条形码横贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保证答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,A B 均为全集{1,2,3,4,5,6,7}U =的子集,集合{1,2,3,4}A =,则满足{1,2}UAB =的集合B 可以是( )A. {1,2,3,4}B. {1,2,7}C. {3,4,5,6}D. {1,2,3}【答案】C 【解析】 【分析】由补集的定义可知,集合B 中不含元素1,2,即得答案.【详解】集合,A B 均为全集{1,2,3,4,5,6,7}U =的子集,集合{1,2,3,4}A =. {1,2},u A C B =∴集合B 中不含元素1,2.故选:C .【点睛】本题考查集合的运算,属于基础题. 2. 复数4334iz i+=-(i 为虚数单位)的虚部为( ) A. 1- B. 2C. 5D. 1【答案】D【分析】根据复数的除法,把复数4334iz i+=-化为(),z a bi a b R =+∈的形式,即得z 的虚部. 【详解】()()()()()222433443122512253434342534i i i i i iz i i i i i +++++=====--+-, ∴复数z 的虚部为1.故选:D .【点睛】本题考查复数的除法运算和复数的概念,属于基础题. 3. 已知向量1,12a ⎛⎫=- ⎪⎝⎭,向量b 满足2(1,)a b m +=-,若a b ⊥,则m =( ) A. 3- B. 3C. 1D. 2【答案】A 【解析】 【分析】求出b ,由a b ⊥,得0a b =,即求m . 【详解】()1,1,2(1,),2,22a a b m b m ⎛⎫=-+=-∴=-+ ⎪⎝⎭.,0a b a b ⊥∴=,即()()12202m ⨯--+=,3m ∴=-.故选:A.【点睛】本题考查向量的线性运算和向量垂直的坐标表示,属于基础题.4. 已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,上、下顶点分别为,A B ,若四边形21AF BF 是正方形且面积为4,则椭圆C 的方程为( )A. 22142x y +=B. 2212x y +=C. 22132x y +=D.22143x y +=【解析】 【分析】由题意知122,2F F c AB b ==.由四边形21AF BF 是正方形且面积为4,可得b c =,且12242c b ⨯⨯=,即2bc =,可求,b c 的值,从而求出2a ,可得答案. 【详解】由题意知122,2F F c AB b ==.四边形21AF BF 是正方形且面积为4,b c ∴=,且12242c b ⨯⨯=,即2bc =, 2222,4b c a b c ∴==∴=+=,∴椭圆C的方程为22142x y +=.故选:A.【点睛】本题考查椭圆的标准方程,属于基础题.5. 如图,OAB 是边长为2的正三角形,记OAB 位于直线(0x t t =<≤2)左侧的图形的面积为()f t ,则()y f t =的大致图像为( )A.B.C.D.【答案】B 【解析】高考资源网( ) 您身边的高考专家【分析】先由已知条件写出()f t 的函数关系式,即可选择其图像. 【详解】因为OAB 是边长为2的正三角形, 当0t <≤1时,213()32f t t t =⨯= ; 当1t <≤2时,2113()23(2)3(2)2)3222f t t t t =⨯⨯--=--+所以223,(01)()32)3,(12)t f t t t <≤=⎨⎪-+<≤⎪⎩.只有选项B 中图像符合故选:B.【点睛】此题考查的是求函数解析式和由解析式选函数图像,属于基础题. 6. 若2sin()3πα+=,则sin 22πα⎛⎫- ⎪⎝⎭的值为( )A. 19-B. 59-C.19D.59【答案】B 【解析】 【分析】 由2sin()3πα+=,可求出sin α.又sin 2cos 22παα⎛⎫-=- ⎪⎝⎭,根据倍角公式可求值.【详解】222sin()sin sin 333πααα+=∴-=∴=-. ()2225sin 2cos 212sin 1229πααα⎡⎤⎛⎛⎫⎢⎥∴-=-=--=--⨯=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦. 故选:B.【点睛】本题考查三角函数的诱导公式和倍角公式,属于基础题.7. 甲、乙两人分别从4种不同的图书中任选2本阅读,则甲、乙两人选的2本恰好相同的概率为( )A.14B.13C.16D.136【答案】C 【解析】 【分析】利用列举法求出“甲从4种不同的图书中任选2本阅读”所包含的基本事件数,进而求出“甲、乙两人分别从4种不同的图书中任选2本阅读”包含的基本事件总数,以及“甲、乙两人选的2本恰好相同”包含的基本事件数,根据古典概型的概率计算公式,可求概率. 【详解】用a 、b 、c 、d 表示4种不同的图书,则事件“甲从4种不同的图书中任选2本阅读”所包含的基本事件有:(),a b 、(),a c 、(),a d 、(),b c 、(),b d 、(),c d ,共6种, 其中,事件“甲、乙两人分别从4种不同的图书中任选2本阅读”所包含的基本事件数为2636=,记“甲、乙两人选的2本恰好相同”为事件A ,则事件A 包含的基本事件数为6,()61366P A ∴==. 故选:C.【点睛】本题考查古典概型,属于基础题.8. 某广场设置了一些石凳子供大家休息,这些石凳子是由正方体沿各棱的中点截去八个一样的正三棱锥后得到的.如果被截正方体的棱长为40cm ,则石凳子的体积为( ) A.31920003cm B.31600003cm C.3160003cm D.3640003cm 【答案】B 【解析】 【分析】由题意可知,石凳子的体积等于正方体的体积减去8个正三棱锥的体积.求出正三棱锥的体积即得答案.【详解】由题意,石凳子的体积等于正方体的体积减去8个正三棱锥的体积. 一个正三棱锥的体积为231140002020323cm ⨯⨯⨯=,所以石凳子的体积为33400016000040833cm -⨯=. 故选:B .【点睛】本题考查空间几何体的体积,属于基础题. 9. 执行下边的程序框图,若输出A 的值为70169,则输入i 的值为( )A. 4B. 5C. 6D. 7【答案】B 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到,A k 的值.根据输出A 的值为70169,可求出输入的i 的值.【详解】模拟执行程序框图可得 第一次执行循环,可得12,21522A k ===+第二次执行循环,可得15,321225A k ===+ 第三次执行循环,可得112,4529212A k ===+第四次执行循环,可得129,51270229A k ===+ 第五次执行循环,可得170,629169270A k ===+ 输出A 的值为70169, 6i ∴≤不成立,5i =.故选:B .【点睛】本题考查循环结构的程序框图,属于基础题.10. 已知O 是坐标原点,双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 的直线l 与x轴垂直,且交双曲线C 于,A B 两点,若ABO 是等腰直角三角形,则双曲线C 的离心率为( ) 51+ 51- 51 51【答案】A 【解析】 【分析】设(),0F c .把x c =代入双曲线方程,得2by a=.由ABO 是等腰直角三角形,得2b ca.又222b c a =-,可求离心率e . 【详解】设(),0F c .把x c =代入双曲线2222:1x y C a b-=,得4222,b b y y a a =∴=.ABO 是等腰直角三角形,2b c a∴=,又2222222,,0c a b c a c c ac a a-=-∴=∴--=, 210e e ∴--=,解得15151,e e e ±+=>∴=. 故选:A .【点睛】本题考查双曲线的离心率,属于基础题.11. 在ABC 中,已知60A ︒=,D 是边BC 上一点,且2BD DC =,2AD =,则ABC 面积的最大值为( ) 3 332C. 23532【答案】B 【解析】 【分析】设,AB c AC b ==.由题意2,60AD BAC =∠=.则1233AD c b =+,两端平方,根据数量积运算和基本不等式可得6b c ≤,当且仅当2c b =时,等号成立.再由三角形面积公式可求ABC 面积的最大值【详解】设,AB c AC b ==.由题意2,60AD BAC =∠=,2BD DC =. 则()221212333333AD AB BD AB BC AB AC AB AB AC c b =+=+=+-=+=+,22222212144144cos6033999999AD c b c b b c c b b c ⎛⎫∴=+=++=++ ⎪⎝⎭2222142142229999993c b b c c b b c b c =++≥⨯+=, 即24,63b c b c ≥∴≤,当且仅当221499c b =,即2c b =时,等号成立. 1133sin 6sin 6022ABCSb c BAC ∴=∠≤⨯⨯=ABC ∴332故选:B .【点睛】本题考查利用向量求三角形的面积,考查基本不等式,属于中档题.12. 已知()f x 是定义在,22ππ⎛⎫- ⎪⎝⎭上的奇函数(1)0f =,且当0,2x π⎛⎫∈ ⎪⎝⎭时,()()tan 0f x f x x '+>,则不等式()0f x <的解集为( )A. (1,0)1,2π⎛⎫-⋃ ⎪⎝⎭B. (1,0)(0,1)-C. ,11,22ππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭D. ,1(0,1)2π⎛⎫-- ⎪⎝⎭【答案】D 【解析】 【分析】 由()()tan 0f x f x x '+>,得()cos ()sin 0f x x f x x '+>.令()()sin ,,22g x f x x x ππ⎛⎫=∈- ⎪⎝⎭,则()'0g x >,故()g x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,且()10g =.可得()g x 是定义在,22ππ⎛⎫- ⎪⎝⎭上的偶函数,故()g x 在,02π⎛⎫- ⎪⎝⎭上单调递减,且()10g -=.故()0f x <等价于()0sin g x x <,等价于sin 0()0x g x <⎧⎨>⎩或sin 0()0x g x >⎧⎨<⎩,可求解集.【详解】由()()tan 0f x f x x '+>,得()sin ()0cos f x xf x x'+>,即()cos ()sin 0cos f x x f x xx'+>.0,,cos 0,()cos ()sin 02x x f x x f x x π'⎛⎫∈∴>∴+> ⎪⎝⎭.令()()()'sin ,,.()cos ()sin 022g x f x x x g x f x x f x x ππ'⎛⎫=∈-∴=+> ⎪⎝⎭, ()g x ∴在0,2π⎛⎫⎪⎝⎭上单调递增,且()()11sin10g f ==.()f x 是定义在,22ππ⎛⎫- ⎪⎝⎭上的奇函数,()()f x f x =--∴.()()()()()()()sin sin sin g x f x x f x x f x x g x ∴-=--=--==,()g x ∴是定义在,22ππ⎛⎫- ⎪⎝⎭上的偶函数.()g x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,()g x ∴在,02π⎛⎫- ⎪⎝⎭上单调递减,且()()110g g -==.故()0f x <等价于()0sin g x x<, 等价于sin 0()0x g x <⎧⎨>⎩或sin 0()0x g x >⎧⎨<⎩,即0212x x ππ⎧-<<⎪⎪⎨⎪-<<-⎪⎩或0201x x π⎧<<⎪⎨⎪<<⎩,解得12x π-<<-或01x <<,∴原不等式的解集为(),10,12π⎛⎫--⋃ ⎪⎝⎭.故选:D .【点睛】本题考查利用导数研究函数的单调性,考查利用函数的单调性和奇偶性解不等式,属于较难的题目.二、填空题:本题共4小题,每小题5分,共20分.13. 设函数2()ln f x mx x =,若曲线()y f x =在点(,())e f e 处的切线与直线20200ex y ++=平行,则m =______.【答案】13- 【解析】 【分析】求出'()f x .由题意知'()f e e =-,可求m .【详解】()()2'()ln ,2ln f x mx x f x m x x x =∴=+.曲线()y f x =在点(,())e f e 处的切线与直线20200ex y ++=平行,'()f e e ∴=-,即()12ln ,3m e e e e m +=-∴=-.故答案为:13-.【点睛】本题考查导数的几何意义,属于基础题.14. 若,x y 满足约束条件12x y x ⎧-≤⎪⎨≤⎪⎩,,则2z x y =+的最大值为_____.【答案】7 【解析】 【分析】约束条件12x y x ⎧-≤⎪⎨≤⎪⎩即1122x y x -≤-≤⎧⎨-≤≤⎩,作出可行域.由2z x y =+得2y x z =-+,平移直线2y x z =-+,数形结合可求z 的最大值.【详解】约束条件12x y x ⎧-≤⎪⎨≤⎪⎩即1122x y x -≤-≤⎧⎨-≤≤⎩,作出可行域,如图所示由2z x y =+得2y x z =-+,则z 为直线在y 轴上的截距. 平移直线2y x z =-+,当直线过可行域内的点A 时,z 最大.解方程组12x y x -=-⎧⎨=⎩,得23x y =⎧⎨=⎩,即()2,3A ,max 2237z ∴=⨯+=.故答案为:7.【点睛】本题考查简单的线性规划,属于基础题.15. 如图,已知三棱锥P ABC -满足2PA PB PC AB ====,AC BC ⊥,则该三棱锥外接球的体积为_______.【答案】32327π 【解析】 【分析】由题意可得,点P 在底面ABC 上的射影为ABC 的外心,即斜边AB 的中点D .由2PA PB AB ===得PAB △的外心即为三棱锥P ABC -的外接球的球心,设为O .故正PAB △的外接圆的半径即为三棱锥P ABC -的外接球的半径,求出半径,即求球的体积.【详解】,PA PB PC P ==∴在底面ABC 上的射影为ABC 的外心.,AC BC ⊥∴斜边AB 的中点D 即为ABC 的外心,即PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心在PD 上.2,PA PB AB PAB ===∴的外心即为三棱锥P ABC -外接球的球心,设为O .如图所示∴三棱锥P ABC -的外接球的半径R 即为正PAB △的外接圆的半径,2222232133R PD ∴==-=, ∴三棱锥P ABC -外接球的体积33442332333V R πππ===⎝⎭. 32327π. 【点睛】本题考查空间几何体外接球的体积,属于中档题.16. 函数()sin cos f x x a x ππ=+满足1()3f x f x ⎛⎫=-⎪⎝⎭,当30,2x ⎡⎤∈⎢⎥⎣⎦时,方程()0f x m -=恰有两个不等的实根,则实数m 的取值范围为_______.【答案】(2,1]3,2)--⋃ 【解析】 【分析】 由1()3f x f x ⎛⎫=-⎪⎝⎭可得()f x 的对称轴为16x =.由辅助角公式可得()()()21tan f x a x a πθθ=++=,故2116f a ⎛⎫=+ ⎪⎝⎭可求a .求出()f x 的解析式,求出()f x 在30,2x ⎡⎤∈⎢⎥⎣⎦的值域,即可求实数m 的取值范围.【详解】函数()sin cos f x x a x ππ=+满足1()3f x f x ⎛⎫=-⎪⎝⎭,()f x ∴的对称轴为16x =.由辅助角公式可得()()()21tan f x a x a πθθ=++=,2116f a ⎛⎫∴=+ ⎪⎝⎭,即2sin cos 166a a ππ+=+即213122a a +=+3a =()sin 32sin 3f x x x x ππππ⎛⎫∴==+ ⎪⎝⎭.当30,2x ⎡⎤∈⎢⎥⎣⎦时,[]()[]11,,sin 1,1,2,23363x x f x ππππππ⎡⎤⎛⎫+∈∴+∈-∴∈- ⎪⎢⎥⎣⎦⎝⎭. 当30,2x ⎡⎤∈⎢⎥⎣⎦时,方程()0f x m -=恰有两个不等的实根,即方程()m f x =在30,2x ⎡⎤∈⎢⎥⎣⎦上恰有两个不等的实根.21m ∴-<≤-32m ≤<,即实数m 的取值范围为(2,1]3,2)--⋃.故答案为:(2,1]3,2)--⋃.【点睛】本题考查函数与方程、三角函数的对称性和辅助角公式,属于较难的题目. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 已知{}n a 为单调递增的等差数列,设其前n 项和为n S ,520S =-,且35,1a a +,9a 成等比数列.(1)求数列{}n a 的通项公式;(2)求n S 的最小值及取得最小值时n 的值. 【答案】(1)112n n a -=;(2)当10n =或11时,n S 取得最小值552-【解析】 【分析】(1)设等差数列{}n a 的公差为d ,则0d >.由520S =-,359,1,a a a +成等比数列列方程组求1,a d ,即求数列{}n a 的通项公式;(2)根据n a 的符号,可求n 的值,根据等差数列前n 项和公式,求n S 的最小值. 【详解】(1)设等差数列{}n a 的公差为d ,则0d >,由题意可得()()()1211154520,22841.a d a d a d a d ⨯⎧+⨯=-⎪⎨⎪+⋅+=++⎩解得12d =或72d =-(舍). 当12d =时,15a =-. 1115(1)22n n a n -∴=-+-⨯=. (2)由(1)知112n n a -=,令10,0,n n a a +≤⎧⎨≥⎩解得1011n ≤≤.∴当110n ≤≤时,0n a <,当11n =时,0n a =, 当12n ≥时,0n a >.∴当10n =或11时,()()111min11111011552222n a S a -⎛⎫⨯+ ⎪+⎝⎭===-. 【点睛】本题考查求等差数列的通项公式和前n 项和,属于基础题.18. 某城市208年抽样100户居民的月均用电量(单位:千瓦时),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组,得到如下频率分布表:分组频数频率 [160,180) 1n0.04[180,200)191f[200,220) 2n0.22[220,240) 250.25[240,260) 15 0.15[260,280)102f[280,300]50.05(1)求表中1212,,,n n f f 的值,并估计2018年该市居民月均用电量的中位数m ;(2)该城市最近十年的居民月均用电量逐年上升,以当年居民月均用电量的中位数u (单位:千瓦时)作为统计数据,下图是部分数据的折线图.由折线图看出,可用线性回归模型拟合u 与年份t 的关系.①为简化运算,对以上数据进行预处理,令2014x t =-,195y u =-,请你在答题卡上完成数据预处理表;②建立u 关于t 的线性回归方程,预测2020年该市居民月均用电量的中位数.附:回归直线y bx a =+的斜率和截距的最小二乘估计公式分别为:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx=-.【答案】(1)14n =,222n =,10.19f =,20.1f =;中位数224m =千瓦时;(2)①见解析;② 6.512892.8u t =-;237.2千瓦时. 【解析】 【分析】(1)根据频率等于频数与样本容量的比,求出1212,,,n n f f .根据中位数左右两侧的频率相等,求出中位数;(2)①根据折线图完成数据预处理表;②根据参考公式求出u 关于t 的线性回归方程,令2020t =,可得预测值.【详解】(1)由已知,11000.044n =⨯=,同理222n =;1190.19100f ==,同理20.1f =. 设样本频率分布表的中位数为a ,则1(0.040.190.22)0.25(220)0.520a +++⨯⨯-=,解得224a =. 由样本估计总体,可估计2018年该市居民月均用电量的中位数224m =千瓦时. (2)①数据预处理表如下:2014x t =- 4- 2- 0 2 4 195y u =-21- 11-1929②由①可知,0=x , 3.2y =.设y 关于x 的线性回归方程为y bx a =+,则12222155225(4)(21)(2)(11)021********6.50(4)(20)24405i ii i i x yx yb x x==--⨯-+-+--⨯-++⨯+⨯====-+-++-∑∑,且 3.2a y bx =-=. 得 6.5 3.2y x =+.代入2014x t =-,195y u =-,有195 6.5(2014) 3.2u t -=-+,则所求u 关于t 的线性回归方程为: 6.5(2014)198.2u t =-+, 即 6.512892.8u t =-.可预测该市2020年居民月均用电量的中位数为 6.5202012892.8237.2u =⨯-=(千瓦时). 【点睛】本题考查频率分布表和线性回归方程,属于中档题.19. 如图,已知正三棱柱111ABC A B C -,D 是AB 的中点,E 是1C C 的中点,且1AB =,12AA =.(1)证明://CD 平面1A EB ; (2)求点1A 到平面BDE 的距离. 【答案】(1)证明见解析;(2)217【解析】 【分析】(1)取1A B 的中点F ,连接,EF DF .证明四边形CDFE 是平行四边形,则//CD EF ,根据线面平行的判定定理,即证//CD 平面1A EB .(2)根据体积相等,求点1A 到平面BDE 的距离.证明EF ⊥平面11A ABB ,则三棱锥1E A BD -的体积11133E A BD A BD V SEF -=⋅=.设点1A 到平面BDE 的距离为d ,由11A BDE E A BD V V --=得133BDE Sd ⋅=,可求d . 【详解】(1)证明:取1A B 的中点F ,连接,EF DF ,如图所示,D F 分别是1,AB A B 的中点,111//,2DF A A DF A A ∴=. 1111//,A A C C A A C C =,E 是1C C 的中点, //,DF EC DF EC ∴=. ∴四边形CDFE 是平行四边形,//CD EF ∴.CD ⊄平面1A EB ,EF ⊂平面1A EB ,//CD ∴平面1A EB .(2)ABC 是正三角形,D 是AB 的中点,CD AB ∴⊥.在正三棱柱111ABC A B C -中,1A A ⊥平面ABC ,1A A CD ⊥∴. 1A AAB A =,CD平面11A ABB .又由(1)知,//,CD EF CD EF =,EF ∴⊥平面11A ABB .又1AB =,12AA =,32CD ∴=,11112222A BDS =⨯⨯=.1111133332E A BD A BDV SEF -∴=⋅=⨯= 在Rt CDE △中,2272DE CD EC =+=, AB CD ⊥,AB CE ,CD CE C =,AB ∴⊥平面CDE .AB DE ∴⊥. BD DE ∴⊥. 117722BDES∴=⨯=. 设点1A 到平面BDE的距离为d ,则由11A BDE E A BD V V --=得133BDES d ⋅=3221BDE d ∴==1A 到平面BDE 的距离为217. 【点睛】本题考查线面平行的判定定理、线面垂直的判定定理和等体积法求点面距,属于中档题.20. 动圆C 与x 轴交于()1,0A x ,()2,0B x 两点,且12,x x 是方程2240x mx +-=的两根. (1)若线段AB 是动圆C 的直径,求动圆C 的方程;(2)证明:当动圆C 过点(0,1)M 时,动圆C 在y 轴上截得弦长为定值. 【答案】(1)222()4x m y m ++=+;(2)证明见解析 【解析】 【分析】(1)根据韦达定理求出圆心坐标和半径,即求动圆C 的方程;(2)设动圆C 的方程为:220x y Dx Ey F ++++=.令0y =,则20x Dx F ++=.由题意,结合韦达定理可得2D m =,4F =-.又动圆C 过点(0,1)M ,可求E 的值. 令0x =,可求动圆C 在y 轴上截得的弦长. 【详解】(1)12,x x 是方程2240x mx +-=的两根,122x x m ∴+=-,124x x ⋅=-.动圆C 与x 轴交于()1,0A x ,()2,0B x 两点且线段AB 是动圆C 的直径,∴动圆C 的圆心C 坐标为(,0)m -,半径为()212122214||422x x x x x x AB m +--===+∴动圆C 的方程为:222()4x m y m ++=+.(2)证明:设动圆C 的方程为:220x y Dx Ey F ++++=, 动圆C 与y 轴交于(0,1)M ,()30,N y , 令0y =,则20x Dx F ++=. 由题意可知2D m =,4F =-. 又动圆C 过点(0,1)M ,140E ∴+-=,即3E =.令0x =,则2340y y +-=,解得1y =或4y =-.34y ∴=-.∴动圆C 在y 轴上截得弦长为315y -=.∴动圆C 在y 轴上截得弦长为定值.【点睛】本题考查圆的方程及直线与圆的位置关系,属于中档题. 21. 已知函数2()()xf x e m e x mx =+--. (1)当0m =时,求函数()f x 的极值;(2)当0m <时,证明:在(0,1)上()f x 存在唯一零点. 【答案】(1)极小值0,无极大值;(2)证明见解析 【解析】 【分析】(1)求出()'f x ,判断()f x 的单调性,即求函数()f x 的极值;(2)()2xf x e mx m e '=-+-,令()()2xg x f x e mx m e '==-+-,求出'()g x ,判断()g x 的单调性.根据零点存在定理可得:存在0(0,1)x ∈使得()()000g x fx '==,判断()f x 在(0,1)的单调性,即可证明.【详解】(1)当0m =时,()xf x e ex =-,()xf x ee '∴=-.令()0f x '=,得,1x =.当(1,)x ∈+∞时,()0f x '>,()f x 是增函数, 当(,1)x ∈-∞时,()0f x '<,()f x 是减函数.∴当1x =时,()f x 取得极小值(1)0f =,无极大值.(2)证明:()2xf x e mx m e '=-+-, 令()()2xg x f x e mx m e '==-+-, 则()2x g x e m '=-.当0m <时,则()0g x '>,()()g x f x '∴=在(0,1)上单调递增.又(0)(0)10g f m e '==+-<,(1)(1)0g f m '==->,∴存在0(0,1)x ∈使得()()000g x f x '==.即当()00,x x ∈时,()0f x '<,()f x 是减函数; 当()0,1x x ∈时,()0f x '>,()f x 是增函数. 又(0)1f =,()0(1)0f x f <=,∴在()00,x 上()f x 存在一个零点,在()0,1x 上()f x 没有零点.()f x ∴在区间(0,1)上存在唯一零点.【点睛】本题考查利用导数研究函数的极值和零点,属于较难的题目.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程]22. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 2sin 1ρθρθ-=.若P 为曲线1C 上的动点,Q 是射线OP 上的一动点,且满足2OP OQ ⋅=,记动点Q 的轨迹为2C . (1)求2C 的直角坐标方程;(2)若曲线1C 与曲线2C 交于M 、N 两点,求OMN 的面积. 【答案】(1)()()22125x y -++=(去掉原点);(2)35. 【解析】 【分析】(1)设点Q 的极坐标为(),ρθ,点P 的极坐标为()1,ρθ,根据题意得出12ρρ=,将点P 的极坐标代入曲线1C 的极坐标方程,可得出一个等式,然后将12ρρ=代入等式,化简可得出曲线2C 的极坐标方程,进而利用极坐标与直角坐标之间的转换关系可得出曲线2C 的直角坐标方程;(2)将曲线1C 的方程化为直角坐标方程,计算出圆心到直线MN 的距离,利用勾股定理求出MN ,并计算出原点到直线MN 的距离,利用三角形的面积公式可求得OMN 的面积. 【详解】(1)设点Q 的极坐标为(),ρθ,点P 的极坐标为()1,ρθ,2OP OQ ⋅=,12ρρ∴=,可得12ρρ=.将点P 的极坐标代入曲线1C 的极坐标方程得11cos 2sin 1ρθρθ-=, 将12ρρ=代入等式11cos 2sin 1ρθρθ-=,得24cos sin 1θθρρ-=,即2cos 4sin ρθθ=-,等式两边同时乘以ρ得22cos 4sin 0ρρθρθ-+=, 化为直角坐标方程得22240x y x y +-+=,即()()22125x y -++=,因此,曲线2C 的直角坐标方程为()()22125x y -++=(去掉原点); (2)曲线1C 的直角坐标方程为210x y --=,曲线1C 为直线, 曲线2C 是以点()1,2P -5,圆心P 到直线MN 的距离为5d =,2246525255MN d ⎛⎫∴=-=-= ⎪⎝⎭, 原点到直线MN 的距离为5h =因此,OMN 的面积为1165322555OMN S MN h =⋅=⨯=△. 【点睛】本题考查曲线极坐标方程的求解,考查了曲线的极坐标方程与直角坐标方程之间的转化,同时也考查了圆的内接三角形面积的计算,考查计算能力,属于中等题. [选修4—5:不等式选讲] 23. 已知函数1()|||3|2()2f x x k x k R =-++-∈. (1)当1k =时,解不等式()1f x ≤;(2)若()f x x 对于任意的实数x 恒成立,求实数k 的取值范围. 【答案】(1)5|13x x ⎧⎫-≤≤⎨⎬⎩⎭;(2){|1}k k ≤-. 【解析】 【分析】(1)当1k =时,去绝对值,把()f x 写成分段函数,不等式()1f x ≤等价于3个不等式组,解即得;(2)由(x)x f ≥对于任意的实数x 恒成立,得1|||3|22x k x x -++≥+对于任意的实数x 恒成立.分2x -≤和2x >-两种情况解不等式,求实数k 的取值范围. 【详解】(1)1k =,1()|1||3|22f x x x ∴=-++-.35,3,221(),31,2233, 1.22x x x f x x x x ⎧--<-⎪⎪⎪∴=-+-≤≤⎨⎪⎪->⎪⎩由()1f x ≤得3,351,22x x <-⎧⎪⎨--≤⎪⎩或31,11,22x x -≤≤⎧⎪⎨-+≤⎪⎩或1,33 1.22x x >⎧⎪⎨-≤⎪⎩解得x ∈∅或11x -≤≤或513x <≤, ∴不等式()1f x 的解集为5|13x x ⎧⎫-≤≤⎨⎬⎩⎭.(2)由(x)x f ≥对于任意的实数x 恒成立,得1|||3|22x k x x -++≥+对于任意的实数x 恒成立当2x -≤时,1|||3|022x k x x -++≥≥+恒成立; 当2x >-时,1|||3|22x k x x -++≥+恒成立3||22x x k x +⇔-+≥+恒成立, 即1||2x x k +-≥恒成立,当21x -<≤-时,1||2x x k +-≥显然恒成立,当1x >-时,1||2x x k +-≥恒成立12x x k +⇔-≥或12x x k +-≤-恒成立,即21x k ≥+或2132x k ⎛⎫≤- ⎪⎝⎭恒成立. 211k ∴+≤-,解得1k ≤-,∴实数k 的取值范围为{|1}k k ≤-.【点睛】本题考查含有绝对值的不等式的解法,考查分类讨论,属于较难的题目.。
广东省广州市2020届高三一模文科数学试题(附答案)

2020年高考模拟高考数学一模试卷(文科)一、选择题1.已知复数z=i(1+i),则|z|=()A.B.C.1 D.2.已知集合A={0,1,2,3},B={﹣1,0,1},P=A∩B,则P的子集共有()A.2个B.4个C.6个D.8个3.设向量=(m,1),=(2,﹣1),且⊥,则m=()A.﹣2 B.﹣C.D.24.已知{a n}是等差数列,a3=5,a2﹣a4+a6=7,则数列{a n}的公差为()A.﹣2 B.﹣1 C.1 D.25.已知命题p:∀x∈R,x2﹣x+1<0;命题q:∃x∈R,x2>x3,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q6.已知偶函数f(x)满足f(x)=x﹣(x>0),则{x|f(x+2)>1}=()A.{x|x<﹣4或x>0} B.{x|x<0或x>4} C.{x|x<﹣2或x>2} D.{x|x<﹣2或x>4}7.如图,圆O的半径为1,A,B是圆上的定点,OB⊥OA,P是圆上的动点,点P关于直线OB的对称点为P',角x的始边为射线OA,终边为射线OP,将|﹣|表示为x的函数f(x),则y=f(x)在[0,π]上的图象大致为()A.B.C.D.8.陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为()A.(7+2)πB.(10+2)πC.(10+4)πD.(11+4)π9.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为e,设地球半径为R,该卫星近地点离地面的距离为r,则该卫星远地点离地面的距离为()A.r+R B.r+RC.r+R D.r+R10.已知函数f(x)=x﹣alnx﹣1存在极值点,且f(x)≤0恰好有唯一整数解,则实数a的取值围是()A.(﹣∞,1)B.(0,1)C.(0,)D.(,+∞)11.已知F1,F2是双曲线C:﹣y2=1(a>0)的两个焦点,过点F1且垂直于x轴的直线与C 相交于A,B两点,若|AB|=,则△ABF2的切圆的半径为()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1的棱长为2,E,F,G分别是棱AD,CC1,C1D1的中点,给出下列四个命题:①EF⊥B1C;②直线FG与直线A1D所成角为60°;③过E,F,G三点的平面截该正方体所得的截面为六边形;④三棱锥B﹣EFG的体积为.其中,正确命题的个数为()A.1 B.2 C.3 D.4二、填空题13.已知函数y=f(x)的图象与y=2x的图象关于直线y=x对称,则f(4)=.14.设x,y满足约束条件,则z=x﹣2y的最小值为.15.羽毛球混合双打比赛每队由一男一女两名运动员组成.某班级从3名男生A1,A2,A3和3名女生B1,B2,B3中各随机选出两名,把选出的4人随机分成两队进行羽毛球混合双打比赛,则A1和B1两人组成一队参加比赛的概率为.16.记S n为数列{a n}的前n项和,若2S n﹣a n=,则a3+a4=,数列{a n+2﹣a n}的前n 项和T n=.三、解答题17.某企业质量检验员为了检测生产线上零件的情况,从生产线上随机抽取了80个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如图的频率分布直方图:(1)根据频率分布直方图,求这80个零件尺寸的中位数(结果精确到0.01);(2)已知尺寸在[63.0,64.5)上的零件为一等品,否则为二等品.将这80个零件尺寸的样本频率视为概率,从生产线上随机抽取1个零件,试估计所抽取的零件是二等品的概率.18.已知a,b,c分别是△ABC角A,B,C的对边,sin2A+sin2C﹣sin A sin C=sin2B.(1)求sin B的值;(2)若b=2,△ABC的面积为,求△ABC的周长.19.如图,三棱锥P﹣ABC中,PA=PC,AB=BC,∠APC=120°,∠ABC=90°,AC=PB=2.(1)求证:AC⊥PB;(2)求点C到平面PAB的距离.20.已知点P是抛物线C:y=﹣3的顶点,A,B是C上的两个动点,且•=﹣4.(1)判断点D(0,﹣1)是否在直线AB上?说明理由;(2)设点M是△PAB的外接圆的圆心,求点M的轨迹方程.21.已知函数f(x)=alnx﹣,曲线y=f(x)在点(1,f(1))处的切线方程为2x﹣y ﹣2﹣e=0.(1)求a,b的值;(2)证明函数f(x)存在唯一的极大值点x0,且f(x0)<2ln2﹣2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.已知曲线C1的参数方程为(t为参数),曲线C2的参数方程为(θ为参数).(1)求C1与C2的普通方程;(2)若C1与C2相交于A,B两点,且|AB|=,求sinα的值.[选修4-5:不等式选讲]23.已知a>0,b>0,且a+b=1.(1)求+的最小值;(2)证明:<.参考答案一、选择题1.已知复数z=i(1+i),则|z|=()A.B.C.1 D.解:∵z=i(1+i)=﹣1+i,∴|z|=.故选:D.2.已知集合A={0,1,2,3},B={﹣1,0,1},P=A∩B,则P的子集共有()A.2个B.4个C.6个D.8个解:∵集合A={0,1,2,3},B={﹣1,0,1},∴P=A∩B={0,1},∴P的子集共有22=4.故选:B.3.设向量=(m,1),=(2,﹣1),且⊥,则m=()A.﹣2 B.﹣C.D.2解:∵向量=(m,1),=(2,﹣1),且,∴=2m﹣1=0,解得m=,∴实数m=.故选:C.4.已知{a n}是等差数列,a3=5,a2﹣a4+a6=7,则数列{a n}的公差为()A.﹣2 B.﹣1 C.1 D.2解:∵{a n}是等差数列,a3=5,a2﹣a4+a6=7,∴,解得a1=1,d=2.∴数列{a n}的公差为2.故选:D.5.已知命题p:∀x∈R,x2﹣x+1<0;命题q:∃x∈R,x2>x3,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q解:x2﹣x+1=(x﹣)2+>0恒成立,故命题p:∀x∈R,x2﹣x+1<0为假命题,当x=﹣1时,x2>x3,成立,即命题q:∃x∈R,x2>x3,为真命题,则¬p∧q为真,其余为假命题,故选:B.6.已知偶函数f(x)满足f(x)=x﹣(x>0),则{x|f(x+2)>1}=()A.{x|x<﹣4或x>0} B.{x|x<0或x>4} C.{x|x<﹣2或x>2} D.{x|x<﹣2或x>4}【分析】偶函数f(x)满足f(x)=x﹣(x>0),在(0,+∞)递增,根据单调性判断即可.解:偶函数f(x)满足f(x)=x﹣(x>0),在(0,+∞)递增,且f(2)=1,故f(x+2)>1,即|x+2|>2,解得{x|x>0或者x<﹣4},故选:A.7.如图,圆O的半径为1,A,B是圆上的定点,OB⊥OA,P是圆上的动点,点P关于直线OB的对称点为P',角x的始边为射线OA,终边为射线OP,将|﹣|表示为x的函数f(x),则y=f(x)在[0,π]上的图象大致为()A.B.C.D.【分析】设PP'的中点为M,则|﹣|=,当x∈[0,]时,在Rt△OMP中,利用三角函数可知,|PM|=cos x,所以f(x)=2cos x,从而得解.解:设PP'的中点为M,则|﹣|=,当x∈[0,]时,在Rt△OMP中,|OP|=1,∠OPM=∠POA=x,所以cos x=,所以|PM|=cos x,|﹣|=2cos x,即f(x)=2cos x,x∈[0,].从四个选项可知,只有选项A正确,故选:A.8.陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为()A.(7+2)πB.(10+2)πC.(10+4)πD.(11+4)π【分析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.解:由题意可知几何体的直观图如图:上部是圆柱,下部是圆锥,几何体的表面积为:=(10+4)π.故选:C.9.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为e,设地球半径为R,该卫星近地点离地面的距离为r,则该卫星远地点离地面的距离为()A.r+R B.r+RC.r+R D.r+R【分析】由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.解:椭圆的离心率:e=∈(0,1),(c为半焦距;a为长半轴)只要求出椭圆的c和a,设卫星近地点,远地点离地面距离分别为m,n,由题意,结合图形可知,a﹣c=r+R,远地点离地面的距离为:n=a+c﹣R,m=a﹣c﹣R,a=,c=,所以远地点离地面的距离为:n=a+c﹣R==.故选:A.10.已知函数f(x)=x﹣alnx﹣1存在极值点,且f(x)≤0恰好有唯一整数解,则实数a的取值围是()A.(﹣∞,1)B.(0,1)C.(0,)D.(,+∞)【分析】利用导数可知函数f(x)在(0,a)单调递减,在(a,+∞)单调递增,再分0<a≤1及a>1讨论即可得出结果.解:函数的定义域为(0,+∞),且,又函数f(x)存在极值点,即y=f′(x)有变号零点,故a>0,故函数f(x)在(0,a)单调递减,在(a,+∞)单调递增,注意到f(1)=0,x→0时,f(x)>0,①当0<a≤1时,显然f(x)≤0恰好有唯一整数解x=1,满足题意;②当a>1时,只需满足f(2)>0,即1﹣aln2>0,解得;综上,实数a的取值围为.故选:C.11.已知F1,F2是双曲线C:﹣y2=1(a>0)的两个焦点,过点F1且垂直于x轴的直线与C 相交于A,B两点,若|AB|=,则△ABF2的切圆的半径为()A.B.C.D.【分析】设左焦点F1的坐标,由过F1垂直于x轴的直线与椭圆联立可得弦长AB,再由椭圆可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积,再由三角形被切圆的圆心分割3个三角形的面积之和可得切圆的半径.解:由双曲线的方程可设左焦点F1(﹣c,0),由题意可得AB==,再由b=1,可得a =,所以双曲线的方程为:﹣y2=1,所以F1(﹣,0),F2(,0),所以S=•F1F2==,三角形ABF2的周长为C=AB+AF2+BF2=AB+(2a+AF1)+(2a+BF1)=4a+2AB=4+2=6,设切圆的半径为r,所以三角形的面积S===3,所以3=,解得:r=,故选:B.12.已知正方体ABCD﹣A1B1C1D1的棱长为2,E,F,G分别是棱AD,CC1,C1D1的中点,给出下列四个命题:①EF⊥B1C;②直线FG与直线A1D所成角为60°;③过E,F,G三点的平面截该正方体所得的截面为六边形;④三棱锥B﹣EFG的体积为.其中,正确命题的个数为()A.1 B.2 C.3 D.4【分析】画出几何体的图形,然后转化判断四个命题的真假即可.解:如图;连接相关点的线段,O为BC的中点,连接EFO,因为F是中点,可知B1C⊥OF,EO⊥B1C,可知B1C⊥平面EFO,即可证明B1C⊥EF,所以①正确;直线FG与直线A1D所成角就是直线A1B与直线A1D所成角为60°;正确;过E,F,G三点的平面截该正方体所得的截面为五边形;如图:是五边形ENFGI.所以③不正确;三棱锥B﹣EFG的体积为:V G﹣EBM==.V F﹣EBM==.所以三棱锥B﹣EFG的体积为.④正确;故选:C.二、填空题:本题共4小题,每小题5分,共20分.13.已知函数y=f(x)的图象与y=2x的图象关于直线y=x对称,则f(4)= 2 .【分析】先利用反函数的定义求出函数f(x)的解析式,即可求出f(4)的值.解:由题意可知,函数y=f(x)与函数y=2x互为反函数,∴f(x)=log2x,∴f(4)=log24=2,故答案为:2.14.设x,y满足约束条件,则z=x﹣2y的最小值为﹣1 .【分析】先根据条件画出可行域,设z=x﹣2y,再利用几何意义求最值,将最小值转化为y轴上的截距最大,只需求出直线z=x﹣2y,取得截距的最小值,从而得到z最小值即可.解:由约束条件得到如图可行域,由目标函数z=x﹣2y得到y=x﹣z;当直线经过A时,直线在y轴的截距最大,使得z最小,由得到A(1,1),所以z的最小值为1﹣2×1=﹣1;故答案为:﹣1.15.羽毛球混合双打比赛每队由一男一女两名运动员组成.某班级从3名男生A1,A2,A3和3名女生B1,B2,B3中各随机选出两名,把选出的4人随机分成两队进行羽毛球混合双打比赛,则A1和B1两人组成一队参加比赛的概率为.【分析】先设分为甲乙两队,求出基本事件的总数,再根据A1和B1两人组成一队,求出符合条件的个数,相比即可求解.解:设分为甲乙两队;则甲队的人任选的话有:=9种情况,乙队去选时有:=4种情况;故共有9×4=36种情况;若A1和B1两人组成一队,在甲队时,乙队有=4种情况;在乙队时,甲队有=4种情况;故共有4+4=8种情况;所以:A1和B1两人组成一队参加比赛的概率为:=.故答案为:.16.记S n为数列{a n}的前n项和,若2S n﹣a n=,则a3+a4=﹣,数列{a n+2﹣a n}的前n项和T n=.【分析】(1)直接利用递推关系式的应用求出结果.(2)利用数列的递推关系式的应用和分组求和的应用求出结果.解:(1)由于数列{a n}满足2S n﹣a n=,①当n≥2时,②,①﹣②得:,整理得,所以.(2)由于,故③,所以④,③﹣④得:,所以…+,=﹣2×()+,=()﹣+(),=.故答案为:(1),(2)三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某企业质量检验员为了检测生产线上零件的情况,从生产线上随机抽取了80个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如图的频率分布直方图:(1)根据频率分布直方图,求这80个零件尺寸的中位数(结果精确到0.01);(2)已知尺寸在[63.0,64.5)上的零件为一等品,否则为二等品.将这80个零件尺寸的样本频率视为概率,从生产线上随机抽取1个零件,试估计所抽取的零件是二等品的概率.【分析】(1)由频率分布直方图中中位数两边频率相等,即可求出中位数的大小;(2)计算尺寸在[63.0,64.5)外的频率,用频率估计概率,即可得出结论.解:(1)由频率分布直方图的性质得:(0.075+0.225)×0.5=0.15,0.15+0.75×0.5=0.525,所以中位数在[63.0,63.5),设为a,则0.15+(a﹣63.0)×0.75=0.5,解得a≈63.47,所以估计中位数为63.47;(2)尺寸在[63.0,64.5)上的频率为(0.750+0.650+0.200)×0.5=0.8,且1﹣0.8=0.2,所以从生产线上随机抽取1个零件,估计所抽取的零件是二等品的概率为0.2.18.已知a,b,c分别是△ABC角A,B,C的对边,sin2A+sin2C﹣sin A sin C=sin2B.(1)求sin B的值;(2)若b=2,△ABC的面积为,求△ABC的周长.【分析】(1)由已知结合正弦定理及余弦定理可求cos B,然后结合同角平方关系可求sin B;(2)由已知结合三角形的面积公式可求ac,然后结合余弦定理即可求解a+c,进而可求三角形的周长.解:(1)因为sin2A+sin2C﹣sin A sin C=sin2B.由正弦定理可得,,由余弦定理可得,cos B=,故sin B=;(2)∵S△ABC===,所以ac=3,因为,所以=4+8=12,所以a+c+b=2+2.19.如图,三棱锥P﹣ABC中,PA=PC,AB=BC,∠APC=120°,∠ABC=90°,AC=PB=2.(1)求证:AC⊥PB;(2)求点C到平面PAB的距离.【分析】(1)取AC的中点为O,连接BO,PO,证明PO⊥AC,BO⊥AC,推出AC⊥平面OPB,即可证明AC⊥BP;(2)在直角三角形ABC中,由AC=2,O为AC的中点,得BO=1,求解PO=,结合PB =,可得PO⊥BO,又PO⊥AC,得到PO⊥平面ABC,然后利用等体积法求点C到平面PAB 的距离.【解答】(1)证明:取AC的中点为O,连接BO,PO.在△PAC中,∵PA=PC,O为AC的中点,∴PO⊥AC,在△BAC中,∵BA=BC,O为AC的中点,∴BO⊥AC,∵OP∩OB=O,OP,OB⊂平面OPB,∴AC⊥平面OPB,∵PB⊂平面POB,∴AC⊥BP;(2)解:在直角三角形ABC中,由AC=2,O为AC的中点,得BO=1,在等腰三角形APC中,由∠APC=120°,得PO=,又∵PB=,∴PO2+BO2=PB2,即PO⊥BO,又PO⊥AC,AC∩OB=O,∴PO⊥平面ABC,求解三角形可得PA=,又AB=,得=.设点C到平面PAB的距离为h,由V P﹣ABC=V C﹣PAB,得,解得h=,故点C到平面PAB的距离为.20.已知点P是抛物线C:y=﹣3的顶点,A,B是C上的两个动点,且•=﹣4.(1)判断点D(0,﹣1)是否在直线AB上?说明理由;(2)设点M是△PAB的外接圆的圆心,求点M的轨迹方程.【分析】(1)由抛物线的方程可得顶点P的坐标,设直线AB的方程,与抛物线联立求出两根之和及两根之积,求出数量积•,再由题意•=﹣4可得直线AB恒过(0,﹣1),即得D在直线AB上;(2)设A,B的坐标,可得直线PA,PB的斜率及线段PA,PB的中点坐标,进而求出线段PA,PB的中垂线的方程,两个方程联立求出外接圆的圆心M的坐标,由(1)可得M 的横纵坐标关于参数k的表达式,消参数可得M的轨迹方程.解:(1)由抛物线的方程可得顶点P(0,﹣3),由题意可得直线AB的斜率存在,设直线AB的方程为:y=kx+4,设A(x1,y1),B(x2,y2)联立直线与抛物线的方程:,整理可得:x2﹣4kx﹣4(b+3)=0,△=16k2+16(3+b)>0,即k2+3+b>0,x1+x2=4k,x1x2=﹣4(b+3),y1y2=k2x1x2+kb(x1+x2)+b2=﹣4k2(b+3)+4k2b+b2=b2﹣12k2,y1+y2=k(x1+x2)+2b=4k2+2b,因为=(x1,y1+3)(x2,y2+3)=x1x2+y1y2+3(y1+y2)+9=﹣4(b+3)+b2﹣12k2+3(4k2+2b)+9=b2+2b﹣3,而•=﹣4,所以b2+2b﹣3=﹣4,解得b=﹣1,m满足判别式大于0,即直线方程为y=kx﹣1,所以恒过(0,﹣1)可得点D(0,﹣1)是否在直线AB上.(2)因为点M是△PAB的外接圆的圆心,所以点M是三角形PAB三条边的中垂线的交点,设线段PA的中点为F,线段PB的中点为为E,因为P(0,﹣3),设A(x1,y1),B(x2,y2)所以F(,),E(,),k PA=,k PB=,所以线段PA的中垂线的方程为:y﹣=﹣(x﹣),因为A在抛物线上,所以y1+3=,PA的中垂线的方程为:y﹣+3=﹣(x﹣),即y=﹣x+﹣1,同理可得线段PB的中垂线的方程为:y=﹣x+﹣1,联立两个方程,解得,由(1)可得x1+x2=4k,x1x2=﹣4(b+3)=﹣8,所以x M=﹣=k,y M===2k2,即点M(k,2k2),所以x M2=,即点M的轨迹方程为:x2=y.21.已知函数f(x)=alnx﹣,曲线y=f(x)在点(1,f(1))处的切线方程为2x﹣y ﹣2﹣e=0.(1)求a,b的值;(2)证明函数f(x)存在唯一的极大值点x0,且f(x0)<2ln2﹣2.【分析】(1)求导,可得f′(1)=a,f(1)=﹣be,结合已知切线方程即可求得a,b的值;(2)利用导数可得,x0∈(1,2),再构造新函数,利用导数求其最值即可得证.解:(1)函数的定义域为(0,+∞),,则f′(1)=a,f(1)=﹣be,故曲线y=f(x)在点(1,f(1))处的切线方程为ax﹣y﹣a﹣be=0,又曲线y=f(x)在点(1,f(1))处的切线方程为2x﹣y﹣2﹣e=0,∴a=2,b=1;(2)证明:由(1)知,,则,令g(x)=2x﹣xe x+e x,则g′(x)=2﹣xe x,易知g′(x)在(0,+∞)单调递减,又g′(0)=2>0,g′(1)=2﹣e<0,故存在x1∈(0,1),使得g′(x1)=0,且当x∈(0,x1)时,g′(x)>0,g(x)单调递增,当x∈(x1,+∞)时,g′(x)<0,g(x)单调递减,由于g(0)=1>0,g(1)=2>0,g(2)=4﹣e2<0,故存在x0∈(1,2),使得g(x0)=0,且当x∈(0,x0)时,g(x)>0,f′(x)>0,f(x)单调递增,当x∈(x0,+∞)时,g(x)<0,f′(x)<0,f(x)单调递减,故函数存在唯一的极大值点x0,且,即,则,令,则,故h(x)在(1,2)上单调递增,由于x0∈(1,2),故h(x0)<h(2)=2ln2﹣2,即,∴f(x0)<2ln2﹣2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.已知曲线C1的参数方程为(t为参数),曲线C2的参数方程为(θ为参数).(1)求C1与C2的普通方程;(2)若C1与C2相交于A,B两点,且|AB|=,求sinα的值.【分析】(1)分别把两曲线参数方程中的参数消去,即可得到普通方程;(2)把直线的参数方程代入C2的普通方程,化为关于t的一元二次方程,再由根与系数的关系及此时t的几何意义求解.解:(1)由曲线C1的参数方程为(t为参数),消去参数t,可得y=x tanα+1;由曲线C2的参数方程为(θ为参数),消去参数θ,可得,即(y≥0).(2)把(t为参数)代入,得(1+cos2α)t2+2t sinα﹣1=0.∴,.∴|AB|=|t1﹣t2|==.解得:cos2α=1,即cosα=±1,满足△>0.∴sinα=0.[选修4-5:不等式选讲]23.已知a>0,b>0,且a+b=1.(1)求+的最小值;(2)证明:<.【分析】(1)利用基本不等式即可求得最小值;(2)关键是配凑系数,进而利用基本不等式得证.解:(1),当且仅当“”时取等号,故+的最小值为;(2)证明:,当且仅当时取等号,此时a+b≠1.故<.。
2020年广东省高考数学一模试卷(文科) (含解析)

2020年广东省高考数学一模试卷(文科)一、选择题(共12小题)1.已知集合A,B均为全集U={1,2,3,4,5,6,7}的子集,集合A={1,2,3,4},则满足A∩∁U B={1,2}的集合B可以是()A.{1,2,3,4}B.{1,2,7}C.{3,4,5,6}D.{1,2,3}2.复数z=4+3i3−4i(i为虚数单位)的虚部为()A.﹣1B.2C.5D.13.已知向量a→=(12,−1)向量b→满足2a→+b→=(﹣1,m),若a→⊥b→,则m=()A.﹣3B.3C.1D.24.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,上、下顶点分别为A,B,若四边形AF2BF1是正方形且面积为4,则椭圆C的方程为()A.x24+y22=1B.x22+y2=1C.x23+y22=1D.x24+y23=15.如图,△OAB是边长为2的正三角形,记△OAB位于直线x=t(0<t≤2)左侧的图形的面积为f(t),则y=f(t)的大致图象为()A .B .C .D .6.若sin(π+α)=√23,则sin(2α−π2)的值为( )A .−19B .−59C .19D .597.甲、乙两人分别从4种不同的图书中任选2本阅读,则甲、乙两人选的2本恰好相同的概率为( )A .14B .13C .16D .1368.某广场设置了一些石凳子供大家休息,这些石凳子是由正方体沿各棱的中点截去八个一样的正三棱锥后得到的.如果被截正方体的棱长为40cm ,则石凳子的体积为( )A .1920003cm 3B .1600003cm 3C .160003cm 3D .640003cm 39.执行如图的程序框图,若输出A 的值为70169,则输入i 的值为( )A .4B .5C .6D .710.已知O 是坐标原点,双曲线C :x 2a −y 2b =1(a >0,b >0)的右焦点为F ,过点F 的直线l 与x 轴垂直,且交双曲线C 于A ,B 两点,若△ABO 是等腰直角三角形,则双曲线C 的离心率为( ) A .√5+12B .√5−12C .√5−1D .√5+111.在△ABC 中,已知A =60°,D 是边BC 上一点,且BD =2DC ,AD =2,则△ABC 面积的最大值为( ) A .√3B .32√3C .2√3D .52√312.已知f (x )是定义在(−π2,π2)上的奇函数,f (1)=0,且当x ∈(0,π2)时,f (x )+f ′(x )tan x >0,则不等式f (x )<0的解集为( ) A .(﹣1,0)∪(1,π2)B .(﹣1,0)∪(0,1)C .(−π2,﹣1)∪(1,π2) D .(−π2,﹣1)∪(0,1)二、填空题(共4小题,每小题5分,满分20分)13.设函数f (x )=mx 2lnx ,若曲线y =f (x )在点(e ,f (e ))处的切线与直线ex +y +2020=0平行,则m = .14.若x ,y 满足约束条件{|x −y|≤1|x|≤2,则z =2x +y 的最大值为 .15.如图,已知三棱锥P ﹣ABC 满足PA =PB =PC =AB =2,AC ⊥BC ,则该三棱锥外接球的体积为 .16.函数f(x)=sinπx+a cosπx满足f(x)=f(13−x),x∈[0,32],方程f(x)﹣m=0恰有两个不等的实根,则实数m的取值范围为.三、解答题(共5小题,满分60分)17.已知{a n}为单调递增的等差数列,设其前n项和为S n,S5=﹣20,且a3,a5+1,a9成等比数列.(1)求数列{a n}的通项公式;(2)求S n的最小值及取得最小值时n的值.18.某城市2018年抽样100户居民的月均用电量(单位:千瓦时),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组,得到如表频率分布表:分组频数频率[160,180)n10.04[180,200)19f1[200,220)n20.22[220,240)250.25[240,260)150.15[260,280)10f2[280,300]50.05(1)求表中n1,n2,f1,f2的值,并估计2018年该市居民月均用电量的中位数m;(2)该城市最近十年的居民月均用电量逐年上升,以当年居民月均用电量的中位数u(单位:千瓦时)作为统计数据,如图是部分数据的折线图.由折线图看出,可用线性回归模型拟合u与年份t的关系.①为简化运算,对以上数据进行预处理,令x=t﹣2014,y=u﹣195,请你在答题卡上完成数据预处理表;②建立u关于t的线性回归方程,预测2020年该市居民月均用电量的中位数.附:回归直线y=b x+a的斜率和截距的最小二乘估计公式分别为:b=∑n i=1x i y i−nxy ∑n i=1x i2−nx2,a=y−b x.19.如图,已知正三棱柱ABC﹣A1B1C1,D是AB的中点,E是C1C的中点,且AB=1,AA1=2.(1)证明:CD∥平面A1EB;(2)求点A1到平面BDE的距离.20.动圆C与x轴交于A(x1,0),B(x2,0)两点,且x1,x2是方程x2+2mx﹣4=0的两根.(1)若线段AB是动圆C的直径,求动圆C的方程;(2)证明:当动圆C过点M(0,1)时,动圆C在y轴上截得弦长为定值.21.已知函数f(x)=e x+(m﹣e)x﹣mx2.(1)当m=0时,求函数f(x)的极值;(2)当m<0时,证明:在(0,1)上f(x)存在唯一零点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ﹣2ρsinθ=1.若P为曲线C1上的动点,Q是射线OP上的一动点,且满足|OP|•|OQ|=2,记动点Q的轨迹为C2.(1)求C2的直角坐标方程;(2)若曲线C1与曲线C2交于M,N两点,求△OMN的面积.[选修4-5:不等式选讲]23.已知函数f(x)=|x−k|+12|x+3|−2(k∈R).(1)当k=1时,解不等式f(x)≤1;(2)若f(x)≥x对于任意的实数x恒成立,求实数k的取值范围.参考答案一、选择题(共12小题,每小题5分,满分60分)1.已知集合A,B均为全集U={1,2,3,4,5,6,7}的子集,集合A={1,2,3,4},则满足A∩∁U B={1,2}的集合B可以是()A.{1,2,3,4}B.{1,2,7}C.{3,4,5,6}D.{1,2,3}【分析】根据题意得出1,2∉B,即可判断结论.解:∵集合A,B均为全集U={1,2,3,4,5,6,7}的子集,集合A={1,2,3,4},要满足A∩∁U B={1,2};则1,2∉B,故符合条件的选项为C.故选:C.【点评】本题考查集合了的交、并、补集的混合运算问题,是基础题.2.复数z=4+3i3−4i(i为虚数单位)的虚部为()A.﹣1B.2C.5D.1【分析】利用复数的运算法则即可得出.解:∵z=4+3i3−4i=(4+3i)(3+4i)(3−4i)(3+4i)=25i25=i,∴复数z=4+3i3−4i的虚部是1,故选:D.【点评】本题考查了复数的运算法则,属于基础题.3.已知向量a→=(12,−1)向量b→满足2a→+b→=(﹣1,m),若a→⊥b→,则m=()A .﹣3B .3C .1D .2【分析】由题意利用两个向量坐标形式的运算,两个向量垂直的性质、两个向量的数量积公式,求得m 的值.解:向量a →=(12,−1),向量b →满足2a →+b →=(﹣1,m ),设b →=( x ,y ),则(1+x ,﹣2+y )=(﹣1,m ),∴1+x =﹣1,且﹣2+y =m , 求得x =﹣2,m =y ﹣2.若a →⊥b →,则a →⋅b →=x 2−y =﹣1﹣y =0,故y =﹣1,∴m =y ﹣2=﹣3, 故选:A .【点评】本题主要考查两个向量坐标形式的运算,两个向量垂直的性质、两个向量的数量积公式,属于基础题.4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,上、下顶点分别为A ,B ,若四边形AF 2BF 1是正方形且面积为4,则椭圆C 的方程为( ) A .x 24+y 22=1B .x 22+y 2=1C .x 23+y 22=1D .x 24+y 23=1【分析】由四边形AF 2BF 1是正方形且面积为4可得b ,c 的值,再由a ,b ,c 之间的关系求出a 的值,进而求出椭圆的面积. 解:由AF 2BF 1是正方形可得b =c ,再由AF 2BF 1的面积为4可得12•2c •2b =4,即bc =2,又a 2=b 2+c 2,解得:a 2=4,b 2=2,所以椭圆的方程为:x 24+y 22=1;故选:A .【点评】本题考查椭圆的性质,及正方形的面积与对角线的关系,属于中档题. 5.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (0<t ≤2)左侧的图形的面积为f (t ),则y =f (t )的大致图象为( )A .B .C .D .【分析】根据面积的变换趋势与t 的关系进行判断即可.解:当0<x <1时,函数的面积递增,且递增速度越来越快,此时,CD ,不合适, 当1≤x ≤2时,函数的面积任然递增,且递增速度逐渐变慢,排除A , 故选:B .【点评】本题主要考查函数图象的识别和判断,利用函数递增速度与t 的关系是解决本题的关键.难度不大.6.若sin(π+α)=√23,则sin(2α−π2)的值为( )A.−19B.−59C.19D.59【分析】由已知利用诱导公式可求sinα的值,进而利用诱导公式,二倍角的余弦函数公式化简所求即可求解.解:∵sin(π+α)=√23,∴可得sinα=−√23,∴sin(2α−π2)=−cos2α=2sin2α﹣1=2×(−√23)2﹣1=−59.故选:B.【点评】本题主要考查了诱导公式,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.7.甲、乙两人分别从4种不同的图书中任选2本阅读,则甲、乙两人选的2本恰好相同的概率为()A.14B.13C.16D.136【分析】基本事件总数n=C42=6,由此能求出甲、乙两人选的2本恰好相同的概率.解:甲、乙两人分别从4种不同的图书中任选2本阅读,基本事件总数n=C42=6,则甲、乙两人选的2本恰好相同的概率p=1 6.故选:C.【点评】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力以及化归与转化思想,是基础题.8.某广场设置了一些石凳子供大家休息,这些石凳子是由正方体沿各棱的中点截去八个一样的正三棱锥后得到的.如果被截正方体的棱长为40cm,则石凳子的体积为()A .1920003cm 3B .1600003cm 3C .160003cm 3D .640003cm 3【分析】由正方体的体积减去八个正三棱锥的体积求解. 解:如图,正方体AC 1 的棱长为40cm ,则截去的一个正三棱锥的体积为13×12×20×20×20=40003cm 3.又正方体的体积为V =40×40×40=64000cm 3,∴石凳子的体积为64000−8×40003=1600003cm 3, 故选:B .【点评】本题考查多面体体积的求法,考查计算能力,是基础题.9.执行如图的程序框图,若输出A 的值为70169,则输入i 的值为( )A.4B.5C.6D.7【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量A的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:模拟程序的运行,可得A=12,k=1满足条件1≤i,执行循环体,A=25,k=2满足条件2≤i,执行循环体,A=512,k=3满足条件3≤i,执行循环体,A=1229,k=4满足条件4≤i,执行循环体,A=2970,k=5满足条件5≤i,执行循环体,A=70 169,k=6由题意,此时不满足条件6≤i,退出循环,输出A的值为70 169,可得输入i的值为5.故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.10.已知O是坐标原点,双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点为F,过点F的直线l与x轴垂直,且交双曲线C于A,B两点,若△ABO是等腰直角三角形,则双曲线C的离心率为()A.√5+12B.√5−12C.√5−1D.√5+1【分析】由双曲线的性质,结合通径以及半焦距,可得a,c的方程,运用离心率公式计算即可得到.解:由题意可知:|AF |=b 2a,双曲线C :x 2a −y 2b =1(a >0,b >0)的右焦点为F ,过点F 的直线l 与x 轴垂直,且交双曲线C 于A ,B 两点,若△ABO 是等腰直角三角形,可得c =b 2a =c 2−a 2a,e =e 2﹣1,e >1解得e =√5+12.故选:A .【点评】本题考查双曲线的定义、方程和性质,主要考查离心率的求法,同时考查勾股定理的运用,灵活运用双曲线的定义是解题的关键.11.在△ABC 中,已知A =60°,D 是边BC 上一点,且BD =2DC ,AD =2,则△ABC 面积的最大值为( ) A .√3B .32√3 C .2√3D .52√3【分析】先根据向量的三角形法则得到AD →=13AB →+23AC →;对其两边平方,求出bc 的取值范围即可求得结论.解:因为在△ABC 中,已知A =60°,D 是边BC 上一点,且BD =2DC ,AD =2,;∴AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →−AB →)=13AB →+23AC →;∴AD →2=19AB →2+2×13AB →×23AC →+49AC →2;即:4=19c 2+49bc •cos60°+49b 2⇒36=c 2+2bc +4b 2≥2√c 2⋅4b 2+2bc =6bc ;∴bc ≤6,(当且仅当2b =c 时等号成立);∵S △ABC =12bc sin A ≤12×6×√32=3√32. 即△ABC 面积的最大值为:3√32.故选:B .【点评】本题考查△ABC 的面积的求法以及向量知识的综合应用,涉及到基本不等式,属于中档题目.12.已知f (x )是定义在(−π2,π2)上的奇函数,f (1)=0,且当x ∈(0,π2)时,f (x )+f ′(x )tan x >0,则不等式f (x )<0的解集为( ) A .(﹣1,0)∪(1,π2)B .(﹣1,0)∪(0,1)C .(−π2,﹣1)∪(1,π2) D .(−π2,﹣1)∪(0,1)【分析】令g (x )=f (x )sin x ,g ′(x )=[f (x )+f ′(x )tan x ]•cos x ,当x ∈(0,π2)时,根据f (x )+f ′(x )tan x >0,可得函数g (x )单调递增.又g (1)=0,可得x ∈(0,1)时,g (x )=f (x )sin x <0,sin x <0,解得f (x )<0.x =0时,f (0)=0,舍去.根据f (x )是定义在(−π2,π2)上的奇函数,可得g (x )是定义在(−π2,π2)上的偶函数.进而得出不等式f (x )<0的解集.解:令g (x )=f (x )sin x ,g ′(x )=f (x )cos x +f ′(x )sin x =[f (x )+f ′(x )tan x ]•cos x ,当x ∈(0,π2)时,f (x )+f ′(x )tan x >0,∴g ′(x )>0,即函数g (x )单调递增.又g (1)=0,∴x ∈(0,1)时,g (x )=f (x )sin x <0,sin x <0,解得f (x )<0. x =0时,f (0)=0,舍去.∵f (x )是定义在(−π2,π2)上的奇函数,∴g (x )是定义在(−π2,π2)上的偶函数.∴不等式f (x )<0的解集为(﹣1,0)∪(0,1). 故选:B .【点评】本题考查了利用导数研究的单调性、构造法、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于中档题. 二、填空题(共4小题,每小题5分,满分20分)13.设函数f (x )=mx 2lnx ,若曲线y =f (x )在点(e ,f (e ))处的切线与直线ex +y +2020=0平行,则m = −13.【分析】求出f (x )的导数,然后根据切线与直线ex +y +2020=0平行,得f ′(e )=﹣e ,列出关于m 的方程,解出m 的值. 解:f ′(x )=m (2xlnx +x ),又曲线y =f (x )在点(e ,f (e ))处的切线与直线ex +y +2020=0平行,∴f ′(e )=3em =﹣e ,解得m =−13.故答案为:−13.【点评】本题考查导数的几何意义和切线方程的求法,同时考查学生运用方程思想解题的能力和运算能力.14.若x ,y 满足约束条件{|x −y|≤1|x|≤2,则z =2x +y 的最大值为 7 .【分析】先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,最后利用数形结合即可得目标函数的最值.解:画出x ,y 满足约束条件{|x −y|≤1|x|≤2,可行域如图阴影部分由{x =2x −y =−1,得A (2,3) 目标函数z =2x +y 可看做斜率为﹣2的动直线,其纵截距越大z 越大,由图数形结合可得当动直线过点A时,z最大=2×2+3=7.故答案为:7.【点评】本题主要考查了线性规划,以及二元一次不等式组表示平面区域的知识,数形结合的思想方法,属于基础题.15.如图,已知三棱锥P﹣ABC满足PA=PB=PC=AB=2,AC⊥BC,则该三棱锥外接球的体积为3227√3π.【分析】因为AC⊥BC,所以△ABC的外接圆的圆心为斜边AB的中点D,再由PA=PB =PC可得球心O在直线PD所在的直线上,设为O,然后在直角三角形中由勾股定理可得外接球的半径,进而求出外接球的体积.解:因为AC⊥BC,所以△ABC的外接圆的圆心为斜边AB的中点D,可得外接圆的半径为r=12AB=1,再由PA=PB=PC=AB=2可得PD⊥面ABC,可得PD=√PA2−AD2=√3,可得球心O在直线PD所在的直线上,设外接球的半径为R,取OP=OA=R,在△OAD 中,R 2=r 2+(PD ﹣R )2, 即R 2=1+(√3−R )2,解得:R =2√3=2√33, 所以外接球的体积V =4π3R 3=32√327π, 故答案为:32√327π.【点评】本题考查三棱锥的棱长与外接球的半径之间的关系,及球的体积公式,属于中档题.16.函数f (x )=sin πx +a cos πx 满足f (x )=f (13−x ),x ∈[0,32],方程f (x )﹣m =0恰有两个不等的实根,则实数m 的取值范围为 √3≤m <2或﹣2<m ≤﹣1 . 【分析】首先利用函数的对称性求出函数的关系式,进一步利用函数的图象求出函数f (x )的图象和函数y =m 的交点,进一步求出结果.解:函数f (x )=sin πx +a cos πx 满足f (x )=f (13−x ),则函数的对称轴为x =16,当x =16时,函数f (x )取得最值,即±√1+a 2=sin π6+acos π6,整理得a 2−2√3a +3=0,解得a =√3, 所以f (x )=sin πx +√3cosπx =2sin (πx +π3). 由于x ∈[0,32],所以π3≤πx +π3≤3π2+π3=11π6,根据函数的图象,当√3≤m<2或﹣2<m≤﹣1时,函数的f(x)的图象与y=m有两个交点,即方程f (x)﹣m=0恰有两个不等的实根,故答案为:√3≤m<2或﹣2<m≤﹣1.【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,函数的图象的应用,函数的零点和函数的图象的交点的关系的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.三、解答题(共5小题,满分60分)17.已知{a n}为单调递增的等差数列,设其前n项和为S n,S5=﹣20,且a3,a5+1,a9成等比数列.(1)求数列{a n}的通项公式;(2)求S n的最小值及取得最小值时n的值.【分析】(1)设等差数列的公差为d,d>0,由等差数列的求和公式和通项公式,结合等比数列的中项性质,解方程可得首项和公差,进而得到所求通项公式;(2)由等差数列的求和公式,结合二次函数的最值求法,注意n为正整数,可得所求最值.解:(1){a n}为单调递增的等差数列,设公差为d,d>0,由S5=﹣20,可得5a1+10d=﹣20,即a1+2d=﹣4,①由a3,a5+1,a9成等比数列,可得a3a9=(a5+1)2,即(a1+2d)(a1+8d)=(a1+4d+1)2,化为2a1d=2a1+1+8d,②由①②解得d=12,a1=﹣5,则a n=﹣5+12(n﹣1)=12(n﹣11);(2)S n=12n(﹣5+n−112)=14(n2﹣21n)=14[(n−212)2−4414],由于n为正整数,可得n=10或11时,S n取得最小值−55 2.【点评】本题考查等差数列的通项公式和求和公式的运用,以及等比中项的性质,考查方程思想和化简运算能力,属于基础题.18.某城市2018年抽样100户居民的月均用电量(单位:千瓦时),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组,得到如表频率分布表:分组频数频率[160,180)n10.04[180,200)19f1[200,220)n20.22[220,240)250.25[240,260)150.15[260,280)10f2[280,300]50.05(1)求表中n1,n2,f1,f2的值,并估计2018年该市居民月均用电量的中位数m;(2)该城市最近十年的居民月均用电量逐年上升,以当年居民月均用电量的中位数u(单位:千瓦时)作为统计数据,如图是部分数据的折线图.由折线图看出,可用线性回归模型拟合u与年份t的关系.①为简化运算,对以上数据进行预处理,令x=t﹣2014,y=u﹣195,请你在答题卡上完成数据预处理表;②建立u关于t的线性回归方程,预测2020年该市居民月均用电量的中位数.附:回归直线y=b x+a的斜率和截距的最小二乘估计公式分别为:b=∑n i=1x i y i−nxy ∑n i=1x i2−nx2,a=y−b x.【分析】(1)根据频数、频率和样本容量的关系可分别求出n1,n2,f1,f2的值;设样本的中位数为a,根据中位数的性质可列出关于a的方程,解之即可得解;(2)①根据折线图中的数据和x=t﹣2014,y=u﹣195,算出每组数据对应的x和y值即可;②由①中的数据,可求出x,y,再根据a,b的参考公式,求出这两个系数后可得y关于x的线性回归方程,再把t和u代入化简即可得u关于t的线性回归方程;令t=2020,算出u的值就是所求.解:(1)n1=100×0.04=4;n2=100×0.22=22;f1=19100=0.19;f2=10100=0.1.设样本频率分布表的中位数为a,则0.04+0.19+0.22+0.25×120×(a−20)=0.5,解得a=224,由样本估计总体,可估计2018年该市居民月均用电量的中位数m为224千瓦时.(2)①数据预处理如下表:x=t﹣2014﹣4﹣2024 y=u﹣195﹣21﹣1101929②由①可知,x=0,y=−21−11+0+19+295=3.2,∴b=∑n i=1x i y i−nxy∑n i=1x i2−nx2=(−4)×(−21)+(−2)×(−11)+2×19+4×29(−4)2+(−2)2+22+42=26040=6.5,a=y−b x=3.2−6.5×0=3.2,∴y关于x的线性回归方程为y=6.5x+3.2,∵x=t﹣2014,y=u﹣195,∴u﹣195=6.5(t﹣2014)+3.2,故u关于t的线性回归方程为u=6.5t﹣12892.8,当t=2020时,u=6.5×2020﹣12892.8=237.2(千瓦时).故预测2020年该市居民月均用电量的中位数为237.2千瓦时.【点评】本题考查对频数、频率分布表的认识、线性回归方程的求法,考查学生对数据的分析与处理能力,属于基础题.19.如图,已知正三棱柱ABC﹣A1B1C1,D是AB的中点,E是C1C的中点,且AB=1,AA1=2.(1)证明:CD∥平面A1EB;(2)求点A1到平面BDE的距离.【分析】(1)取A1B的中点F,连接EF,DF,由三角形中位线定理可得DF∥A1A,DF=12A1A,再由已知得到DF∥EC,DF=EC,得四边形CDEF为平行四边形,则CD∥EF.由直线与平面平行的判定可得CD∥平面A1EB;(2)证明CD⊥平面A1ABB1,又由(1)知,CD∥EF,得到EF⊥平面A1ABB1,再证明AB⊥平面CDE,得AB⊥DE,则BD⊥DE,分别求出平面BDE与平面A1BD的体积,然后利用等体积法求点A1到平面BDE的距离.【解答】(1)证明:取A1B的中点F,连接EF,DF,∵D,F分别是AB,A1B的中点,∴DF∥A1A,DF=12A1A,∵A1A∥C1C,A1A=C1C,E是C1C的中点,∴DF∥EC,DF=EC,可得四边形CDEF为平行四边形,则CD∥EF.∵CD⊄平面A1EB,EF⊂平面A1EB,∴CD∥平面A1EB;(2)解:∵△ABC是正三角形,D是AB的中点,∴CD⊥AB,∵ABC﹣A1B1C1是直三棱柱,∴A1A⊥平面ABC,则A1A⊥CD.∵A1A∩AB=A,∴CD⊥平面A1ABB1,又由(1)知,CD∥EF,∴EF⊥平面A1ABB1,∵AB =1,AA 1=2,∴CD =√32,则S △A 1BD =12×2×12=12.∴V E−A1BD=13S △A 1BD ⋅EF =13×12×√32=√312. 在Rt △CDE 中,DE =√CD 2+CE 2=√72.∵AB ⊥CD ,AB ⊥CE ,CD ∩CE =C , ∴AB ⊥平面CDE ,得AB ⊥DE ,则BD ⊥DE .∴S △BDE =12×12×√72=√78.设点A 1到平面BDE 的距离为d ,由V A 1−BDE =V E−A 1BD ,得13S △BDE ⋅d =√312,即13×√78=√312,则d =2√217.【点评】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用等体积法求点到平面的距离,是中档题.20.动圆C 与x 轴交于A (x 1,0),B (x 2,0)两点,且x 1,x 2是方程x 2+2mx ﹣4=0的两根.(1)若线段AB 是动圆C 的直径,求动圆C 的方程;(2)证明:当动圆C 过点M (0,1)时,动圆C 在y 轴上截得弦长为定值. 【分析】(1)由韦达定理可得到x 1+x 2=﹣2m ,x 1x 2=﹣4,从而求得圆心与半径,进而求得动圆C 的方程;(2)先设出动圆C 的方程,再由题设条件解决D 、E 、F 的值,进而求出动圆C 在y 轴上截得弦长.解:(1)∵x 1,x 2是方程x 2+2mx ﹣4=0的两根,∴x 1+x 2=﹣2m ,x 1x 2=﹣4. ∵动圆C 与x 轴交于A (x 1,0),B (x 2,0)两点,且线段AB 是动圆C 的直径, ∴动圆C 的圆心C 的坐标为(﹣m ,0),半径为|AB|2=|x 2−x 1|2=√(x 1+x 2)2−4x 1x 22=√m +4.∴动圆C 的方程为(x +m )2+y 2=m 2+4;(2)证明:设动圆C 的方程为x 2+y 2+Dx +Ey +F =0,∵动圆C 与y 轴交于M (0,1),N (0,y 1),令y =0则x 2+Dx +F =0,由题意可知D =2m ,F =﹣4,又动圆C 过点M (0,1),∴1+E ﹣4=0,解得E =3.令x =0,则y 2+3y ﹣4=0,解得y =1或y =﹣4,∴y 1=﹣4.∴动圆C 在y 轴上截得弦长为|y 1﹣1|=5.故动圆C 在y 轴上截得弦长为定值.【点评】本题主要考查圆的方程及被坐标轴截得的弦长的问题,属于基础题. 21.已知函数f (x )=e x +(m ﹣e )x ﹣mx 2. (1)当m =0时,求函数f (x )的极值;(2)当m <0时,证明:在(0,1)上f (x )存在唯一零点.【分析】(1)将m =0带入,求导得f ′(x )=e x ﹣e ,再求出函数f (x )的单调性,进而求得极值;(2)求导得f ′(x )=e x ﹣2mx +m ﹣e ,令g (x )=f ′(x ),对函数g (x )求导后,可知g(x)=f′(x)在(0,1)上单调递增,而g(0)<0,g(1)>0,进而函数f (x)在(0,1)上的单调性,再运用零点存在性定理可得证.解:(1)当m=0时,f(x)=e x﹣ex,f′(x)=e x﹣e,又f′(x)是增函数,且f′(1)=0,∴当x>1时,f′(x)>0,当x<1时,f′(x)<0,∴f(x)在(﹣∞,1)上单调递减,在(1,+∞)上单调递增,∴当x=1时,f(x)取得极小值f(1)=0,无极大值;(2)证明:f′(x)=e x﹣2mx+m﹣e,令g(x)=f′(x)=e x﹣2mx+m﹣e,则g′(x)=e x﹣2m,当m<0时,则g′(x)>0,故g(x)=f′(x)在(0,1)上单调递增,又g(0)=f′(0)=1+m﹣e<0,g(1)=f′(1)=﹣m>0,∴存在x0∈(0,1),使得g(x0)=f′(x0)=0,且当x∈(0,x0)时,f′(x)<0,f(x)是减函数,当x∈(x0,1)时,f′(x)>0,f(x)是增函数,又∵f(0)=1,f(1)=0,∴f(x)在(0,1)上存在唯一零点.【点评】本题主要考查利用导数研究函数的极值及函数的零点,考查推理论证能力及运算求解能力,属于中档题.一、选择题22.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ﹣2ρsinθ=1.若P为曲线C1上的动点,Q是射线OP上的一动点,且满足|OP|•|OQ|=2,记动点Q的轨迹为C2.(1)求C2的直角坐标方程;(2)若曲线C1与曲线C2交于M,N两点,求△OMN的面积.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用点到直线的距离公式的应用和三角形的面积公式的应用求出结果.解:(1)曲线C1的极坐标方程为ρcosθ﹣2ρsinθ=1.若P为曲线C1上的动点,Q是射线OP上的一动点,且满足|OP|•|OQ|=2,记动点Q 的轨迹为C2.设P(ρ1,θ),Q(ρ,θ),则:ρ1cosθ﹣2ρ1sinθ=1,即ρ1=1cosθ−2sinθ,由于|OP|•|OQ|=2,所以ρ=2cosθ﹣4sinθ,整理得ρ2=2ρcosθ﹣4ρsinθ,转换为直角坐标方程为:(x﹣1)2+(y+2)2=5(原点除外).(2)曲线C1的极坐标方程为ρcosθ﹣2ρsinθ=1转换为直角坐标方程为:x﹣2y﹣1=0.曲线C2的圆心为(1,﹣2),半径为√5,所以圆心到直线C1的距离d=√1+(−2)=5.所以|MN|=2√(√5)2−(4√5)2=6√5.由于点O到C1的距离d2=|−1|√1+(−2)=1√5所以S△OMN=12×|MN|×d2=12×6√51√5=35.【点评】本题考查的知识要点:参数方程、极坐标方程和直角坐标方程之间的转换,点到直线的,三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.[选修4-5:不等式选讲]23.已知函数f(x)=|x−k|+12|x+3|−2(k∈R).(1)当k=1时,解不等式f(x)≤1;(2)若f(x)≥x对于任意的实数x恒成立,求实数k的取值范围.【分析】(1)由题意可得|x﹣1|+12|x+3|≤3,由零点分区间法和绝对值的定义,去绝对值,解不等式,求并集,可得所求解集;(2)由题意可得|x﹣k|+12|x+3|≥x+2恒成立.讨论x≤﹣2恒成立,x>﹣2时,可得|x﹣k|≥x+12恒成立,讨论﹣2<x≤﹣1,x>﹣1时,结合绝对值不等式的解法和恒成立思想,可得所求范围.解:(1)当k=1时,不等式f(x)≤1即为|x﹣1|+12|x+3|≤3,等价为{x≥1x−1+12x+32≤3或{−3<x<11−x+12x+32≤3或{x≤−31−x−12x−32≤3,解得1≤x≤53或﹣1≤x<1或x∈∅,则原不等式的解集为[﹣1,53 ];(2)f(x)≥x对于任意的实数x恒成立,即为|x﹣k|+12|x+3|≥x+2恒成立.当x≤﹣2时,|x﹣k|+12|x+3|≥0≥x+2恒成立;当x>﹣2时,|x﹣k|+12|x+3|≥x+2恒成立等价为|x﹣k|+x+32≥x+2,即|x﹣k|≥x+12恒成立,当﹣2<x≤﹣1时,|x﹣k|≥x+12恒成立;当x>﹣1时,|x﹣k|≥x+12恒成立等价为x﹣k≥x+12或x﹣k≤−x+12恒成立.即x≥2k+1或x≤23(k−12)恒成立,则2k+1≤﹣1解得k≤﹣1,所以k的取值范围是(﹣∞,﹣1].【点评】本题考查绝对值不等式的解法,注意运用分类讨论思想,考查不等式恒成立问题解法,注意运用转化思想和分类讨论思想,考查化简运算能力和推理能力,属于中档题.。
2020年广东广州高三一模文科数学试卷答案

【答案】 ①④
【解析】 ①∵
, 平面 ,
∴ 平面 ,
∵ 平面 ,
∴ ①正确.
②∵ , 平面 ,
∴或
,
∴ 未必成立. ②错误.
③同理 , 均是 , 位置关系中的一种情况,但由题目中条件 , 可成任
意夹角,
∴②③均错.
④∵ 平面 , ,
∴ 平面 ,
∵ 平面 ,
∴ ,故④正确.
⑤当平面 与平面 成锐角时,交线为 ,
由
,同理求得
,
所以
,
所以 的值为
.
19. 某种昆虫的日产卵数和时间变化有关,现收集了该昆虫第 天到第 天的日产卵数据: 第天
日产卵数 (个)
对数据初步处理后得到了如图所示的散点图和表中的统计量的值.
https:///#/print?id=17dcff57d654467dbaf323a78df2c57a&type=analyze
此时∵ 平面 ,
∴,
但 并不平行于 ,
∴⑤错误,
综上,正确答案为①④.
https:///#/print?id=17dcff57d654467dbaf323a78df2c57a&type=analyze
9/21
更多资料请微信搜索小程序“真题试卷”获取
,所以
在
中,
,
,
在
和
中,因为
,
所以
,
所以
,
所以
.
( 2 )方法一:因为
,
所以
,
, ,
https:///#/print?id=17dcff57d654467dbaf323a78df2c57a&type=analyze
2020年广东省高考文科数学模拟试卷及答案解析

4.设a,b是两个实数,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2.其中能推出“a,b中至少有一个大于1”的条件是( )
A.①②B.②③C.③④D.③
5.函数y= 的图象是( )
A.
B.
C.
D.
6.从编号为001,002,…,400的400个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( )
A. B. C. D.
11.在△ABC中,a,b,c分别为角A,B,C的对边,若a2﹣c2=3b,且sinB=8cosAsinC,则边b=( )
A.3B.4C.5D.6
12.已知F是椭圆 =1(a>b>0)的左焦点,A为右顶点,P是椭圆上的一点,PF⊥x轴,若|PF|= |AF|,则该椭圆的离心率是( )
五.解答题(共1小题)
23.(1)解不等式:|x﹣1|+|x+3|>6;
(2)若a>0,b>0,a+b=2,证明:( ﹣1)( ﹣1)≥9
2020年广东省高考文科数学模拟试卷
参考答案与试题解析
一.选择题(共12小题,满分60分,每小题5分)
1.设z= ,则|z|=( )
A. B.2C. D.3
【分析】利用商的模等于模的商求解.
19.(12分)如图,在四棱锥P﹣ABCD中,四边形ABCD是直角梯形,DC=2AD=2AB=2∠DAB=∠ADC=90°,PB= ,△PDC为等边三角形.
(1)证明:PD⊥BC;
(2)求点B到平面PCD的距离.
20.(12分)已知函数f(x)=aex﹣sinx+1其中a∈R,e为自然对数的底数.
2020年高考第一次模拟考试数学(文科)试卷(含答案)

2020年高考第一次模拟考试数学(文科)试卷一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|-1≤x ≤5},B={x|x 2-2x >3},则A ∩B=A.{x|3<x ≤5}B.{x|-l ≤x ≤5} C .{x|x<-l 或x>3} D .R2.已知复数z 满足i(3+z )=1+i ,则z 的虚部为A .-iB .iC .-1D .13.已知函数⎩⎨⎧>≤-=1,ln ,1,)1()(3x x x x x f 若f(a))>f(b),则下列不等关系正确的是 A .111122+<+b a B .33b a > C .ab a <2 D .)1ln()1ln(22+>+b a 4.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数( PMl)如下图所示,则下列结论中错误的是A .12个月的PMI 值不低于50%的频率为31 B .12个月的PMI 值的平均值低于50% C .12个月的PMI 值的众数为49. 4% D .12个月的PMI 值的中位数为50.3% 5.已知函数)42sin()(π-=x x f 的图象向左平移ϕ)0(>ϕ个单位后得到函数)42sin()(π+=x x g 的图象,则ϕ 的最小值为 A .4π B .83π C .2π D .85π 6.已知数列{a n }满足a n+1-a n =2,且a 1,a 3,a 4成等比数列,若{a n }的前n 项和为S n ,则S n 的最小值为A. - 10 B .- 14 C .-18 D .-207.已知32)2019cos(-=+a π,则=-)22sin(a π A .97 B .95 C .-95 D .-97 8.已知双曲线C: 2222by a x -=l(a>0,b>0)的右焦点为F ,过右顶点A 且与x 轴垂直的直线交双曲线的一条渐近线于M 点,MF 的中点恰好在双曲线C 上则C 的离心率为 A .5-1 B .2 C .3 D .59.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为A .S> -1?B .S<0?C .S<-l?D .S >0?10.过抛物线E:x 2 =2py(p>0)的焦点F 作两条相互垂直的弦AB ,CD ,没P 为抛物线上的一动点,Q(1,2).若41||1||1=+CD AB ,则|PF|+|PQ|的最小值是 A .1 B .2 C .3 D .411.已知函数f(x)=x 3 -ax -1,以下结论正确的个数为①当a=0时,函数f(x)的图象的对称中心为(0,一1);②当a ≥3时,函数f(x)在(-1,1)上为单调递减函数;③若函数f(x)在(-1,1)上不单凋,则0<a<3;④当n =12时f(x)在[-4,5]上的最大值为15.A .1B .2C .3D .412.已知四棱锥E-ABCD ,底面ABCD 是边长为1的正方形,ED=1,平面ECD 上平面ABCD ,当点C 到平面ABE 的距离最大时,该四棱锥的体积为A. 62 B .31 C .32 D.1 二、填空题:本题共4小题.每小题5分.共20分.13.已知向量a =(l ,1),|b |=3,(2a +b )•a =2,则|a -b |=14.为激发学生团结协作、敢于拼搏、不言放弃的精神,某校高三5个班进行班级间的拔河比赛.每两班之间只比赛l 场,目前(一)班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场.则目前(五)班已经参加比赛的场次为____. 15.将底面直径为4,高为3的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为16.如图,已知圆内接四边形ABCD ,其中AB =6,BC =3,CD =4,AD =5,则=+BA sin 2sin 2 .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17 - 21题为必考题,每个试题考生都必须作答,第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{a n }的各项都为正数,a 1 =2,且.1211+=++n n n n a a a a。
2020年广东一模文科数学(试题和答案)

C. (一~ , - 1)υ(1 , ?)D( -7 , 一 l)U (0 , 1)
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13. 设函数 f( 对 = mx2 ln x , 若曲线 y = f(x) 在点 (e ,J( e) )处的切线与直线 ex + y +
2020 = 0 平行,则 m =
9. 执行右边的程序框图,右 ....知 ...比出 A 的值为 一70一 ,则输入 i 的值为
169 A. 4 B. 5 C. 6 D. 7
10.
已知
0 是坐标原点,双曲线 C: 毛一毛=
α '- b'-
1 (α
>O , b
>0)
的右
焦点为 F , 过点 F 的直线 l 与 z 轴垂直,且交双曲线 C 于 A , B
14 .
若 χ , y 满足约束条件
~r
lI
x-y .N
J
lI
~l ~~'
则
z
=
2x
+ y 的最大值为
I Ix I ~二 2 ,
15. 如图,已知 三棱锥 P -ABC 满足 PA = PB = PC = AB = 2 ,
AC j_ BC , 则该三棱锥外接球的体积为
,,,,,,,,,"
/A
,、 -
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只
有一项是符合题目要求的。
1.已知集合 A , B 均为全集 u = 1 1 , 2 , 3 , 4 , 5 , 6 , 7~ 的子集,集合 A = 11 ,2 ,3 ,4 ~ ,则