2019年高考广东文科数学真题B卷(word版)

合集下载

(精校版)2019年广东文数高考试题文档版(含答案解析)

(精校版)2019年广东文数高考试题文档版(含答案解析)

绝密★启用前2019年普通高等学校招生全国统一考试(广东卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。

高考文科数学试卷广东卷

高考文科数学试卷广东卷

2019年普通高等学校招生全国统一考试广东卷数学文科一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的;1已知集合{}{}5,3,2,0,4,3,2==N M ,则N MA. {}2,0B. {}3,2C. {}4,3D. {}5,3(2)已知复数z 满足25)43(=-z i ,则=zA.i 43--B. i 43+-C. i 43-D. i 43+(3)已知向量)1,3(),2,1(==b a ,则=-a bA. )1,2(-B. )1,2(-C. )0,2(D. )3,4((4)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于A. 7B. 8C. 10D. 115.下列函数为奇函数的是 A.x x 212- B.x x sin 3 C.1cos 2+x D.x x 22+ 6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为 .40 C7.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是 “B A sin sin ≤”的A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的 A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真.2 C二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.一必做题11—13题11.曲线53x y e =-+在点()0,2-处的切线方程为________.12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.(二)选做题14-15题,考生只能从中选做一题14.坐标系与参数方程选做题在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.几何证明选讲选做题如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF 三.解答题:本大题共6小题,满分80分16.本小题满分12分已知函数()sin(),3f x A x x R π=+∈,且5()122f π= (1) 求A 的值;(2) 若()()(0,)2f f πθθθ--=∈,求()6f πθ- 17本小题满分13分某车间20名工人年龄数据如下表:(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3) 求这20名工人年龄的方差.18本小题满分13分如图2,四边形ABCD 为矩形,PD ⊥平面ABCD,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E,F 分别在线段PD,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF(2) 求三棱锥M-CDE 的体积.19.本小题满分14分设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222.(1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a 20本小题满分14分 已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35; (1)求椭圆C 的标准方程; (2)若动点()00,y x P 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.21.本小题满分14分已知函数321()1()3f x x x ax a R =+++∈ (1) 求函数()f x 的单调区间; (2) 当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()()2f x f =。

2019广东高考数学文科试卷及答案(WORD版)

2019广东高考数学文科试卷及答案(WORD版)

D . 非充分非必要条件
答案 : A
提示 :由正弦定理知 a
b , a, b,sin A,sin B都为正数 , a b sin A sin B.
sin A sin B
8. 若实数 k满足 0 k 5,则曲线 x2 y 2 1与曲线 x2
y2 1的 ( ).
16 5 k
16 k 5
A. 实半轴长相等
2019 年普通高等学校招生全国统一考试 ( 广东卷 )
一、选择题
1. 已知集合 M
数学 ( 文科 )
2,3, 4 , N 0, 2,3,5 , 则 M N ( ).
A. 0, 2
B. 2,3
C. 3, 4
答案 :B
2. 已知复数 z满足 (3 4i ) z 25,则 z ( ).
D. 3,5
A. 3 4i
② z1 ( z2 z3) (z1 z2) ( z1 z3) ;
③ ( z1 z2 ) z3
则真
A.1
B.2
答案 : B
z1 ( z2 z3);
C.3
D.4
④ z1 z2 z2 z1 ;
提示 : ① ( z1 z2)* z3=( z1 z2 )z3=( z1 z3) ( z2 z3 )=( z1* z3)+( z2 * z3), 故①是真命题 ; ② z1* ( z2 z3) z1(z2 z3 ) z1( z2 z3) (z1 z2) ( z1 z3 ) ( z1* z2) +(z1* z3 ), ②对;
二、填空题 ( 一 ) 必做题( 11-13 )
11. 曲线 y 5ex 3在点 (0,
2)处的切线方程为
_______.
答案 : 5x y 2 0

2019广东高考文科数学试卷及答案解析【word版】

2019广东高考文科数学试卷及答案解析【word版】

2019年普通高等学校招生全国统一考试(广东卷)数学 (文科) 一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A i B iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.x x212- B.x x sin 3 C.1cos 2+x D.xx 22+答案:A111:()2,(),()22(),222(), A.x x xx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.二、填空题(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为 2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长三、解答题16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且532()122f π=(1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 333sin ,(0,),32f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴--=+--+=+--+-===∴=∈解由得又6cos 36()3sin()3sin()3cos 3 6.66323f θππππθθθθ∴=∴-=-+=-==⨯=17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为 (2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 000:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即{}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案22220022222520.:1(0)(5,0),.3(1);(2)(,),,.55:(1)5,,3,954,31.94(2),,4x y C a b a b C P x y C P C P c c e a b a c a a x y C x y +=>>====∴==-=-=∴+=已知椭圆的一个焦点为离心率为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x x x y y k x x y k x k y kx x y kx k y kx y kx k y kx -±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即22222000001220220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.k y x k x y k y k k x x y P x y +=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a R f x a x f x f =+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,14221487214872148:,0,,8447+2148,01,7214x x a x f x f x x a a a a a a ax x a +++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<<<-若存在使得必须在上有解方程的两根为只能是依题意即000002574811,492148121,,12127+2148155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a a a x a a x f x f a x f x <∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,110,()3,111,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,11),(11,1),5111),()(0,),(,1),422a a i a a f x x f x f ii a f x a a a f x <∴-+->≤--+-≤∈-<<-+--+-=-解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,111,,(11,1),4212525255(1)()0,0,,;222412124513)0,011,,(0,11),421775(0)()0,0,,2224124x a a x x a a f f a a x a a x x a a f f a -<<-<-+-<∈-+-->+>>--<<--<<<-+-<∈-+-->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭时存在满足题意的综上所述当时存在唯一的满足当时不存在使。

2019年高考文科数学试卷(广东卷)

2019年高考文科数学试卷(广东卷)

2019年普通高等学校招生全国统一考试(广东卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( )A. {}2,0B. {}3,2C. {}4,3D. {}5,3(2)已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+(3)已知向量)1,3(),2,1(==b a ,则=-a b ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4((4)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )A. 7B. 8C. 10D. 115.下列函数为奇函数的是( ) A.x x 212- B.x x sin 3 C.1cos 2+x D.x x 22+6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为() A.50 B.40 C.25 D.207.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是 “B A sin sin ≤”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个 ①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真A.1B.2C.3D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11—13题)11.曲线53xy e =-+在点()0,2-处的切线方程为________. 12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF三.解答题:本大题共6小题,满分80分16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且532()122f π= (1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ- 17(本小题满分13分)某车间20名工人年龄数据如下表:(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3) 求这20名工人年龄的方差.18(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF(2) 求三棱锥M-CDE 的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222. (1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a 20(本小题满分14分) 已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。

2019年广东高考文科数学真题及答案

2019年广东高考文科数学真题及答案

2019年广东高考文科数学真题及答案注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是51-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos x xx x++在[-π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。

2019年高考文科数学试卷(广东卷)

2019年高考文科数学试卷(广东卷)

2019 年普通高等学校招生全国统一考试(广东卷)数学(文科)一.选择题:本大题共10 小题,每小题 5 分,共50 分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M 2,3, 4 ,N0,2,3, 5, 则M N ()A. 0,2B. 2,3C. 3,4D. 3,5(2)已知复数z满足(3 4i) z 25,则z ()A. 3 4iB. 3 4iC. 3 4iD. 3 4i(3)已知向量a (1,2), b ( 3,1) ,则b a ()A. ( 2 ,1)B. (2, 1)C. (2,0)D. (4 ,3)x 2y8(4)若变量x, y 满足约束条件则z 2x y 的最大值等于()0 x 40 y 3A. 7B. 8C. 10D. 115. 下列函数为奇函数的是()A. x 3 C. 2cosx 1 D. x2 2 x12 B. x sin xx26. 为了解1000 名学生的学习情况,采用系统抽样的方法,从中抽取容量为40 的样本,则分段的间隔为()A.50B.40C.25D.207. 在ABC 中,角A,B,C 所对应的边分别为a, b, c, 则“a b ”是“sin A sin B ”的()A. 充分必要条件B. 充分非必要条件C.必要非充分条件D. 非充分非必要条件8. 若实数k 满足0 k 5,则曲线2 2x y16 5 k1与曲线2 2x y16 k 51 的()A. 实半轴长相等B. 虚半轴长相等C. 离心率相等D. 焦距相等9. 若空间中四条两两不同的直线l1,l2 ,l3,l4 ,满足l1 l2 ,l2∥l3,l3 l4, 则下列结论一定正确的是()A.l l B. l1∥l4 C. l1 与l4 既不垂直也不平行 D. l1与l4 的位置关系不确定1 410. 对任意复数w1,w2 ,定义 1 2 1 2,其中 2 是 2 的共轭复数,对任意复数z1,z2 ,z3 有如下四个①(z1 z2) z3 ( z1 z3) (z2 z3); ②z1 ( z2 z3) (z1 z2) (z1 z3) ;③(z z ) z z (z z ); ④z1 z2 z2 z1 ;1 2 3 1 2 3则真A.1B.2C.3D.4二、填空题:本大题共 5 小题,考生作答 4 小题,每小题 5 分,满分20 分 .(一)必做题(11—13 题)x11.曲线y 5e 3在点0, 2 处的切线方程为________.12.从字母a,b,c, d,e中任取两个不同字母,则取字母a的概率为________.13.等比数列a n 的各项均为正数,且a1a5 4,则log a +log a +log a +log a +log a =________.2 1 2 2 23 24 2 5(二)选做题(14-15 题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线 2C 与C2 的方程分别为 2 cos sin1与cos 1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线________ C与C2 的直角坐标为115.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且EB 2AE , AC 与DE 交于点 FCDF的周长则______AEF 的周长三. 解答题:本大题共 6 小题,满分80 分16.( 本小题满分12 分)已知函数( ) sin( ),f x A x x R ,且3 f5 3 2 ( )12 2(1)求A 的值;(2)若( ) ( ) 3, (0, )f f ,求 f ( )2 617(本小题满分13 分)某车间20 名工人年龄数据如下表:(1)求这20 名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20 名工人年龄的茎叶图;(3)求这20 名工人年龄的方差.18(本小题满分13 分)如图2,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2,作如图 3 折叠,折痕EF∥DC.其中点E,F 分别在线段PD,PC上,沿EF 折叠后点P在线段AD上的点记为M,并且MF⊥CF.(1)证明:CF⊥平面MDF(2)求三棱锥M-CDE的体积.17.(本小题满分14 分)设各项均为正数的数列a n 的前n项和为S n ,且S n 满足2 2 2 .S n n n 3 S n 3 n n 0,n N(1) 求a的值;1(2) 求数列a n 的通项公式;1 1 1 1(3) 证明:对一切正整数n,有.a1 a 1 a a 1 a n a n 1 31 2 220(本小题满分14 分)2 2x y已知椭圆 C : 1 0 的一个焦点为5,0 ,离心率为a b2 2a b5 3。

年高考文科数学试卷广东卷

年高考文科数学试卷广东卷

2019年普通高等学校招生全国统一考试(广东卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M I ( )A. {}2,0B. {}3,2C. {}4,3D. {}5,3(2)已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+(3)已知向量)1,3(),2,1(==b a ρρ,则=-a b ρρ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4((4)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )A. 7B. 8C. 10D. 115.下列函数为奇函数的是( ) A.x x 212- B.x x sin 3 C.1cos 2+x D.x x 22+6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为() A.50 B.40 C.25 D.207.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是 “B A sin sin ≤”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个 ①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真A.1B.2C.3D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11—13题)11.曲线53xy e =-+在点()0,2-处的切线方程为________. 12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF三.解答题:本大题共6小题,满分80分16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且532()122f π= (1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ- 17(本小题满分13分)某车间20名工人年龄数据如下表:(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3) 求这20名工人年龄的方差.18(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF(2) 求三棱锥M-CDE 的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222. (1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a Λ 20(本小题满分14分) 已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年普通高等学校招生全国统一考试(广东卷)B
数学(文科)
本试卷共4页,21题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:球的体积,其中R为球的半径。

锥体的体积公式为,其中S为锥体的底面积,h为锥体的高。

一组数据x1,x2,…,x n的标准差,其中x 表示这组数据的平均数。

一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的
1 设i为虚数单位,则复数43i i
+
=
A -4-3i
B -4+3i
C 4+3i
D 4-3i
2 设集合U={1,2,3,4,5,6},M={1,3,5} 则CuM=
A {2,4,6}
B {1,3,5}
C {1,2,4}
D .U
3 若向量AB=(1,2),BC=(3,4),则AC=
A (4,6)
B (-4,-6)
C (-2,-2)
D (2,2)
4 下列函数为偶函数的是
A y=sinx
B y=3x
C y=x e
D y=ln21
x+
5.已知变量x,y满足约束条件x +y≤1,则z =x +2y的最小值为 x–y≤1
x +1≥0
A.3
B.1
C.-5
D.-6
6.在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=
A. 43
B. 23
C. 3
D.
3 2
7.某几何体的三视图如图1所示,它的体积为
A.72π
B.48π
C.30π
D.24π
8.在平面直角坐标系xOy中,直线3x+4y-5=0与圆x²+y²=4相交于A、B两点,则弦AB的长等于
A.33
B.23
C.3
D.1
9.执行如图2所示的程序框图,若输入n的值为6,则输出s的值为
A.105
B.16
C.15
D.1
10.对任意两个非零的平面向量α和β,定义。

若两个非零的平面向量a,b满足a与b的夹角,且a·b和b·a都在集合中,则
A.5
2
B.
3
2
C.1
D.
1
2
二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

(一)必做题(11~13题)
11.函数的定义域为__________。

12.若等比数列{a n}满足a2a4=,则
13.由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为__________。

(从小到大排列)
(二)选做题(14-15题,考生只能从中选做一题)
14,(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别
为和,则曲线C1与C2的交点坐标为_______。

15.(几何证明选讲选做题)如图3所示,直线PB与圆O想切于点B,D是弦AC上的点,∠PBA=∠DBA,若AD=m,AC=n,则AB=_________。

三、解答题:本大题共6小题,满分80分。

解答须写出文字说明、证明过程和演算步骤。

16.(本小题满分12分)
已知函数,x∈R,且。

(1)求A的值;
(2)设,,,求cos(α+β)的值。

(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数。

17(本小题满分13分)
某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100]。

(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
18.(本小题满分13分)
如图5所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,
F是DC上的点且DF=1
2
AB,PH为△PAD边上的高。

(1)证明:PH⊥平面ABCD;
(2)若PH=1,AD=2,FC=1,求三棱锥E-BCF的体积;
(3)证明:EF⊥平面PAB。

19. (本小题满分14分)
设数列{a n}的前n项和为S n,数列{S n}的前n项和为T n,满足T n=2S n-n2,n∈N﹡。

(1)求a1的值;
(2)求数列{a n}的通项公式。

20.(本小题满分14分)
在平面直角坐标系xoy中,已知椭圆C1:
22
22
1(0)
x y
a b
a b
+=>>的左焦点为F1(-1,0),且
点P(0,1)在C1上。

(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程。

21.(本小题满分14分)
设0<a<1,集合
(1)求集合D(用区间表示)
(2)求函数在D内的极值点。

相关文档
最新文档