2018学年高二数学下学期周练8(1)

合集下载

顺义区一中2018-2019学年下学期高二期中数学模拟题(1)

顺义区一中2018-2019学年下学期高二期中数学模拟题(1)

顺义区一中2018-2019学年下学期高二期中数学模拟题一、选择题1. 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A .30B .50C .75D .1502.为得到函数的图象,只需将函数y=sin2x 的图象( )A.向左平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位D.向右平移个长度单位3. 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为 1的半圆,则其侧视图的面积是( )A. B. C .1 D.4. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .565. 已知x >1,则函数的最小值为( )A .4B .3C .2D .1 6. 已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( ) A .0B .1C .2D .37. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .6 8. 已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为( ) A .[﹣9,+∞) B .[0,+∞) C .(﹣9,1)D .[﹣9,1)班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2项的系数是( ) A .﹣13 B .6 C .79 D .3710.已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →|为( )A .1 B.43C.53D .2 11.已知A 、B 、CAC BC ⊥,30ABC ∠=,球心O 到平面ABC 的距离为1,点M 是线段BC 的中点,过点M 作球O 的截面,则截面面积的最小值为( ) AB .34πCD .3π12.设命题p :函数y=sin (2x+)的图象向左平移个单位长度得到的曲线关于y 轴对称;命题q :函数y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( )A .p 为假B .¬q 为真C .p ∨q 为真D .p ∧q 为假二、填空题13.已知点G 是△ABC 的重心,若∠A=120°,•=﹣2,则||的最小值是 . 14.△ABC 中,,BC=3,,则∠C=.15.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .16.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( ) A .2 B .3 C .2 D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力. 17.= .18.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是 _______元.三、解答题19.若{a n }的前n 项和为S n ,点(n ,S n )均在函数y=的图象上.(1)求数列{a n }的通项公式; (2)设,T n 是数列{b n }的前n 项和,求:使得对所有n ∈N *都成立的最大正整数m .AD OCB20.(本小题满分12分)如图长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=4,D1F=8,过点E,F,C的平面α与长方体的面相交,交线围成一个四边形.(1)在图中画出这个四边形(不必说明画法和理由);(2)求平面α将长方体分成的两部分体积之比.21.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.22.已知等差数列{a n},等比数列{b n}满足:a1=b1=1,a2=b2,2a3﹣b3=1.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记c n=a n b n,求数列{c n}的前n项和S n.23.若点(p ,q ),在|p|≤3,|q|≤3中按均匀分布出现.(1)点M (x ,y )横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M (x ,y )落在上述区域的概率?(2)试求方程x 2+2px ﹣q 2+1=0有两个实数根的概率.24.如图,在四边形ABCD 中,,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=, 四 边形绕着直线AD 旋转一周.(1)求所成的封闭几何体的表面积; (2)求所成的封闭几何体的体积.顺义区一中2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1.【答案】B【解析】解:该几何体是四棱锥,其底面面积S=5×6=30,高h=5,则其体积V=S×h=30×5=50.故选B.2.【答案】A【解析】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.3.【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,∴半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B.【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.4.【答案】D【解析】考点:1.斜率;2.两点间距离.5.【答案】B【解析】解:∵x >1∴x ﹣1>0由基本不等式可得,当且仅当即x ﹣1=1时,x=2时取等号“=”故选B6. 【答案】C【解析】解:命题“若x 2>0,则x >0”的逆命题是“若x >0,则x 2>0”,是真命题; 否命题是“若x 2≤0,则x ≤0”,是真命题; 逆否命题是“若x ≤0,则x 2≤0”,是假命题;综上,以上3个命题中真命题的个数是2. 故选:C7. 【答案】B 【解析】试题分析:设{}n a 的前三项为123,,a a a ,则由等差数列的性质,可得1322a a a +=,所以12323a a a a ++=,解得24a =,由题意得1313812a a a a +=⎧⎨=⎩,解得1326a a =⎧⎨=⎩或1362a a =⎧⎨=⎩,因为{}n a 是递增的等差数列,所以132,6a a ==,故选B .考点:等差数列的性质.8. 【答案】D【解析】解:函数f (x )=lg (1﹣x )在(﹣∞,1)上递减, 由于函数的值域为(﹣∞,1], 则lg (1﹣x )≤1, 则有0<1﹣x ≤10, 解得,﹣9≤x <1. 则定义域为[﹣9,1), 故选D .【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题.9. 【答案】 D【解析】二项式系数的性质. 【专题】二项式定理.【分析】由含x 一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m 、n 为正整数,可得m=3、n=2,从而求得含x 2项的系数.【解答】解:由于多项式(1﹣2x )m +(1﹣5x )n中含x 一次项的系数为(﹣2)+(﹣5)=﹣16,可得2m+5n=16 ①.再根据m 、n 为正整数,可得m=3、n=2,故含x 2项的系数是(﹣2)2+(﹣5)2=37,故选:D .【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题. 10.【答案】【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →,∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),∴⎩⎪⎨⎪⎧x =6-2x ,y -1=4-2y 即x =2,y =53,∴CD →=(2,53)-(2,0)=(0,53),∴|CD →|=02+(53)2=53,故选C.11.【答案】B【解析】∵AC BC ⊥,∴90ACB ∠=, ∴圆心O 在平面的射影为AB D 的中点,∴112AB ==,∴2AB =. ∴cos303BC AC ==当线段BC 为截面圆的直径时,面积最小,∴截面面积的最小值为23()24ππ⨯=. 12.【答案】C【解析】解:函数y=sin (2x+)的图象向左平移个单位长度得到y=sin (2x+)的图象,当x=0时,y=sin =,不是最值,故函数图象不关于y 轴对称,故命题p 为假命题;函数y=|2x﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数.故命题q 为假命题; 则¬q 为真命题; p ∨q 为假命题; p ∧q 为假命题, 故只有C 判断错误, 故选:C二、填空题13.【答案】.【解析】解:∵∠A=120°,•=﹣2,∴||•||=4,又∵点G是△ABC的重心,∴||=|+|==≥=故答案为:【点评】本题考查的知识点是向量的模,三角形的重心,基本不等式,其中利用基本不等式求出|+|的取值范围是解答本题的关键,另外根据点G是△ABC的重心,得到=(+),也是解答本题的关键.14.【答案】【解析】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C为三角形的内角,且c<a,∴0<∠C<,则∠C=.故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C的范围.15.【答案】平行.【解析】解:∵AB1∥C1D,AD1∥BC1,AB1⊂平面AB1D1,AD1⊂平面AB1D1,AB1∩AD1=AC1D⊂平面BC1D,BC1⊂平面BC1D,C1D∩BC1=C1由面面平行的判定理我们易得平面AB1D1∥平面BC1D故答案为:平行.【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.16.【答案】A【解析】17.【答案】2.【解析】解:=2+lg100﹣2=2+2﹣2=2,故答案为:2.【点评】本题考查了对数的运算性质,属于基础题.18.【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。

惠来县高中2018-2019学年高二下学期第一次月考试卷数学

惠来县高中2018-2019学年高二下学期第一次月考试卷数学

惠来县高中2018-2019学年高二下学期第一次月考试卷数学一、选择题1. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .92. 过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则线段|AF|=( )A .1B .2C .3D .43. 某一简单几何体的三视图如所示,该几何体的外接球的表面积是( )A .13πB .16πC .25πD .27π4. 直径为6的球的表面积和体积分别是( )A .144,144ππB .144,36ππC .36,144ππD .36,36ππ5. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( )A .B .12C .12- D .2-6. 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,267. 12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-28. 已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )A .﹣1<a <2B .﹣3<a <6C .a <﹣3或a >6D .a <﹣1或a >29.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是( ) A.B.C .D.10.下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________④{}0∅⊆,正确的有( )个A.个B.个C.个D.个11.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A .B .C .D .12.“p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要二、填空题13.在中,角、、所对应的边分别为、、,若,则_________14.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .15.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .16. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <; ②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <.其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.17.(文科)与直线10x +-=垂直的直线的倾斜角为___________.18.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈, 则2λμ-的取值范围是___________.三、解答题19.已知m∈R,函数f(x)=(x2+mx+m)e x.(1)若函数f(x)没有零点,求实数m的取值范围;(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;(3)当m=0时,求证:f(x)≥x2+x3.20.在平面直角坐标系xOy中,点P(x,y)满足=3,其中=(2x+3,y),=(2x﹣﹣3,3y).(1)求点P的轨迹方程;(2)过点F(0,1)的直线l交点P的轨迹于A,B两点,若|AB|=,求直线l的方程.21.如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.(Ⅰ)证明:平面ADC1B1⊥平面A1BE;(Ⅱ)证明:B1F∥平面A1BE;(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.22.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BDCE ;(2)若AB 是圆的直径,4AB =,1DE =,求AD 长23.已知函数()()xf x x k e =-(k R ∈). (1)求()f x 的单调区间和极值; (2)求()f x 在[]1,2x ∈上的最小值.(3)设()()'()g x f x f x =+,若对35,22k ⎡⎤∀∈⎢⎥⎣⎦及[]0,1x ∀∈有()g x λ≥恒成立,求实数λ的取值范围.24.化简:(1).(2)+.25.已知椭圆C:+=1(a>b>0)与双曲线﹣y2=1的离心率互为倒数,且直线x﹣y﹣2=0经过椭圆的右顶点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求△OMN 面积的取值范围.26.已知过点P(0,2)的直线l与抛物线C:y2=4x交于A、B两点,O为坐标原点.(1)若以AB为直径的圆经过原点O,求直线l的方程;(2)若线段AB的中垂线交x轴于点Q,求△POQ面积的取值范围.惠来县高中2018-2019学年高二下学期第一次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f(x)=sinωx+cosωx=2sin(ωx+).再根据f()=2sin(+)=﹣2,可得+=2kπ+,k∈Z,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7,故选:C.【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.2.【答案】A【解析】解:∵x2=2y,∴y′=x,∴抛物线C在点B处的切线斜率为1,∴B(1,),∵x2=2y的焦点F(0,),准线方程为y=﹣,∴直线l的方程为y=,∴|AF|=1.故选:A.【点评】本题考查抛物线的简单性质,考查导数知识,正确运用抛物线的定义是关键.3.【答案】C【解析】解:几何体为底面为正方形的长方体,底面对角线为4,高为3,∴长方体底面边长为2.则长方体外接球半径为r,则2r==5.∴r=.∴长方体外接球的表面积S=4πr2=25π.故选C.【点评】本题考查了长方体的三视图,长方体与外接球的关系,属于中档题.4.【答案】D【解析】考点:球的表面积和体积. 5. 【答案】D 【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程2043x ax x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.考点:不等式与方程的关系. 6. 【答案】C【解析】解:从30件产品中随机抽取6件进行检验, 采用系统抽样的间隔为30÷6=5, 只有选项C 中编号间隔为5, 故选:C .7. 【答案】B 【解析】考点:向量共线定理.8. 【答案】C【解析】解:由于f (x )=x 3+ax 2+(a+6)x ﹣1,有f ′(x )=3x 2+2ax+(a+6).若f (x )有极大值和极小值,则△=4a 2﹣12(a+6)>0,从而有a >6或a <﹣3, 故选:C .【点评】本题主要考查函数在某点取得极值的条件.属基础题.9. 【答案】 A【解析】解:∵椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,∴圆的半径,由,得2c >b ,再平方,4c 2>b 2,在椭圆中,a 2=b 2+c 2<5c 2,∴;由,得b+2c <2a ,再平方,b 2+4c 2+4bc <4a 2, ∴3c 2+4bc <3a 2, ∴4bc <3b 2,∴4c <3b ,∴16c 2<9b 2, ∴16c 2<9a 2﹣9c 2, ∴9a 2>25c 2,∴,∴.综上所述,.故选A .10.【答案】C 【解析】试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系. 11.【答案】B【解析】解:将函数的图象上所有的点向左平移个单位长度,得到函数,再把图象上各点的横坐标扩大到原来的2倍,得到函数.故选B .【点评】本题是基础题,考查函数的图象的平移与图象的伸缩变换,注意先平移后伸缩时,初相不变化,考查计算能力.12.【答案】B 【解析】试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用.二、填空题13.【答案】【解析】 因为,所以,所以 ,所以答案:14.【答案】 (x ﹣1)2+(y+1)2=5 .【解析】解:设所求圆的圆心为(a ,b ),半径为r , ∵点A (2,1)关于直线x+y=0的对称点A ′仍在这个圆上, ∴圆心(a ,b )在直线x+y=0上, ∴a+b=0,①且(2﹣a )2+(1﹣b )2=r 2;②又直线x ﹣y+1=0截圆所得的弦长为,且圆心(a ,b )到直线x ﹣y+1=0的距离为d==,根据垂径定理得:r 2﹣d 2=,即r 2﹣()2=③;由方程①②③组成方程组,解得;∴所求圆的方程为(x ﹣1)2+(y+1)2=5. 故答案为:(x ﹣1)2+(y+1)2=5.15.【答案】 .【解析】解:根据点A ,B 的极坐标分别是(2,),(3,),可得A 、B 的直角坐标分别是(3,)、(﹣,),故AB 的斜率为﹣,故直线AB 的方程为 y ﹣=﹣(x ﹣3),即x+3y ﹣12=0,所以O 点到直线AB 的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.16.【答案】①②④ 【解析】17.【答案】3π 【解析】3π. 考点:直线方程与倾斜角.18.【答案】[]1,1- 【解析】考点:向量运算.【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.三、解答题19.【答案】【解析】解:(1)令f(x)=0,得(x2+mx+m)e x=0,所以x2+mx+m=0.因为函数f(x)没有零点,所以△=m2﹣4m<0,所以0<m<4.(2)f'(x)=(2x+m)e x+(x2+mx+m)e x=(x+2)(x+m)e x,令f'(x)=0,得x=﹣2,或x=﹣m,当m>2时,﹣m<﹣2.列出下表:x (﹣∞,﹣m)﹣m (﹣m,﹣2)﹣2 (﹣2,+∞)f'(x)+0 ﹣0 +f(x)↗me﹣m↘(4﹣m)e﹣2↗当x=﹣m时,f(x)取得极大值me﹣m.当m=2时,f'(x)=(x+2)2e x≥0,f(x)在R上为增函数,所以f(x)无极大值.当m<2时,﹣m>﹣2.列出下表:x (﹣∞,﹣2)﹣2 (﹣2,﹣m)﹣m (﹣m,+∞)f'(x)+0 ﹣0 +f(x)↗(4﹣m)e﹣2↘me﹣m↗当x=﹣2时,f(x)取得极大值(4﹣m)e﹣2,所以(3)当m=0时,f(x)=x2e x,令ϕ(x)=e x﹣1﹣x,则ϕ'(x)=e x﹣1,当x>0时,φ'(x)>0,φ(x)为增函数;当x<0时,φ'(x)<0,φ(x)为减函数,所以当x=0时,φ(x)取得最小值0.所以φ(x)≥φ(0)=0,e x﹣1﹣x≥0,所以e x≥1+x,因此x2e x≥x2+x3,即f(x)≥x2+x3.【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键.20.【答案】【解析】解:(1)由题意,=(2x+3)(2x﹣3)+3y2=3,可化为4x2+3y2=12,即:;∴点P的轨迹方程为;(2)①当直线l的斜率不存在时,|AB|=4,不合要求,舍去;②当直线l的斜率存在时,设方程为y=kx+1,A(x1,y1),B(x2,y2),代入椭圆方程可得:(4+3k2)x2+6kx﹣9=0,∴x1+x2=,x1x2=,∴|AB|=•|x1﹣x2|==,∴k=±,∴直线l的方程y=±x+1.【点评】本题考查了与直线有关的动点的轨迹方程,考查了直线与圆锥曲线的关系,考查了向量的坐标运算,训练了利用数量积,属于中档题.21.【答案】【解析】(Ⅰ)证明:∵ABCD﹣A1B1C1D1为正方体,∴B1C1⊥平面ABB1A1;∵A1B⊂平面ABB1A1,∴B1C1⊥A1B.又∵A1B⊥AB1,B1C1∩AB1=B1,∴A1B⊥平面ADC1B1,∵A1B⊂平面A1BE,∴平面ADC1B1⊥平面A1BE;(Ⅱ)证明:连接EF ,EF ∥,且EF=,设AB 1∩A 1B=O ,则B 1O ∥C 1D ,且,∴EF ∥B 1O ,且EF=B 1O , ∴四边形B 1OEF 为平行四边形. ∴B 1F ∥OE .又∵B 1F ⊄平面A 1BE ,OE ⊂平面A 1BE , ∴B 1F ∥平面A 1BE ,(Ⅲ)解:====.22.【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.∴DE DC BC BA =BC AB=,则24BC AB DE =⋅=,∴2BC =. ∴在Rt ABC ∆中,12BC AB =,∴30BAC ∠=︒,∴60BAD ∠=︒,∴在Rt ABD ∆中,30ABD ∠=︒,所以122AD AB ==.23.【答案】(1)()f x 的单调递增区间为(1,)k -+∞,单调递减区间为(,1)k -∞-,1()(1)k f x f k e -=-=-极小值,无极大值;(2)2k ≤时()(1)(1)f x f k e ==-最小值,23k <<时1()(1)k f x f k e -=-=-最小值,3k ≥时,2()(2)(2)f x f k e ==-最小值;(3)2e λ≤-.【解析】(2)当11k -≤,即2k ≤时,()f x 在[]1,2上递增,∴()(1)(1)f x f k e ==-最小值; 当12k -≥,即3k ≥时,()f x 在[]1,2上递减,∴2()(2)(2)f x f k e ==-最小值;当112k <-<,即23k <<时,()f x 在[]1,1k -上递减,在[]1,2k -上递增, ∴1()(1)k f x f k e -=-=-最小值.(3)()(221)xg x x k e =-+,∴'()(223)xg x x k e =-+,由'()0g x =,得32x k =-, 当32x k <-时,'()0g x <; 当32x k >-时,'()0g x >,∴()g x 在3(,)2k -∞-上递减,在3(,)2k -+∞递增,故323()()22k g x g k e -=-=-最小值,又∵35,22k ⎡⎤∈⎢⎥⎣⎦,∴[]30,12k -∈,∴当[]0,1x ∈时,323()()22k g x g k e -=-=-最小值,∴()g x λ≥对[]0,1x ∀∈恒成立等价于32()2k g x e λ-=-≥最小值;又32()2k g x e λ-=-≥最小值对35,22k ⎡⎤∀∈⎢⎥⎣⎦恒成立.∴32min (2)k ek --≥,故2e λ≤-.1考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用. 【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的.24.【答案】【解析】解(1)原式=======﹣1.(2)∵tan(﹣α)=﹣tanα,sin(﹣α)=cosα,cos(α﹣π)=cos(π﹣α)=﹣sinα,tan(π+α)=tanα,∴原式=+=+==﹣=﹣1.【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数化简求值,考查计算能力.25.【答案】【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,又∵直线x﹣y﹣2=0经过椭圆的右顶点,∴右顶点为(2,0),即a=2,c=,b=1,…∴椭圆方程为:.…(Ⅱ)由题意可设直线的方程为:y=kx+m•(k≠0,m≠0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m2﹣1)=0…则,于是…又直线OM、MN、ON的斜率依次成等比数列.∴…由m≠0得:又由△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,得:0<m2<2显然m2≠1(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾)…设原点O到直线的距离为d,则∴故由m的取值范围可得△OMN面积的取值范围为(0,1)…【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.26.【答案】【解析】解:(1)设直线AB的方程为y=kx+2(k≠0),设A(x1,y1),B(x2,y2),由,得k2x2+(4k﹣4)x+4=0,则由△=(4k﹣4)2﹣16k2=﹣32k+16>0,得k<,=,,所以y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=,因为以AB为直径的圆经过原点O,所以∠AOB=90°,即,所以,解得k=﹣,即所求直线l的方程为y=﹣.(2)设线段AB的中点坐标为(x0,y0),则由(1)得,,所以线段AB的中垂线方程为,令y=0,得==,又由(1)知k<,且k≠0,得或,所以,所以=,所以△POQ面积的取值范围为(2,+∞).【点评】本题考查直线l的方程的求法和求△POQ面积的取值范围.考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.。

2018-2019学年吉林省白城市通榆县第一中学高二下学期第二次月考数学(文)试题Word版含答案

2018-2019学年吉林省白城市通榆县第一中学高二下学期第二次月考数学(文)试题Word版含答案

2018—2019学年度通榆一中高二下学期第二次质量检测数 学 试 卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z 满足1+z1-z =i ,则|z |=( )A .1 B. 2 C. 3 D .22.点M 的极坐标为⎝⎛⎭⎪⎫2,π3,则它的直角坐标为( )A .(3,1)B .(-1,3)C .(1,3)D .(-3,-1) 3.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除 4.下面几种推理中是演绎推理的是( )A .因为y =2x 是指数函数,所以函数y =2x 经过定点(0,1)B .猜想数列11×2,12×3,13×4,…的通项公式为a n =1n (n +1)(n ∈N *)C .由圆x 2+y 2=r 2的面积为πr 2猜想出椭圆x 2a 2+y2b2=1的面积为πabD .由平面直角坐标系中圆的方程为(x -a )2+(y -b )2=r 2,推测空间直角坐标系中球的方程为(x -a )2+(y -b )2+(z -c )2=r 2 5.曲线的极坐标方程为ρ=4sin θ,化成直角坐标方程为( ) A .x 2+(y +2)2=4 B .x 2+(y -2)2=4 C .(x -2)2+y 2=4D .(x +2)2+y 2=46.已知(1-i )2z=1+i(i 为虚数单位),则复数z = ( )A .1+iB .1-iC .-1+iD .-1-i7.根据如下样本数据得到的回归方程为y =bx +a ,则( )x 3 4 5 6 7 8 y 4.0 2.5-0.50.5-2.0-3.0A.a >0,b >0 B .a >0,b <0 C .a <0,b >0 D .a <0,b <08.点M ⎝⎛⎭⎪⎫1,7π6关于直线θ=π4(ρ∈R)的对称点的极坐标为( )A.⎝ ⎛⎭⎪⎫1,4π3B.⎝ ⎛⎭⎪⎫1,2π3C.⎝ ⎛⎭⎪⎫1,π3D.⎝⎛⎭⎪⎫1,-7π6 9.根据下面的列联表得到如下四个判断:①至少有99.9%的把握认为“患肝病与嗜酒有关”;②至少有99%的把握认为“患肝病与嗜酒有关”;③在犯错误的概率不超过0.01的前提下认为“患肝病与嗜酒有关”;④在犯错误的概率不超过0.01的前提下认为“患肝病与嗜酒无关”.项目 嗜酒 不嗜酒 总计 患肝病 700 60 760 未患肝病 200 32 232 总计90092992其中正确命题的个数为( )A .0B .1C . 2D .3 10.下面几种推理是合情推理的是( ) ①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n -2)·180°. A .①② B .①③ C .①②④ D .②④11.圆ρ=r 与圆ρ=-2r sin ⎝⎛⎭⎪⎫θ+π4(r >0)的公共弦所在直线的方程为( )A .2ρ(sin θ+cos θ)=rB .2ρ(sin θ+cos θ)=-r C.2ρ(sin θ+cos θ)=r D.2ρ(sin θ+cos θ)=-r 12.设函数)0(ln 31)(>-=x x x x f ,则)(x f y =( )A.在区间)1,1(e ,(1,e)内均有零点B.在区间)1,1(e内有零点,在区间(1,e)内无零点C.在区间)1,1(e 内无零点,在区间(1,e)内有零点D.在区间)1,1(e,(1,e)内均无零点二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2017·天津卷)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________.14.直线x cos α+y sin α=0的极坐标方程为__________. 15.已知线性回归直线方程是y ^=a ^+b ^x ,如果当x =3时,y 的估计值是17,x =8时,y 的估计值是22,那么回归直线方程为______. 16.在极坐标系中,若过点A (4,0)的直线l 与曲线ρ2=4ρcos θ-3有公共点,则直线l 的斜率的取值范围为__________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)复数z =1+i ,求实数a ,b ,使az +2b z -=(a +2z )2.18.(本小题满分12分) )极坐标方程ρ=-cos θ与ρcos ⎝⎛⎭⎪⎫θ+π3=1表示的两个图形的位置关系是什么?19.(本小题满分12分) 某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:xyOA BM分类 积极参加班级工作 不太主动参加班级工作 总计 学习积极性高 18 7 25 学习积极性一般6 19 25 总计242650(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.P (K 2≥k ) 0.050 0.0100.001k3.841 6.635 10.828K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )20.(本小题满分12分)直线l 与抛物线x y =2交于1122(,),(,)A x y B x y 两点,与x 轴相交于点M , 且121-=y y .(I) 求证:M 点的坐标为)0,1(; (II) 求AOB ∆的面积的最小值.21.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.22.(本小题满分12分) 已知函数21()()2x f x e x ax a =-+∈R . (I)当1a >-时,试判断函数()f x 的单调性;(II)若1a e <-,求证:函数()f x 在[1,)+∞上的最小值小于12.1A 2C 3B 4A 5B 6D 7B 8A 9C 10C 11 D 12C二 、填空题 (每题5分,共20分)13. -2 14.θ=π2+α 15.y ^=x +14 16.⎣⎢⎡⎦⎥⎤-33,33 17.(10分)解:因为z =1+i ,所以az +2b z -=(a +2b )+(a -2b )i , (a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i , 因为a ,b 都是实数,所以⎩⎨⎧a +2b =a 2+4a ,a -2b =4(a +2),解得⎩⎨⎧a =-2,b =-1,或⎩⎨⎧a =-4,b =2.所以a =-2,b =-1或a =-4,b =2.18.(12分)解:ρ=-cos θ可变为ρ2=-ρcos θ,化为普通方程为x 2+y 2=-x ,即⎝ ⎛⎭⎪⎫x +122+y 2=14,它表示圆心为⎝ ⎛⎭⎪⎫-12,0,半径为12的圆. 将ρcos ⎝ ⎛⎭⎪⎫θ+π3=1化为普通方程为x -3y -2=0.∵圆心⎝ ⎛⎭⎪⎫-12,0到直线的距离为|-12-2|1+3=54>1,∴直线与圆相离.19. (12分)解:(1)积极参加班级工作的学生有24人,总人数为50人, 所以抽到积极参加班级工作的学生的概率P 1=2450=1225,不太主动参加班级工作且学习积极性一般的学生有19人, 所以抽到不太主动参加班级工作且学习积极性一般的学生概率P 2=1950.(2)由列联表知,K 2的观测值 k =50×(18×19-6×7)225×25×24×26≈11.538,由11.538>10.828.所以在犯错误的概率不超过0.001的前提下认为学生的学习积极性与对待班级工作的态度有关系.20.(12分)解:(I)设M 点的坐标为)0,(0x , 直线l 方程为0x my x +=,代入x y =2得002=--x my y ① 21,y y 是此方程的两根, ∴1210=-=y y x ,即M 点的坐标为(1, 0).(II)由方程①,m y y =+21,121-=y y ,且 1||0==x OM , 于是=-=∆||||2121y y OM S AOB 212214)(21y y y y -+=4212+m ≥1, ∴当0=m 时,AOB ∆的面积取最小值1.1212121=⋅=∆PF PF S DF F 21.(12分)解:(1)由题意知n =10,x -=110i=8010=8,=2-0.3×8=-0.4,故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).22. (12分)解:(I)由题可得()xf x e x a '=-+, 设()()xg x f x e x a '==-+,则()1x g x e '=-, 所以当0x >时()0g x '>,()f x '在()0,+∞上单调递增,当0x <时()0g x '<,()f x '在(),0-∞上单调递减,所以()()01f x f a ''≥=+,因为1a>-,所以10a +>,即()0f x '>,所以函数()f x 在R 上单调递増.………………6分(II)由(I)知()f x '在[)1,+∞上单调递増,因为 1a e <-, 所以()1 10f e a '=-+<,所以存在()1,t ∈+∞,使得()0f t '=,即0te t a -+=,即ta t e =-,所以函数()f x 在[)1,t 上单调递减,在(),t +∞上单调递増, 所以当[)1,x ∈+∞时()()()()222min 1111222t t t t f x f t e t at e t t t e e t t ==-+=-+-=-+,令()()2111,2xh x e x x x =-+>,则()1()0xx x h e =-<'恒成立,所以函数()h x 在()1,+∞上单调递减,所以()()21111122h x e <-+⨯=,所以()211122te t t -+<,即当[)1,x ∈+∞时()min12f x <, 故函数()f x 在[)1,+∞上的最小值小于12. (12)分。

吉林省吉林市舒兰一中2018-2019学年高二下学期第一次月考数学试卷(理科)Word版含解析

吉林省吉林市舒兰一中2018-2019学年高二下学期第一次月考数学试卷(理科)Word版含解析

吉林省吉林市舒兰一中2018-2019学年高二下学期第一次月考数学试卷(理科)一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.曲线y=x3﹣3x2+1在点(1,﹣1)处的切线方程为()A.y=3x﹣4 B.y=﹣3x+2 C.y=﹣4x+3 D.y=4x﹣52.下列求导结果正确的是()A.(1﹣x2)′=1﹣2x B.(cos30°)′=﹣sin30°C.[ln(2x)]′=D.()′=3.菱形的对角线相等,正方形是菱形,所以正方形的对角线相等.在以上三段论的推理中()A.推理形式错误B.结论错误C.小前提错误 D.大前提错误4.用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是()A.a、b至少有一个不为0 B.a、b至少有一个为0C.a、b全不为0 D.a、b中只有一个为05.由曲线y2=x与直线所围成的封闭图形的面积是()A.B.C.2 D.6.一质点运动时速度与时间的关系为v(t)=t2﹣t+2,质点作直线运动,则此物体在时间[1,2]内的位移为()A.B.C.D.7.设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数8.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2 B.﹣9或3 C.﹣1或1 D.﹣3或19.若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x﹣2的最小距离为()A.1 B.C. D.10.设函数f(x)在R上可导,其导函数f′(x),且函数f(x)在x=﹣2处取得极小值,则函数y=xf′(x)的图象可能是()A.B.C.D.11.若函数f(x)=x+(b∈R)的导函数在区间(1,2)上有零点,则f(x)在下列区间单调递增的是()A.(﹣2,0)B.(0,1)C.(1,+∞)D.(﹣∞,﹣2)12.设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)﹣4f(﹣2)>0的解集为()A.(﹣∞,﹣2012)B.(﹣2012,0)C.(﹣∞,﹣2016)D.(﹣2016,0)二、填空题(本大题共4个小题,每小题5分)13.(x+cos2x)dx= .14.在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A﹣BCD的三个侧面ABC、ACD、ADB两两互相垂直,则.”15.已知函数f(x)=﹣+4x﹣3lnx在[t,t+1]上不单调,则t的取值范围是.16.已知函数y=f(x)的导函数为f′(x)且f(x)=x2f′()+sin x,则f′()= .三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x﹣y+1=0,当x=时,y=f(x)有极值.(1)求a、b、c的值;(2)求y=f(x)在[﹣3,1]上的最大值和最小值.18.已知函数f(x)=x2+lnx.(1)求函数f(x)在[1,e]上的最大值和最小值;(2)求证:当x∈(1,+∞)时,函数f(x)的图象在g(x)=x3+x2的下方.19.已知函数f(x)=xlnx(e为无理数,e≈2.718)(1)求函数f(x)在点(e,f(e))处的切线方程;(2)设实数,求函数f(x)在[a,2a]上的最小值.20.已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.21.已知函数f(x)=ax2+x﹣xlnx,(1)若a=0,求函数f(x)的单调区间;(2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.22.已知函数f(x)=(1﹣x)e x﹣1.(Ⅰ)求函数f(x)的最大值;(Ⅱ)设,x>﹣1且x≠0,证明:g(x)<1.吉林省吉林市舒兰一中2018-2019学年高二下学期第一次月考数学试卷(理科)参考答案一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.曲线y=x3﹣3x2+1在点(1,﹣1)处的切线方程为()A.y=3x﹣4 B.y=﹣3x+2 C.y=﹣4x+3 D.y=4x﹣5【考点】导数的几何意义.【分析】首先判断该点是否在曲线上,①若在曲线上,对该点处求导就是切线斜率,利用点斜式求出切线方程;②若不在曲线上,想法求出切点坐标或斜率.【解答】解:∵点(1,﹣1)在曲线上,y′=3x2﹣6x,=﹣3,即切线斜率为﹣3.∴y′|x=1∴利用点斜式,切线方程为y+1=﹣3(x﹣1),即y=﹣3x+2.故选B.2.下列求导结果正确的是()A.(1﹣x2)′=1﹣2x B.(cos30°)′=﹣sin30°C.[ln(2x)]′=D.()′=【考点】导数的运算.【分析】按照基本初等函数的求导法则,求出A、B、C、D选项中正确的结果即可.【解答】解:对于A,(1﹣x2)′=﹣2x,∴A式错误;对于B,(cos30°)′=0,∴B式错误;对于C,[ln(2x)]′=×(2x)′=,∴C式错误;对于D, ===,∴D式正确.故选:D.3.菱形的对角线相等,正方形是菱形,所以正方形的对角线相等.在以上三段论的推理中()A.推理形式错误B.结论错误C.小前提错误 D.大前提错误【考点】演绎推理的基本方法.【分析】根据演绎推理的方法进行判断,首先根据判断大前提的正确与否,若正确则一步一步往下推,若错误,则无需往下推;【解答】解:∵菱形四条边相等,对角线垂直,但对角线不一定相等,∴对于菱形的对角线相等,正方形是菱形,所以正方形的对角线相等这段推理,首先大前提错误,故选D.4.用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是()A.a、b至少有一个不为0 B.a、b至少有一个为0C.a、b全不为0 D.a、b中只有一个为0【考点】反证法与放缩法.【分析】把要证的结论否定之后,即得所求的反设.【解答】解:由于“a、b全为0(a、b∈R)”的否定为:“a、b至少有一个不为0”,故选 A.5.由曲线y2=x与直线所围成的封闭图形的面积是()A.B.C.2 D.【考点】定积分在求面积中的应用.【分析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线y2=x与直线所围成的封闭图形的面积,即可求得结论.【解答】解:由,可得或∴曲线y2=x与直线所围成的封闭图形的面积为:(﹣x+)dx=(﹣x2+x)=.故选B.6.一质点运动时速度与时间的关系为v(t)=t2﹣t+2,质点作直线运动,则此物体在时间[1,2]内的位移为()A.B.C.D.【考点】定积分的简单应用.【分析】对速度求定积分求出的是物体的运动位移;利用微积分基本定理求出定积分值即位移.【解答】解:s=(t2﹣t+2)dt===.故选A7.设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数【考点】利用导数研究函数的单调性.【分析】求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:函数f(x)=ln(1+x)﹣ln(1﹣x),函数的定义域为(﹣1,1),函数f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f(0)=0;x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,显然f(0)<f(),函数是增函数,所以B错误,A正确.故选:A.8.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2 B.﹣9或3 C.﹣1或1 D.﹣3或1【考点】利用导数研究函数的极值;函数的零点与方程根的关系.【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数y=x3﹣3x+c的图象与x 轴恰有两个公共点,可得极大值等于0或极小值等于0,由此可求c的值.【解答】解:求导函数可得y′=3(x+1)(x﹣1),令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1;∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减,∴函数在x=﹣1处取得极大值,在x=1处取得极小值.∵函数y=x3﹣3x+c的图象与x轴恰有两个公共点,∴极大值等于0或极小值等于0.∴1﹣3+c=0或﹣1+3+c=0,∴c=﹣2或2.故选:A.9.若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x﹣2的最小距离为()A.1 B.C. D.【考点】点到直线的距离公式.【分析】设出切点坐标,利用导数在切点处的函数值,就是切线的斜率,求出切点,然后再求点P到直线y=x﹣2的最小距离.【解答】解:过点P作y=x﹣2的平行直线,且与曲线y=x2﹣lnx相切,设P(x0,x2﹣lnx)则有k=y′|x=x0=2x﹣.∴2x0﹣=1,∴x=1或x=﹣(舍去).∴P(1,1),∴d==.故选B.10.设函数f(x)在R上可导,其导函数f′(x),且函数f(x)在x=﹣2处取得极小值,则函数y=xf′(x)的图象可能是()A.B.C.D.【考点】利用导数研究函数的极值;函数的图象.【分析】由题设条件知:当x>﹣2时,xf′(x)<0;当x=﹣2时,xf′(x)=0;当x<﹣2时,xf′(x)>0.由此观察四个选项能够得到正确结果.【解答】解:∵函数f(x)在R上可导,其导函数f′(x),且函数f(x)在x=﹣2处取得极小值,∴当x>﹣2时,f′(x)>0;当x=﹣2时,f′(x)=0;当x<﹣2时,f′(x)<0.∴当x>﹣2时,xf′(x)<0;当x=﹣2时,xf′(x)=0;当x<﹣2时,xf′(x)>0.故选A.11.若函数f(x)=x+(b∈R)的导函数在区间(1,2)上有零点,则f(x)在下列区间单调递增的是()A.(﹣2,0)B.(0,1)C.(1,+∞)D.(﹣∞,﹣2)【考点】利用导数研究函数的单调性;函数在某点取得极值的条件.【分析】本题先根据导函数在区间(1,2)上有零点,得到b的取值范围,再利用b的取值范围,求出函数的单调增区间,结合b的取值范围,选择符合题意的选项.【解答】解:∵函数∴∵函数的导函数在区间(1,2)上有零点∴当时,b=x2,x∈(1,2)∴b∈(1,4)令f'(x)>0 得到即f(x)的单调增区间为(﹣∞,),()∵b∈(1,4)∴(﹣∞,﹣2)适合题意故选D12.设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)﹣4f(﹣2)>0的解集为()A.(﹣∞,﹣2012)B.(﹣2012,0)C.(﹣∞,﹣2016)D.(﹣2016,0)【考点】导数的运算.【分析】根据条件,构造函数,利用函数的单调性和导数之间的关系,将不等式进行转化即可得到结论.【解答】解:由2f(x)+xf′(x)>x2,(x<0),得:2xf(x)+x2f′(x)<x3,即[x2f(x)]′<x3<0,令F(x)=x2f(x),则当x<0时,得F′(x)<0,即F(x)在(﹣∞,0)上是减函数,∴F(x+2014)=(x+2014)2f(x+2014),F(﹣2)=4f(﹣2),即不等式等价为F(x+2014)﹣F(﹣2)>0,∵F(x)在(﹣∞,0)是减函数,∴由F(x+2014)>F(﹣2)得,x+2014<﹣2,即x <﹣2016,故选:C .二、填空题(本大题共4个小题,每小题5分)13.(x+cos2x )dx= 0 .【考点】定积分.【分析】方法一:由(x+cos2x )dx=(x 2+sin2x )=sin π=0;方法二:(x+cos2x )dx=xdx+cos2xdx ,由y=x 为奇函数,y=cos2x 为偶函数,由定积分的性质, xdx=0, cos2xdx=2cos2x=2sin π=0.【解答】解:方法一:由(x+cos2x )dx=(x 2+sin2x )=()2+sin2()﹣[(﹣)2+sin2(﹣)]=sin π=0,(x+cos2x )dx=0,故答案为:0;方法二:(x+cos2x )dx=xdx+cos2xdx ,由y=x 为奇函数,y=cos2x 为偶函数,∴由定积分的性质,xdx=0, cos2xdx=2cos2x=2(sin2x )=2sin π=0,∴(x+cos2x )dx=xdx+cos2xdx=0,14.在平面几何里,有勾股定理“设△ABC 的两边AB ,AC 互相垂直,则AB 2+AC 2=BC 2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A﹣BCD的三个侧面ABC、ACD、ADB两两互相垂直,则S△ABC 2+S△ACD2+S△ADB2=S△BCD2.”【考点】类比推理.【分析】从平面图形到空间图形的类比【解答】解:建立从平面图形到空间图形的类比,于是作出猜想:S△ABC 2+S△ACD2+S△ADB2=S△BCD2.故答案为:S△ABC 2+S△ACD2+S△ADB2=S△BCD2.15.已知函数f(x)=﹣+4x﹣3lnx在[t,t+1]上不单调,则t的取值范围是0<t<1或2<t<3 .【考点】利用导数研究函数的单调性.【分析】先由函数求f′(x)=﹣x+4﹣,再由“函数在[t,t+1]上不单调”转化为“f′(x)=﹣x+4﹣=0在区间[t,t+1]上有解”从而有在[t,t+1]上有解,进而转化为:g(x)=x2﹣4x+3=0在[t,t+1]上有解,用二次函数的性质研究.【解答】解:∵函数∴f′(x)=﹣x+4﹣∵函数在[t,t+1]上不单调,∴f′(x)=﹣x+4﹣=0在[t,t+1]上有解∴在[t,t+1]上有解∴g(x)=x2﹣4x+3=0在[t,t+1]上有解∴g(t)g(t+1)≤0或∴0<t<1或2<t<3.故答案为:0<t<1或2<t<3.16.已知函数y=f(x)的导函数为f′(x)且f(x)=x2f′()+sin x,则f′()=.【考点】导数的运算.【分析】求函数的导数,令x=,先求出f′()的值即可得到结论.【解答】解:∵f(x)=x2f′()+sin x,∴f′(x)=2xf'()+cosx令x=,则f′()=2×f'()+cos则f′()=,故答案为:三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x﹣y+1=0,当x=时,y=f(x)有极值.(1)求a、b、c的值;(2)求y=f(x)在[﹣3,1]上的最大值和最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(1)先对函数f(x)进行求导,根据f'(1)=3,f′=0,f(1)=4可求出a,b,c的值,得到答案.(2)由(1)可知函数f(x)的解析式,然后求导数后令导函数等于0,再根据导函数的正负判断函数在[﹣3,1]上的单调性,最后可求出最值.【解答】解:(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b当x=1时,切线l的斜率为3,可得2a+b=0.①当x=时,y=f(x)有极值,则f′=0,可得4a+3b+4=0.②由①、②解得a=2,b=﹣4.由于l上的切点的横坐标为x=1,∴f(1)=4.∴1+a+b+c=4.∴c=5.(2)由(1)可得f(x)=x3+2x2﹣4x+5,∴f′(x)=3x2+4x﹣4.令f′(x)=0,得x=﹣2,或x=.∴f(x)在x=﹣2处取得极大值f(﹣2)=13.在x=处取得极小值f=.又f(﹣3)=8,f(1)=4.∴f(x)在[﹣3,1]上的最大值为13,最小值为.18.已知函数f(x)=x2+lnx.(1)求函数f(x)在[1,e]上的最大值和最小值;(2)求证:当x∈(1,+∞)时,函数f(x)的图象在g(x)=x3+x2的下方.【考点】利用导数求闭区间上函数的最值;导数在最大值、最小值问题中的应用.【分析】(1)求出导数f′(x),易判断x>1时f′(x)的符号,从而可知f(x)的单调性,根据单调性可得函数的最值;(2)令F(x)=f(x)﹣g(x)=﹣+lnx,则只需证明F(x)<0在(1,+∞)上恒成立,进而转化为F(x)的最大值小于0,利用导数可求得F(x)的最大值.【解答】(1)解:∵f(x)=x2+lnx,∴f′(x)=2x+,∵x>1时,f′(x)>0,∴f(x)在[1,e]上是增函数,∴f(x)的最小值是f(1)=1,最大值是f(e)=1+e2;(2)证明:令F(x)=f(x)﹣g(x)=﹣+lnx,则F′(x)=x﹣2x2+===,∵x>1,∴F′(x)<0,∴F(x)在(1,+∞)上是减函数,∴F(x)<F(1)==﹣<0,即f(x)<g(x),∴当x∈(1,+∞)时,函数f(x)的图象总在g(x)的图象下方.19.已知函数f(x)=xlnx(e为无理数,e≈2.718)(1)求函数f(x)在点(e,f(e))处的切线方程;(2)设实数,求函数f(x)在[a,2a]上的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f(e),f′(e)的值,从而求出切线方程即可;(2)求出函数f(x)的导数,解关于导函数的不等式,得到函数的单调区间,从而求出函数的最小值即可.【解答】解:(1)∵f(x)定义域为(0,+∞),f'(x)=lnx+1,f(e)=e又f'(e)=2,∴函数y=f(x)在点(e,f(e))处的切线方程为:y=2(x﹣e)+e,即y=2x﹣e﹣﹣﹣﹣﹣﹣(2)∵f'(x)=lnx+1,令f'(x)=0,,时,F'(x)<0,f(x)单调递减;当时,F'(x)>0,f(x)单调递增.当,…..20.已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x可得f′(1)=﹣2,可求出a的值;(Ⅱ)根据(I)可得函数的解析式和导函数的解析式,分析导函数的符号,进而可得函数f (x)的单调区间与极值.【解答】解:(Ⅰ)∵f(x)=+﹣lnx﹣,∴f′(x)=﹣﹣,∵曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.∴f′(1)=﹣a﹣1=﹣2,解得:a=.(Ⅱ)由(Ⅰ)知:f(x)=+﹣lnx﹣,f′(x)=﹣﹣=(x>0),令f′(x)=0,解得x=5,或x=﹣1(舍),∵当x∈(0,5)时,f′(x)<0,当x∈(5,+∞)时,f′(x)>0,故函数f(x)的单调递增区间为(5,+∞);单调递减区间为(0,5);当x=5时,函数取极小值﹣ln5.21.已知函数f(x)=ax2+x﹣xlnx,(1)若a=0,求函数f(x)的单调区间;(2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.【分析】(1)求导数,利用导数的正负,即可求函数f(x)的单调区间;(2)由已知,求得f(x)=x2+x﹣xlnx.将不等式f(x)≥bx2+2x恒成立转化为恒成立.构造函数,只需b≤g(x)min即可,因此又需求g(x)min.【解答】解:(1)当a=0时,f(x)=x﹣xlnx,函数定义域为(0,+∞).f'(x)=﹣lnx,由﹣lnx=0,得x=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣x∈(0,1)时,f'(x)>0,f(x)在(0,1)上是增函数.x∈(1,+∞)时,f'(x)<0,f(x)在(1,+∞)上是减函数;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)由f(1)=2,得a+1=2,∴a=1,∴f(x)=x2+x﹣xlnx,由f(x)≥bx2+2x,得(1﹣b)x﹣1≥lnx,又∵x>0,∴恒成立,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令,可得,∴g(x)在(0,1]上递减,在[1,+∞)上递增.=g(1)=0∴g(x)min即b≤0,即b的取值范围是(﹣∞,0].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣22.已知函数f(x)=(1﹣x)e x﹣1.(Ⅰ)求函数f(x)的最大值;(Ⅱ)设,x>﹣1且x≠0,证明:g(x)<1.【考点】导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求函数的导数,利用函数的导数和最值之间的关系,即可求函数f(x)的最大值;(Ⅱ)利用函数的单调性,证明不等式.【解答】解:(Ⅰ)f′(x)=﹣xe x.当x∈(﹣∞,0)时,f′(x)>0,f(x)单调递增;当x∈(0,+∞)时,f′(x)<0,f(x)单调递减.∴f(x)的最大值为f(0)=0.(Ⅱ)由(Ⅰ)知,当x>0时,f(x)<0,g(x)<0<1.当﹣1<x<0时,g(x)<1等价于设f(x)>x.设h(x)=f(x)﹣x,则h′(x)=﹣xe x﹣1.当x∈(﹣1,0)时,0<﹣x<1,<e x<1,则0<﹣xe x<1,从而当x∈(﹣1,0)时,h′(x)<0,h(x)在(﹣1,0]单调递减.当﹣1<x<0时,h(x)>h(0)=0,即g(x)<1.综上,总有g(x)<1.。

江西省赣州市第一中学2017-2018学年高二下学期期中考试仿真卷(A卷)理科数学试题

江西省赣州市第一中学2017-2018学年高二下学期期中考试仿真卷(A卷)理科数学试题

20172018学年下学期高二年级期中考试仿真测试卷数学(A )注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·汇文中学]若复数21iz =-,其中i 为虚数单位,则共轭复数z =( ).A .1i +B .1i -C .1i -+D .1i --【答案】B 【解析】()()()21i 21i 1i1i 1i z +===+--+,则复数的共轭复数为1i -,故选B .2.[2018·人大附中]设()ln f x x x =,若()02f x '=,则0x 等于( ) A .2e B .e C .ln 22D .ln2【答案】B【解析】由函数的解析式可得:()ln 1f x x '=+,则()00ln 12f x x '=+=,0ln 1x ∴=,0e x =,本题选择B 选项.3.[2018·北京工大附中]函数332e x y x x -=+-,则导数y '=( )A .2236e xx x-+-B .22312e 3xx x-++此卷只装订不密封班级 姓名 准考证号 考场号 座位号C .22316e 3xx x-++D .22316e 3+x x x--+【答案】D【解析】根据幂函数的求导公式、指数函数的求导公式以及复合函数的求导法则可知,()2222331161633+ee xx y x xx x----=+-⨯-=+',故选D .4.[2018·山西一模]完成下列表格,据此可猜想多面体各面内角和的总和的表达式是( )(说明:上述表格内,顶点数V 指多面体的顶点数.) A .()22πV - B .()22πF -C .()2πE -D .()4πV F +-【答案】A【解析】用正方体(8V =,6F =,12E =)代入选项逐一检验,可排除B ,C ,D 选项. 故选:A5.[2018·湖北联考]如图,在矩形ABCD 中,2AB =,1AD =,以A 为顶点且过点C 的抛物线的一部分在矩形内.若在矩形ABCD 内随机地投一点,则此点落在阴影部分内的概率为( )A .12B .23C .35D .34【答案】B【解析】由题可知建立以AB 为X 轴,AD 为Y 轴的直角坐标系,则抛物线方程为214y x =,:2232011414123y x dx x x =-=-=⎛⎫⎪⎝⎭⎰,则此点落在阴影部分内的概率为42323=. 6.[2018·北京工大附中]函数()21ln 2f x x x =-的图象大致是( )A .B .C .D .【答案】B【解析】由函数()21ln 2f x x x =-得()211x f x x xx'-=-=,定义域为()0,+∞,由()0f x '>,得01x <<;由()0f x '<,得1x >,∴函数()f x 在区间()0,1上单调递增,在()1,+∞上单调递减,且()f x 在()0,+∞上的最大值为()1102f =-<,故选B .7.[2018·豫西名校]已知函数()222e xf x x ax ax =--在[)1,+∞上单调递增,则实数a 的取值范围是( ) A .(],e -∞ B .(],1-∞ C .[),e +∞ D .[)1,+∞【答案】A【解析】()()()()()212121e e x x f x x a x x a =+-+=+-',因为函数()f x 在区间[)1,+∞上单调递增,所以导函数在区间[)1,+∞上上()0f x '≥,即0e x a -≥,e xa ≤,e a ≤,选A .8.[2018·淮北一中]将正整数排成下表: 1 234 56789 ……………则在表中数字2017出现在( ) A .第44行第80列 B .第45行第80列 C .第44行第81列D .第45行第81列【答案】D【解析】因为每行的最后一个数分别为1,4,9,16,…,所以由此归纳出第n 行的最后一个数为2n .因为442=1936,452=2025,所以2017出现在第45行上; 又由2017﹣1936=81,故2017出现在第81列,故选D .9.[2018·人大附中]若函数()32f x x ax a =-+在()01,内无极值,则实数a 的取值范围是( ) A .30,2⎡⎤⎢⎥⎣⎦B .(),0-∞C .3,2⎡⎫+∞⎪⎢⎣⎭D .(]3,0,2⎡⎫-∞+∞⎪⎢⎣⎭【答案】D【解析】由函数的解析式可得:()232f x x a '=-,函数()32f x x ax a =-+在()01,内无极值,则()0f x '=在区间()01,内没有实数根, 当0a ≤时,()0f x '≥恒成立,函数()f x 无极值,满足题意,当0a >时,由()0f x '=可得x =1≥,解得:32a ≥, 综上可得:实数a 的取值范围是(]3,0,2⎡⎫-∞+∞⎪⎢⎣⎭,本题选择D 选项.10.[2018·中山期末][]0,3的最大值与最小值之积为( )A B C D 【答案】B【解析】结合函数的解析式有:()()()2422f x x x x '=-=+-,当()0,2x ∈时,()'0f x <,()f x 单调递减, 当()2,4x ∈时,()'0f x >,()f x 单调递增, 且:()04f =,()423f =-,()31f =,据此可得函数的最大值为()04f =,函数的最小值为()423f =-,则最大值与最小值之积为416433-⨯=-.本题选择B 选项.11.[2018·南阳一中]从图中所示的矩形OABC 区域内任取一点(),M x y ,则点M 取自阴影部分的概率为( )A .13B .12C .14D .23【答案】B【解析】阴影部分的面积为()()121222221xx dx xx x-----+--=-⎰⎰,矩形的面积为2,故点M 取自阴影部分的概率为12.故选B .12.[2018·豫西名校]偶函数()f x 定义域为ππ,22-⎛⎫⎪⎝⎭,其导函数是()f x '.当0π2x <<时,有()()cos sin 0f x x f x x '+<,则关于x 的不等式()2cos 4πf x f x >⎛⎫⎪⎝⎭的解集为( ) A .ππ,42⎛⎫⎪⎝⎭B .ππππ,,2442-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ C .ππ,44-⎛⎫⎪⎝⎭D .πππ,0,442-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【答案】C【解析】由题意构造函数()()cos f x F x x=,()()()2cos sin cos f x x f x xF x x+''=,所以函数()F x 在区间π0,2⎛⎫ ⎪⎝⎭()0F x '<,()F x π0,2⎛⎫ ⎪⎝⎭()π2cos 4f x f x >⎛⎫⎪⎝⎭ππ,22x ∈-⎛⎫⎪⎝⎭时,可变形为()π4cos 22f f x x >⎛⎫⎪⎝⎭,即()π4F x F >⎛⎫⎪⎝⎭,即ππ44x -<<.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2018·首师附中]若复数z 满足,则复数z 的模为__________.【解析】14.[2018·百校联盟]函数()ln g x x =图象上一点P 到直线y x =的最短距离为__________. 2【解析】设与直线y x =平行的且与()ln g x x =相切的直线切点为()00,ln x x ,因为()1ln 'x x=,则011x =,01x ∴=,则切点为()1,0,∴最短距离为切点到直线yx =的距离:2d ==,故答案为2.15.[2018·上饶模拟]二维空间中,圆的一维测度(周长)2πl r =,二维测度(面积)2πS r =;三维空间中,球的二维测度(表面积)24πS r =,三维测度(体积)推理,若四维空间中,“特级球”的三维测度312πV r =,则其四维测度W =__________. 【答案】43πr 【解析】二维空间中圆的一维测度(周长)2πl r =,二维测度(面积)2πS r =;观察发现S l '=,三维空间中球的二维测度(表面积)24πS r =,三维测度(体积)发现V S '=,∴四维空间中“超球”的三维测度38πV r =,猜想其四维测度W ,则312πW V r '==,43πW r ∴=,故答案为43πr .16.[2018·烟台诊断]直线y b =分别与直线21y x =+和曲线ln y x =相交于点A 、B ,则AB 的最小值为____________________. 【答案】ln 212+【解析】两个交点分别为1A ,2b b -⎛⎫ ⎪⎝⎭,()e ,b B b ,1e 2bb AB -=-, 设函数()1e 2xx g x -=-,()1e 2xg x '=-,()0g x '=的根为ln 2x =-,所以()g x 在区间(),ln 2-∞-单调递减,在区间()ln 2,-+∞上单调递增, 所以()()ln 2min g x g =-=ln 212+.填ln 212+.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.[2018·石嘴山中学]已知复数1Z 2ai =+(其中a ∈R 且a 0>,i 为虚数单位),且21z 为纯虚数.(1)求实数a 的值; (2)若1z z 1i=-,求复数z 的模z . 【答案】(1)2;(2)2.【解析】(1)2221(2i)44i z a a a =+=-+,因为21z 为纯虚数,所以2400 0a a a ⎧-=≠>⎪⎨⎪⎩,解得:2a =.·······6分 (2)122i z =+,22i (22i)(1i)4i2i 1i (1i)(1i)2z +++====--+,2z =.·······12分 18.[2018·西城156中]已知函数()32133f x x x x =--.()求()f x 的单调区间.()求()f x 在区间[]3,3-上的最大值和最小值.【答案】(1)单调递增区间为()1-∞-,和()3,+∞,单调递减区间为()1,3-;(2)的最大值为53,最小值为9-.【解析】()由题得()()()22313f x x x x x '=--=+-.令()0f x '>,解得1x <-或3x >,令()0f x '<,解得13x -<<,∴()f x 的单调递增区间为()1-∞-,和()3,+∞,单调递减区间为()1,3-.·······6分()由()可知,()f x 在区间()3,1--上单调递增, 在()1,3-上单调递减,且()39f -=-,()39f =-, ∴()f x 在区间[]3,3-上的最大值为5(1)3f -=, 最小值为()()339f f -==-.·······12分19.[2018·豫西名校](1)当0n ≥时,证明:211n n n n +-+<+-; (2)已知x ∈R ,21a x =-,22b x =+,求证:a ,b 中至少有一个不小于0. 【答案】(1)见解析;(2)见解析.【解析】(1)要证211n n n n +-+<+-, 即证221n n n ++<+,只要证()()22221n nn ++<+,即证()222244n n n n +++<+,即证()21n n n +<+, 只要证22221n n n n +<++,而上式显然成立, 所以211n n n n +-+<+-成立.·······6分 (2)假设0a <且0b <,由210a x =-<得11x -<<,由220b x =+<得1x <-,这与11x -<<矛盾,所以假设错误,所以a 、b 中至少有一个不小于0.·······12分 20.[2018·天津联考]已知曲线21:2C y x =与221:2C y x =在第一象限内交点为P .(1)求过点P 且与曲线2C 相切的直线方程;(2)求两条曲线所围图形(如图所示阴影部分)的面积S . 【答案】解:(1)22212y xy x==⎧⎪⎨⎪⎩,22x y =⎧∴⎨=⎩,(2,2)P ∴,221()22x k x ='==,∴所求切线方程为:220x y --=.·······6分(2)2322320200011142(2)2363xdx x dx x x -=-=⎰⎰,·······12分 解法2:算y x =与212y x =围出的面积,再利用对称性可求.【解析】略.21.[2018·北京八中]若函数()34f x ax bx -=+,当2x =时,函数()f x 有极值43-.(1)求函数的解析式;(2)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围.【答案】(1)()31443f x x x =-+;(2)42833k -<<.【解析】(1)由题意可知()23f x ax b '=-,于是()423f =-,()20f '=解得13a =,4b =故所求的解析式为()31443f x x x =-+. (5)分(2)由(1)可知()2()()422f x x x x =--'+=,令()0f x '=,得2x =或2x =-. 当x 变化时()f x '、()f x 的变化情况如下表所示:x(),2-∞-2-()2,2-2()2,+∞()f x ' + 0 0 +()f x单调递增283单调递减43- 单调递增因此,当2x =-时,()f x 有极大值283;当2x =时,()f x 有极小值43-. 所以函数的大致图象如图,故实数k 的取值范围是42833k -<<.·······12分22.[2018·贺州调研]已知函数()()()ln f x x a x a =+-∈R ,直线22:ln 333l y x =-+-是曲线()y f x =的的一条切线. (1)求a 的值;(2)设函数()()2e 22g x x x f x a a =----+,证明:函数()g x 无零点. 【答案】(1)1a =;(2)见解析. 【解析】(1)()11f x x a'=-+,设切点为()00,P x y ,则()0000121322ln ln 333x a x a x x -=-++-=-+-⎧⎪⎪⎨⎪⎪⎩, 解得02x =,1a =,∴1a =为所求.·······4分(2)由(1)知()()e 2112e ln xxg x x x f x x x x =----+=--,()()()()111e 1e1xxx g x x x xx+=+--=-',令()e 1x G x x =-,∵当0x >时,()()1e 0xG x x =+>',∴函数()G x 在()0+∞,上单调递增, 又()010G =-<,()1e 10G =->,∴()G x 存在唯一零点()0,1c ∈,且当()0,x c ∈时,()0G x <,当(),x c ∈+∞时,()0G x >. 即当()0,x c ∈时,()0g x '<;当(),x c ∈+∞时,()0g x '>, ∴()g x 在()0,c 上单调递减,在(),c +∞上单调递增,∴()()g x g c ≥. ∵()10e x G c c =+-=,01c <<,∴()ln 1ln 0x g c c c c c c c =+--=-->, ∴()()0g x g c ≥>,∴函数()g x 无零点.·······12分。

反证法(1)-学易试题君之每日一题君2018学年下学期高二数学(文)人教版(课堂同步系列一)

反证法(1)-学易试题君之每日一题君2018学年下学期高二数学(文)人教版(课堂同步系列一)

1 3月22日 反证法(1)
高考频度:★★☆☆☆ 难易程度:★★☆☆☆
用反证法证明命题:“,,,,1,1a b c d a b c d ∈+=+=R ,且1ac bd +>,则,,,a b c d 中至少有一个负数”时的假设为
A .,,,a b c d 至少有一个正数
B .,,,a b c d 全为正数
C .,,,a b c d 全都大于等于0
D .,,,a b c d 中至多有一个负数
【参考答案】
C
【名师点睛】(1)反证法是间接证明的一种基本方法.在证明数学命题时,要证明的结论要么正确,要么错误,二者必居其一,这是应用反证法的依据.
(2)反证法中的矛盾是指:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与公认的简单事实矛盾;⑤自相矛盾.
(3)当命题从正面不容易或不能得到证明时,就需要运用反证法,此即“正难则反”.此外,涉及各种无限结论的命题宜选用反证法证明.学*科网
1.下列命题不适合用反证法证明的是
A .同一平面内,分别与两条相交直线垂直的两条直线必相交
B .两个不相等的角不是对顶角
C .平行四边形的对角线互相平分
D .已知x ,y ∈R ,且2x y +>,求证:x ,y 中至少有一个大于1。

浙江省浙南名校联盟2018-2019学年高二下学期期末数学试题(原卷版)

浙江省浙南名校联盟2018-2019学年高二下学期期末数学试题(原卷版)

2018年学年第二学期浙南名校联盟期末联考高二年级数学学科试题参考公式:球的表面积公式 24S R π=球的体积公式243V R π= 其中R 表示球的半径 柱体的体积公式 V Sh = 其中S 表示棱柱的底面面积,h 表示棱柱的高锥体的体积公式 13V Sh = 其中S 表示棱锥的底面面积,h 表示棱锥的高台体的体积公式 ()13a ab b V h S S S S =+⋅+ 其中,a b S S 分别表示台体的上、下底面积 h 表示台体的高一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U N =,{}*|2,A x x n n N ==∈,{|16}B x x =<„,则()UA B =Ið( )A. {2,3,4,5,6}B. {2,4,6}C. {1,3,5}D. {3,5}2.双曲线22221y x a b-=的渐近线方程为2y x =±,则其离心率为( )A.32B.6 C. 3D.33.如图,某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A.72B.73C.76D. 74.若复数2(1)ai +(i 为虚数单位)纯虚数,则实数a =( ) A. 1±B. 1-C. 0D. 15.已知平面α,β,直线a ,满足αβ⊥,l αβ=I ,则下列是a β⊥的充分条件是( )A. //a αB. a α⊂C. a l ⊥D. ,a l a α⊥⊂6.已知实数,a b 满足cos cos a b a b ->-,则下列说法错误..的是( ) A. cos cos a b a b +>+ B. cos cos a b b a ->- C. sin sin a b a b ->-D. sin sin a b b a ->-7.已知随机变量ξ,η的分布列如下表所示,则( )ξ1 2 3P13 12 16η1 2 3P16 12 13A. E E ξη<,D D ξη<B. E E ξη<,D D ξη>C. E E ξη<,D D ξη=D. E E ξη=,D D ξη=8.如图,在三棱锥S ABC -中,SA ⊥面ABC ,AB BC E F ⊥,、是SC 上两个三等分点,记二面角E AB F --的平面角为α,则tan α( )A .有最大值43B. 有最大值34C. 有最小值43D. 有最小值349.已知2a b a b ==⋅=v v v v ,c tb -v v 的最小值为c a -v v,则4b ac c a +-+-vv v v v 的最小值为( )1 B. 2110.已知数列{}n a前n 项和为n S ,且满足()21n n n a S a -=,则下列结论中( )①数列{}2n S 是等差数列;②n a <;③11n n a a +<A. 仅有①②正确B. 仅有①③正确C. 仅有②③正确D. ①②③均正确二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.《孙子算经》是我国古代重要的数学著作,约成书于四、五世纪,传本的《孙子算经》共三卷,其中下卷“物不知数”中有如下问题:“今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?”其意思为:“现有一堆物品,不知它的数目.3个3个数,剩2个;5个5个数,剩3个;7个7个数,剩2个.问这堆物品共有多少个?”试计算这堆物品至少有__________个.12.若,x y 满足约束条件220,240,330,x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩则22x y +的最小值为___________,最大值为___________.13.从正方体的8个顶点中选4个点作一个平面,可作___________个不同的平面,从正方体的8个顶点中选4个点作一个四面体,可作___________个四面体.14.在ABC V 中,内角,,A B C 所对的边,,a b c 依次成等差数列,且()cos cos b C k B c =-,则k 的取值范围___________,若2k =,则cos B 的值为___________.15.在444x x ⎛-⎫⎪⎝⎭+的展开式中,各项系数和为_______,其中含2x 的项是________.16.已知椭圆C :()222210x y a b a b +=>>的左,右焦点分别为1F ,2F ,焦距为2c ,P 是椭圆C 上一点(不在坐标轴上),Q 是12F PF ∠的平分线与x 轴的交点,若22QF OQ =,则椭圆离心率的范围是___________.17.对于任意的实数b ,总存在[]0,1x ∈,使得21x ax b ++≥成立,则实数a 的取值范围为_____.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知函数()30,22f x x πωϕωϕ⎛⎫⎛⎫=+>< ⎪⎪⎝⎭⎝⎭对任意实数x 满足()566f f x f ππ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭. (1)当()f x 的周期最大值时,求函数()f x 的解析式,并求出()f x 单调的递增区间;(2)在(1)的条件下,若,0,3236a a f ππ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∈=,求()2f a 的值.19.如图,已知四棱锥P -ABCD 中,底面ABCD 是直角梯形,AD //BC ,BC =2AD ,AD ⊥CD ,PD ⊥平面ABCD ,E 为PB 的中点.(1)求证:AE //平面PDC ;(2)若BC =CD =PD ,求直线AC 与平面PBC 所成角的余弦值.20.已知数列{}n a 满足12a =,()1*121222n n n n a a a na n N -+++⋅⋅⋅+=∈.(1)求n a ; (2)求证:()*122311113261112n n a a a n n n N a a a +----<++⋅⋅⋅+<∈---. 21.已知点M 为抛物线2:4C y x =上异于原点O 的任意一点,F 为抛物线的焦点,连接MF 并延长交抛物线C 于点N ,点N 关于x 轴的对称点为A . (1)证明:直线MA 恒过定点;(2)如果FM OM λ=,求实数λ的取值范围. 22.已知函数()ln f x x a x =-.(1)若()1f x ≥恒成立,求a 的取值范围;(2)在(1)的条件下,()f x m =有两个不同的零点12,x x ,求证:121x x m +>+.。

内乡县第一中学2018-2019学年下学期高二期中数学模拟题

内乡县第一中学2018-2019学年下学期高二期中数学模拟题

内乡县第一中学2018-2019学年下学期高二期中数学模拟题一、选择题1. 在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项的和是( )A .13B .26C .52D .562. 若函数y=x 2+(2a ﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a 的取值范围是( ) A .[﹣,+∞) B .(﹣∞,﹣] C .[,+∞)D .(﹣∞,]3. 已知A 、B 、CAC BC ⊥,30ABC ∠=,球心O 到平面ABC 的距离为1,点M 是线段BC 的中点,过点M 作球O 的截面,则截面面积的最小值为( ) AB .34πCD .3π4. 已知函数f (x )=3cos (2x ﹣),则下列结论正确的是( )A .导函数为B .函数f (x )的图象关于直线对称C .函数f (x )在区间(﹣,)上是增函数D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到5. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.6. 已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .20152B .20153C .201523D .2015227. 直径为6的球的表面积和体积分别是( )A .144,144ππB .144,36ππC .36,144ππD .36,36ππ 8. 函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则下列结论成立的是( )A .a >0,b <0,c >0,d >0B .a >0,b <0,c <0,d >0C .a <0,b <0,c <0,d >0D .a >0,b >0,c >0,d <09. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________ADOC BA .m >2B .m >4C .m >6D .m >810.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是( )A .B .C .D .11.已知函数f (x )=e x +x ,g (x )=lnx+x ,h (x )=x ﹣的零点依次为a ,b ,c ,则( )A .c <b <aB .a <b <cC .c <a <bD .b <a <c12.已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.二、填空题13.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 .14.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为______.15.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .16.一质点从正四面体A ﹣BCD 的顶点A 出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB 由A 到B ,第2次运动经过棱BC 由B 到C ,第3次运动经过棱CA 由C 到A ,第4次经过棱AD 由A 到D ,…对于N ∈n *,第3n 次运动回到点A ,第3n+1次运动经过的棱与3n ﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n 次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为 .17.不等式的解为 .18.设p :实数x 满足不等式x 2﹣4ax+3a 2<0(a <0),q :实数x 满足不等式x 2﹣x ﹣6≤0,已知¬p 是¬q 的必要非充分条件,则实数a 的取值范围是 .三、解答题19.已知集合A={x|x 2+2x <0},B={x|y=}(1)求(∁R A )∩B ;(2)若集合C={x|a <x <2a+1}且C ⊆A ,求a 的取值范围.20.(本小题满分12分)如图(1),在三角形PCD 中,AB 为其中位线,且2BD PC =,若沿AB 将三角形PAB 折起,使PAD θ∠=,构成四棱锥P ABCD -,且2PC CDPF CE==. (1)求证:平面 BEF ⊥平面PAB ; (2)当 异面直线BF 与PA 所成的角为3π时,求折起的角度.21.(本小题满分12分) 已知函数2()xf x e ax bx =--.(1)当0,0a b >=时,讨论函数()f x 在区间(0,)+∞上零点的个数; (2)证明:当1b a ==,1[,1]2x ∈时,()1f x <.22.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.23.直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F分别是CC1、BC 的中点,AE⊥A1B1,D为棱A1B1上的点.(1)证明:DF⊥AE;(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由.24.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.内乡县第一中学2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1. 【答案】B【解析】解:由等差数列的性质可得:a 3+a 5=2a 4,a 7+a 13=2a 10,代入已知可得3×2a 4+2×3a 10=24,即a 4+a 10=4,故数列的前13项之和S 13====26故选B【点评】本题考查等差数列的性质和求和公式,涉及整体代入的思想,属中档题.2. 【答案】B【解析】解:∵函数y=x 2+(2a ﹣1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又∵函数在区间(﹣∞,2]上是减函数,故2≤解得a ≤﹣ 故选B .3. 【答案】B【解析】∵AC BC ⊥,∴90ACB ∠=, ∴圆心O 在平面的射影为AB D 的中点,∴112AB ==,∴2AB =. ∴cos303BC AC ==当线段BC 为截面圆的直径时,面积最小,∴截面面积的最小值为23()24ππ⨯=. 4. 【答案】B【解析】解:对于A ,函数f ′(x )=﹣3sin (2x ﹣)•2=﹣6sin (2x ﹣),A 错误;对于B ,当x=时,f ()=3cos (2×﹣)=﹣3取得最小值,所以函数f (x )的图象关于直线对称,B 正确;对于C ,当x ∈(﹣,)时,2x ﹣∈(﹣,),函数f (x )=3cos (2x ﹣)不是单调函数,C 错误;对于D ,函数y=3co s2x 的图象向右平移个单位长度,得到函数y=3co s2(x ﹣)=3co s (2x ﹣)的图象,这不是函数f (x )的图象,D 错误. 故选:B .【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.5. 【答案】D. 【解析】6. 【答案】C 【解析】试题分析:因为函数22()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()1010f f -≤⎧⎪⎨≤⎪⎩,解得3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等比数列,T 122015...a a a =,201521...T a a a =,两式相乘,根据等比数列的性质得()()2015201521201513T a a ==⨯,T =201523,故选C.考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用. 7. 【答案】D 【解析】考点:球的表面积和体积.8. 【答案】A【解析】解:f (0)=d >0,排除D , 当x →+∞时,y →+∞,∴a >0,排除C ,函数的导数f ′(x )=3ax 2+2bx+c ,则f′(x)=0有两个不同的正实根,则x1+x2=﹣>0且x1x2=>0,(a>0),∴b<0,c>0,方法2:f′(x)=3ax2+2bx+c,由图象知当当x<x1时函数递增,当x1<x<x2时函数递减,则f′(x)对应的图象开口向上,则a>0,且x1+x2=﹣>0且x1x2=>0,(a>0),∴b<0,c>0,故选:A9.【答案】C【解析】解:由f′(x)=3x2﹣3=3(x+1)(x﹣1)=0得到x1=1,x2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m﹣2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m﹣2>0 ①;f(1)+f(1)>f(2),即﹣4+2m>2+m②由①②得到m>6为所求.故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值10.【答案】A【解析】解:∵椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,∴圆的半径,由,得2c>b,再平方,4c2>b2,在椭圆中,a2=b2+c2<5c2,∴;由,得b+2c<2a,再平方,b2+4c2+4bc<4a2,∴3c2+4bc<3a2,∴4bc<3b2,∴4c<3b,∴16c2<9b2,∴16c2<9a2﹣9c2,∴9a2>25c2,∴,∴.综上所述,.故选A.11.【答案】B【解析】解:由f(x)=0得e x=﹣x,由g(x)=0得lnx=﹣x.由h(x)=0得x=1,即c=1.在坐标系中,分别作出函数y=e x ,y=﹣x,y=lnx的图象,由图象可知a<0,0<b<1,所以a<b<c.故选:B.【点评】本题主要考查函数零点的应用,利用数形结合是解决本题的关键.12.【答案】D【解析】由已知得{}=01A x x<?,故A B1[,1]2,故选D.二、填空题13.【答案】.【解析】解:∵直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),∴a+b﹣1=0,即a+b=1,∴ab≤=当且仅当a=b=时取等号,故ab的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题.14.【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内15.【答案】【解析】解:根据题意,可得出∠B=75°﹣30°=45°,在△ABC中,根据正弦定理得:BC==海里,则这时船与灯塔的距离为海里.故答案为.16.【答案】D.【解析】解:根据题意,质点运动的轨迹为:A→B→C→A→D→B→A→C→D→A接着是→B→C→A→D→B→A→C→D→A…周期为9.∵质点经过2015次运动,2015=223×9+8,∴质点到达点D.故答案为:D.【点评】本题考查了函数的周期性,本题难度不大,属于基础题.17.【答案】{x|x>1或x<0}.【解析】解:即即x(x﹣1)>0解得x>1或x<0故答案为{x|x>1或x<0}【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解以解集形式写出18.【答案】.【解析】解:∵x2﹣4ax+3a2<0(a<0),∴(x﹣a)(x﹣3a)<0,则3a<x<a,(a<0),由x2﹣x﹣6≤0得﹣2≤x≤3,∵¬p是¬q的必要非充分条件,∴q是p的必要非充分条件,即,即≤a<0,故答案为:三、解答题19.【答案】【解析】解:(1)A={x|x2+2x<0}={x|﹣2<x<0},B={x|y=}={x|x+1≥0}={x|x≥﹣1},∴∁R A={x|x≤﹣2或x≥0},∴(∁R A)∩B={x|x≥0};…(2)当a≥2a+1时,C=∅,此时a≤﹣1满足题意;当a<2a+1时,C≠∅,应满足,解得﹣1<a≤﹣;综上,a 的取值范围是.…20.【答案】(1)证明见解析;(2)23πθ=. 【解析】试题分析:(1)可先证BA PA ⊥,BA AD ⊥从而得到BA ⊥平面PAD ,再证CD FE ⊥,CD BE ⊥可得CD ⊥平面BEF ,由//CD AB ,可证明平面BEF ⊥平面PAB ;(2)由PAD θ∠=,取BD 的中点G ,连接,FG AG ,可得PAG ∠即为异面直线BF 与PA 所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1 试题解析:(2)因为PAD θ∠=,取BD 的中点G ,连接,FG AG ,所以//FG CD ,12FG CD =,又//AB CD ,12AB CD =,所以//FG AB ,FG AB =,从而四边形ABFG 为平行四边形,所以//BF AG ,得;同时,因为PA AD =,PAD θ∠=,所以PAD θ∠=,故折起的角度23πθ=.考点:点、线、面之间的位置关系的判定与性质.21.【答案】(1)当2(0,)4e a ∈时,有个公共点,当24e a =时,有个公共点,当2(,)4e a ∈+∞时,有个公共点;(2)证明见解析. 【解析】试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得2x e a x=,构造函数2()xe h x x =,利用()'h x 求出单调性可知()h x 在(0,)+∞的最小值2(2)4e h =,根据原函数的单调性可讨论得零点个数;(2)构造函数2()1x h x e x x =---,利用导数可判断()h x 的单调性和极值情况,可证明()1f x <.1试题解析:当2(0,)4ea ∈时,有0个公共点; 当24e a =,有1个公共点;当2(,)4e a ∈+∞有2个公共点.(2)证明:设2()1x h x e x x =---,则'()21xh x e x =--,令'()()21xm x h x e x ==--,则'()2xm x e =-,因为1(,1]2x ∈,所以,当1[,ln 2)2x ∈时,'()0m x <;()m x 在1[,ln 2)2上是减函数,当(ln 2,1)x ∈时,'()0m x >,()m x 在(ln 2,1)上是增函数,考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 22.【答案】【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15时,S取最大值.(2)V=a2h=2(﹣x3+30x2),V′=6x(20﹣x),由V′=0得x=20,当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;∴当x=20时,包装盒容积V(cm3)最大,此时,.即此时包装盒的高与底面边长的比值是.23.【答案】【解析】(1)证明:∵AE⊥A1B1,A1B1∥AB,∴AE⊥AB,又∵AA1⊥AB,AA1⊥∩AE=A,∴AB⊥面A1ACC1,又∵AC⊂面A1ACC1,∴AB⊥AC,以A为原点建立如图所示的空间直角坐标系A﹣xyz,则有A(0,0,0),E(0,1,),F(,,0),A1(0,0,1),B1(1,0,1),设D(x,y,z),且λ∈,即(x,y,z﹣1)=λ(1,0,0),则D(λ,0,1),所以=(,,﹣1),∵=(0,1,),∴•==0,所以DF⊥AE;(2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为.理由如下:设面DEF的法向量为=(x,y,z),则,∵=(,,),=(,﹣1),∴,即,令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)).由题可知面ABC的法向量=(0,0,1),∵平面DEF与平面ABC所成锐二面角的余弦值为,∴|cos<,>|==,即=,解得或(舍),所以当D为A1B1中点时满足要求.【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.24.【答案】【解析】解:(1)设抽取x人,则,解得x=2,即年龄在20:39岁之间应抽取2人.(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A,B,在40:59岁之间为a,b,c,随机选取2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,年龄都在40:59岁之间的有(a,b),(a,c),(b,c),共3种,则对应的概率P=.【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 - 云南省云天化中学2017-2018学年高二数学下学期周练8
1.若(a x 2
5的展开式中x 5的系数是—80,则实数a=_______. 2.已知双曲线E 1:22
221x y a b
-=(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 3.如图所示,在边长为1的正方形OABC 中任取一点P ,则点
P 恰好取自阴影部分的概率为( )
4. 以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的标准线于D ,E 两点.已知|AB
|=|
DE|=C 的焦点到准线的距离为 . 5.n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,. (I )求111101b b b ,,; (I I )求数列{}n b 的前1 000项和.
6.已知函数ln ()(e x x k f x k +=
为常数,e=2.718 28…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.
(1)求k 的值. (2)求()f x 的单调区间.
(3)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.。

相关文档
最新文档