随机抽号

合集下载

【】简单随机抽样

【】简单随机抽样

3.抽签法的步骤
(1)将总体中的所有个体编号(号码可以从1到N); (2)将1到N这N个号码写在形状、大小相同的号签上(号签可
以用小球、卡片、纸条等制作); (3)将号签放在同一箱中,并搅拌均匀;
(4)从箱中每次抽出1个号签,并记录其编号,连续抽取n次;
(5)从总体中将与抽到的号签编号相一致的个体取出.
(2)在利用抽签法抽取编号时可视情况而定,若已知编号,如学号、考号等可直接使用.但一定要保证抽样的公平性. (3)从选定的数开始按一定的方向读下去,得到的号码若不在编号中,则跳过;
(2)仓库中有1万支奥运火炬,从中一次性抽取100支 第四步:相应编号的男生参加合唱.
(4)将总体中的个体编号时与抽签法有所不同,须使个体编号位数相同,以便于运用随机数表.
这样就得到一个容量为n的样本.对个体编
号时,也可以利用已有的编号,如从全体学生中 抽取样本时,利用学生的学号作为编号.
4.随机数表法的步骤 (1)对总体的个体进行编号(每个号码位数一致); (2)在随机数表中_任__选__一__个__数__作为开始; (3)从选定的数开始按一定的方向读下去,得到的 号码若不在编号中,则跳过;若在编号中,则取出; 如果得到的号码前面已经取出,也跳过;如此继续 下去,直到取满为止; (4)根据选定的号码抽取样本.
一、课堂引入
, 你准备怎么做?显然,不可能对所有的饼干进 行一一检验,只能从中抽取一定数量的饼干作 为检验的样本.为了使得到的结果更加真实可 靠,我们不能按顺序来抽取,而往往采用随机 抽样的方法来进行抽取.如何获得比较合理的 样本?这就是我们本节课要研究的问题.
(4)根据选定的号码抽取样本.
(3)某连队从200名党员官兵中,挑选出50名最优秀 自我挑战2 学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班

ppt随机抽号程序(原始)

ppt随机抽号程序(原始)
于俊杰
开始
冯晓庆 胡钰琪 胡悦 黄聪聪 黄宽宽 李继丹 梁家豪 刘坤 刘筱萍 卢新月 申健 宋冰倩 王梦恩 王清清 徐子寒 许艺飞 闫梦月 张景娜 张梦洁 周倩倩 周泉 李杭 刘锦阳 刘炜 炜 程晓涵 张银银 陈瑞敏 焦晨斌 宋晓庆 付海东范顺利 王龙扬 王孜卓 祁志杰 李雅琪 翟梦想 韩阳 马静楠 冯雪瑞 岳华 张洁 张逍丽 陈佳雯 柳晨笑 柳玉 王炎 刘美美 张梦 娜 王琳珊 王亚杰 许巧丽 吴昊 程婉卿 田贝贝 吴倩倩 韩超锋 刘怡 张品 任肖 周文博 李英武 刘煜伦 张昊 万晶亮 张玉航 白潇雨 张德博 谢天峰 陈春红 张心雨 但若兰 孟 洁 刘念念 李金璐 邓海月 邓韶娟 商冉 王原 晋燕燕 张赢博 秦

简单随机抽样

简单随机抽样

随机数表的制作
随机数表是人们根据需要编制出来的,由0,1,2,3,4, 5,6,7,8,9十个数字组成,表中每一个数字都是用随机方法 产生的(称为"随机数").随机数的产生方法主要有抽签法、 抛掷骰子法和计算机生成法 . (1)抽签法:用0,1,2,3,4,5,6,7,8,9十个数字做十个签, 放入一个箱中并搅拌均匀,再从箱中每次抽出一个签并记 下签的数码,再放回箱中,如此重复进行下去即可得到一 个随机数表 . 若需要两位数表,则将所得的各个数码按顺序两两连 在一起.如01,07,15,34,76,93, ··· 若需要三位数表,就三三连在一起,如012,321,249, 460,634,105,···
一般地,用抽签法从个体个数为N的总体中抽取一 个容量为k的样本的步骤为:
(1)将总体中的所有个体编号(号码可以从1到N); (2)将1到N这N个号码写在形状、大小相同的号签上; (3)将号签放在同一箱中,并搅拌均匀; (4)从箱中每次抽取一个号签,并记录其编号,连续抽 取k次; (5)从总体中将与抽到的签的编号相一致的个体取出.
抽签法简单易行 , 适用于总体中个体数不多的情形 .
例1.(1)简单随机抽样中,对于每一个个体被抽取的 可能性的判断正确的是( B ) A.与每次抽样有关,第一次抽中的能性要大一些; B.与每次抽样无关,每次抽中的可能性相等; C.与每次抽样有关,最后一次抽中的可能性要大一些; D.与每次抽样无关,每次都是等可能性抽取,但各次抽 取的可能性不一样.
(3) 从选定的数开始按一定的方向读下去, 得到的数码 若不在编号中,则跳过;若在编号中, 则取出;如果得到 的号码前面已经取出, 也跳过;如此继续下去,直到取满 为止 ; (4) 根据选定的号码抽取样本 .

三种抽样方法之简单随机抽样详解

三种抽样方法之简单随机抽样详解
体的一个样本。 样本容量:样本中个体的数目。
第一种重要的科学的抽样方法
2.1.1简单随机抽样
简单随机抽样
思考
问题: 如何科学地抽取样本?
使得样本能比较准确地反映总体
搅拌均匀 使得每个个体被抽取的机会均等
合理、公平
简单随机抽样
实例一
现从我校高二(29)班41名同 学中任选取10名参加元旦文艺汇演, 为保证选取的公平性,你打算如何 操作?
用样本估计总体,即当总体容量很大或检 测过程具有一定的破坏性时,通常不直接去研 究总体,而是通过从总体中抽取一个样本,根 据样本的情况去估计总体的相应情况。
要了解全国高中生的视力情况,在全国抽取了 15所中学的全部高中生15000人进行视力测试。
考察对象是什么? 全国每位高中学生的视力。 在统计中,我们把所要考察的对象的全体叫做 总体, 把组成总体的每一个考察的对象叫做个体
左、向上、向下等),得到一个 三位数 785,由于785<
799,说明号码785在总体内,将它取出;继续向右读,得到
916,由于916>799,将它去掉,按照这种方法继续向右读,
又取出567,199,507,…,依次下去,直到样本的60个号码
全部取出,这样我们就得到一个容量为60的样本.
简单随机抽样
抽签法
随机数表法
A.① B.② C.③ D.以上都不对
B 2.在简单随机抽样中,某一个个体被抽中的可能性是( )
A.与第n次抽样无关,第一次抽中的可能性大一些;
B.与第n次抽样无关,每次抽中的可能性都相等;
C.与第n次抽样无关,最后一次抽中的可能性大一些;
D.与第n次抽样无关,每次都是等可能抽样,但每次抽中的可 能性不一样;

简单随机抽样

简单随机抽样

2.2.2简单估计量 方差与协方

y
1、简单估计量y 的方差
证明: 方法一: 根据方差的定义和性质,
显然有
V ( y) E( y Y )2 1 Eny Y 2
n2
1 n2
n E i1
( yi
2
Y )
=
1
n2
E
n i 1
( yi
Y
)2
2E
n i j
( yi
Y
)( y j
N i1
Yi
E(y)
y CnN
1 n
Cn1 N1
N i1
CnN
Yi
1 N
N i1
Yi
Y
证明2:(对称性论证法)
y
1 n
n i1
yi
E(y)
1 n
E(
n i1
yi
)
1 n
n N
N i1
Yi
1 N
N i1
Yi
Y
证明3:从总体规模为N的总体中抽取一个 容量为n的简单随机样本。若对总体中每个 单元,如引理2.2引进随机变量即可完成证 明。参见34页。
2、随机数骰子及其使用方法
随机数骰子是由均匀材料制成的正二十面体(通常的骰子是正 六面体,即正方体),面上刻有0-9的数字各2个。每盒骰子 由盒体、盒盖、泡沫塑料垫及若干个(通常是3-6个)不同颜色 的骰子组成。使用随机数骰子时可以像普通骰子那样用投掷 的方法。但正规的方法是将一个或n个骰子放在盒中,拿去泡 沫塑料垫,水平地摇动盒子,使骰子充分旋转,最后打开盒 子,读出骰子表示的数字。一个骰子一次产生一个0-9的随 机数。要产生一个m位数字的随机数,就需要同时使用m个骰 子(事先规定好每种颜色所代表的位数,例如红色表示百位数 ,蓝色表示十位数,黄色表示个位数等),或将一个骰子使用 m次(规定第一次产生的数字为最高位数,最后一次产生的数 字为最末位即个位数字等)。特别规定m个骰子的数字(或一个 骰子m次产生的数字)都为0时,表示10m。

抽样方法——随机抽样、系统抽样、分层抽样

抽样方法——随机抽样、系统抽样、分层抽样

确定分段间隔k=5,将编号分段 1~5,6~10,…,291~295; 采用简单随机抽样的方法,从第一组5名 学生中抽出一名学生,如确定编号为3的学生, 依次取出的学生编号为3,8,13,…,288,293 , 这样就得到一个样本容量为59的样本.
例2:一个总体中有100个个体,随机编号为 0,1,2,…,99,依编号顺序平均分成10个小组,组 号分别为1,2,3,…,10.现用系统抽样方法抽取一 个容量为10的样本,规定如果在第1组随机抽取 的号码为m,那么在第k组抽取的号码个位数字 与m+k的个位数字相同.若m=6,则在第7组中抽 取的号码是______. 解析:依编号顺序平均分成的10个小组分 别为0~9, 10~19, 20~29, 30~39, 40~49,50~59,60~69,70~79,80~89,90~99.因第 7组抽取的号码个位数字应是3,所以抽取的号码 是63.这个样本的号码依次是 6,18,29,30,41,52,63,74,85,96这10个号.
步 骤: 编号、选数、取号、抽取.
简单随机抽样
一般地,设一个总体的个体数为N,如果 通过逐个不放回抽取的方法从中抽取n个个体 作为样本,且每个体被抽到的概率相等,就 称这样的抽样方法为简单随机抽样。
简单随机抽样的特点:
它的总体个数有限的;
有限性 逐个性 不回性
它是逐个地进行抽取;
它是一种不放回抽样;
被抽取进行检查的80个灯泡的每个灯泡的 使用期限的集体,就叫做总体的一个样本。
实例一
为了了解高一(1)班50名 同学的视力情况,从中抽取10 名同学进行检查。
请问: (1)此例中总体、个体、样本、样本容 量分别是什么? (2)如何抽取呢?
开始
50名同学从1到50编号

2.1.1简单随机抽样2

2.1.1简单随机抽样2
第三步:从数“7”开始,向右读,每次读取2位,凡不在 01~59中的数跳过去不读,前面已经读过的也跳过去不读, 依次可得到:59,16,55,19,10,50;
第四步:以上号码对应的6名同学就是要抽取的对象。
2.1 随机抽样
2.1.2 系统抽样
探究:某学校为了了解高一年级学生对教师教学
的意见,打算从高一年级500名学生中抽取50名进
一般地,在抽样时,将总体分成互不交叉的 层,然后按照一定的比例,从各层独立地抽 取一定数量的个体,将各层取出的个体合在 一起作为样本,这种抽样方法叫作分层抽样。
练习1:一批电视机中,有TCL厂生产的56台,长 虹厂生产的42台,用分层抽样的方法从中抽出一个 容量为14的样本。试确定各厂被抽取电视机的台数。
2.1.3 分层抽样
探究:
例1:假设某地区有高中
近视率/%
生2400人,初中生
80 60
10900人,小学生
40
11000人.
20 0 小学
初中
高中 年级
此地区教育部门为了了解本地区中小学生的近 视情况及其形成原因,要从本地区的中小学生 中抽取1%的学生进行调查,你认为应当怎样抽 取样本?
分层抽样概念:
练习2:要从班里62名同学中抽出12名同学参加 活动,试设计抽样方案。
第一步:将62个个体编号,号码是1,2,…,62;
第二步:用随机数表法随机抽取2个号码,如14,38,将 编号为14,38的2个号码剔除;
第三步:将剩下的60名同学重新编号,号码为1, 2,…, 60,由于 60÷12=5,则间隔为5,将编号按顺序每5个一 段,分成12段;
后勤的人数分别为
、13 4、
。3
3. 在120个零件中,一级品24个,二级品36个,三级 品60个,从全部零件中抽取容量为20的样本,则每

抽样方法有几种

抽样方法有几种

抽样方法有几种抽样方法主要包括:随机抽样、分层抽样、整体抽样、系统抽样随机抽样随机抽样要求严格遵循概率原则,每个抽样单元被抽中的概率相同,并且可以重现。

随机抽样常常用于总体个数较少时,它的主要特征是从总体中逐个抽取。

[1]随机抽样可以分为单纯随机抽样、系统抽样、分层抽样以及整群抽样。

主要方法(1)抽签法。

一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

抽签法简单易行,适用于总体中的个数不多时。

当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大。

(2)随机数法。

随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

[1]特点(1)优点:操作简便易行;(2)缺点:总体过大不易实行。

[1]分层抽样定义分层抽样是指在抽样时,将总体分成互不相交 [2]的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本的方法。

层内变异越小越好,层间变异越大越好。

群体所抽取的个体数方法分层以后,在每一层进行简单随机抽样,不同群体所抽取的个体个数,一般有三种方法:(1)等数分配法,即对每一层都分配同样的个体数;(2)等比分配法,即让每一层抽得的个体数与该类总体的个体数之比都相同;(3)最优分配法,即各层抽得的样本数与所抽得的总样本数之比等于该层方差与各类方差之和的比。

[3]优点(1)减小抽样误差,分层后增加了层内的同质性,因而可使观察值的变异度减小,各层的抽样误差减小。

在样本含量相同的情况下.分层抽样总的标准误一般均小于单纯随机抽样、系统抽样和整群抽样的标准误。

(2)抽样方法灵活,可以根据各层的具体情况对不同的层采用不同的抽样方法。

如调查某地居民某病患病率,分为城、乡两层。

城镇人口集中.可考虑系统抽样方法;农村人口分散,可采用整群抽样方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档