数模转换器设计与应用技术
AD7568 数模转换器的特点与应用

AD7568 数模转换器的特点与应用四川省英世模拟器件有限公司(610041) 吴星明内容提要:AD7568是一种串行输入数据,电流输出数模转换器(DAC)。
在一块芯片上含有八个独立的12位DAC,具有四象限乘法功能。
各自独立的基准源,单电源工作,具有复位功能与同步校正能力。
还具有体积小,功耗很低等特点。
因此,AD7568 在各个领域都得到了广泛的应用。
本文简要地介绍了AD7568 的主要特点与主要技术指标及其使用方法。
关健词:同步校正,移位寄存器AD7568 是一种采用LC2MOS 技术制造的八通道12位数模转换器,它是美国AnalogDevices Inc.(简称ADI公司)生产的一种新器件。
在一块芯片上,含有八个独立的12位乘法DAC。
因此,它具有体积小,功耗低(典型值为1mW)的特点。
特别适用于多通道、小体积的应用场合。
本文将介绍AD7568 的基本特点与基本用法,供广大读者参考。
一、AD7568 基本特点与主要技术指标AD7568的基本特点:AD7568 的数据接口是一种串行输入数据方式的接口。
它具有独立基准源的八个四象限乘法DAC,还具有同步校正能力与复位功能。
工作时仅需5V电源,而且功耗很低,仅需1mW。
AD7568 芯片内含有移位寄存器、数字控制逻辑电路、八个独立的12位DAC,每个通道都有二级锁存器及独立的基准源。
它的功能框图及各引脚排列如图1a,1b所示。
AD7568 目前只有一种AD7568BS产品,工作温度范围-40~+85°C。
封装形式是44 脚的塑料方形扁平封装(PQFP),它的引脚排列见图1b。
AD7568 的数据输入方式是串行输入,输出方式是电流输出。
数据输入由三个信号FSIN、CLKIN和SDIN 控制。
输入、输出的时序关系如图2所示。
当AD7568 接收到信号时,逻辑时序与DAC 选中的关系列于表1。
AD7568BS 的主要技术指标:分辨率:12位相对精度:差分线性误差:增益误差:Tmin~Tmax最大±5LSB高电平输入:最小图1a AD7568 的功能框图图1b AD7568引脚排列图应用专文注:A0是由硬件实现的高或低电平图2 AD7568 时序关系图表1a AD7568 装入顺序表1b AD7568 选中DAC 通道低电平输入:最大电源电压:+5V通道数:8通道极限参数:V DD 对DGND:-V~+6VV RFB 、V RFE 对DGND:±15V75°C时极限功耗:250mW二、AD7568 的使用方法AD7568 是一种乘法数模转换器,它具有八个独立通道,采用独立的基准电压。
8位数模转换器ADC0809实验报告

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
单片机原理与接口技术
课程设计说明书
8位数模转换器ADC0809项目设计
专业
电气工程及其自动化
学生姓名
林雯雯
班级
D电气122
学号
1220601220
指导教师
周云龙
完成日期
2015年12月12日
一 理论部分
1
8位数模转换器ADC0809实验
(1)、设计一个0-5V可调的直流模拟电压信号
(2)、扩展2位静态显示的数码管
XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
XTAL2:来自反向振荡器的输出。
特性概述:
AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。
数模转换器电路设计

数模转换器电路设计一、引言数模转换器(DAC)是数字信号处理系统中的重要组成部分,用于将数字信号转换为模拟信号。
随着数字信号处理技术的不断发展,数模转换器的应用领域越来越广泛,如音频处理、图像显示、通信系统等。
因此,设计高性能的数模转换器电路具有重要意义。
本文将介绍数模转换器的基本原理、性能指标、电路设计、测试与验证等方面。
二、数模转换器的基本原理数模转换器的基本原理是将数字信号转换为模拟信号。
它通常由数字输入、解码器、权重电流源、运算放大器和模拟输出等部分组成。
数字输入接收到一个二进制数字信号,解码器将其转换为相应的二进制代码。
权重电流源根据二进制代码输出相应的电流,运算放大器将电流转换为电压,最后得到模拟输出信号。
三、数模转换器的性能指标数模转换器的性能指标主要包括分辨率、精度、速度、线性度等。
1.分辨率:数模转换器的分辨率是指其能够表示的最大二进制位数,通常以位(bit)为单位表示。
分辨率越高,能够表示的数字信号范围越大。
2.精度:数模转换器的精度是指其模拟输出信号与理想输出信号之间的误差。
精度通常以LSB(Least Significant Bit)为单位表示。
精度越高,误差越小。
3.速度:数模转换器的速度是指其完成数模转换所需的时间。
速度越快,转换效率越高。
4.线性度:数模转换器的线性度是指其模拟输出信号与数字输入信号之间的线性关系。
线性度越高,输出信号越接近理想值。
四、数模转换器的电路设计数模转换器的电路设计主要包括解码器设计、权重电流源设计和运算放大器设计等。
1.解码器设计:解码器的作用是将数字输入信号解码成相应的二进制代码。
根据需要,可以选择不同的解码算法,如二进制解码、格雷码解码等。
在设计解码器时,需要考虑数字信号的时序和逻辑电平。
2.权重电流源设计:权重电流源是根据二进制代码输出相应电流的电路部分。
在设计权重电流源时,需要考虑电流的精度和匹配性。
常用的电流源电路有电流镜和跨导放大器等。
模数、数模转换及其应用论文

模数、数模转换及其应用摘要:随着电子技术的迅速发展以及计算机在自动检测和自动控制系统中的广泛应用,利用电子系统处理模拟信号的情况变得更加普遍。
数字电子计算机所处理的都是不连续的数字信号,而实际遇到的大都是连续的模拟量,模拟量经过传感器转换成电信号的模拟量后,需经过模/数转换变成数字信号后才可输入到数字系统中进行处理和控制。
同时,往往还要求将处理后得到的数字信号再经过数/模转换成相应的模拟信号,作为最后的输出。
模数、数模转换建立在各种转换电路的基础上,并且不断改进模数、数模转换器的转换精度与转换速度。
模数、数模转换技术在工业中有着重要的应用。
关键字:电子系统模数转换器数模转换器转换技术的应用Digital to analog、digital to analog conversion and its application Abstract: With the rapid development of electronic technology and computer in the automatic detection and automatic control system in the broad application, the use of electronic system for processing analog signal conditions become more common. Digital electronic computer processing are not continuous digital signal, but actually encountered mostly continuous analog, analog quantity sensor is converted into electrical signals by analog, after A / D conversion into digital signal can be input to a digital system for processing and control. At the same time, also often seek treatment received digital signals through D / A conversion into a corresponding analog signal, as the final output. ADC, DAC based on conversion circuit based on continuous improvement, and module, digital to analog converter conversion precision and conversion rate. ADC,DAC technology in industry has important applications.Key words: electronic system;analog to digital converter;digital to analog converter;conversion technology application1引言作为把模拟电量转换成数字量或数字量转换成模拟电量输出的接口电路,转换器是现实世界中模拟信号通向数字信号的桥梁,是电子技术发展的关键和瓶颈所在。
数模转换器工作原理

数模转换器工作原理数模转换器(ADC)是一种电子设备,它可以将连续的模拟信号转换成离散的数字信号。
这种转换器在现代电子设备中被广泛应用,比如数字音频设备、数字电视、数字相机等等。
在这篇文章中,我们将深入探讨数模转换器的工作原理,了解它是如何将模拟信号转换成数字信号的。
首先,让我们来了解一下模拟信号和数字信号的概念。
模拟信号是连续变化的信号,它可以取任意的数值。
比如我们平时听到的声音、看到的图像等都是模拟信号。
而数字信号是离散的信号,它只能取有限个数值。
在计算机和数字设备中,所有的信号最终都会被转换成数字信号进行处理。
数模转换器的工作原理可以分为三个主要步骤,采样、量化和编码。
首先是采样,即将连续的模拟信号在时间上进行离散化。
这个过程是通过一个时钟信号来控制的,时钟信号会以一定的频率对模拟信号进行采样,将连续的信号转换成离散的信号。
采样的频率通常以赫兹(Hz)为单位,常见的采样频率有44.1kHz、48kHz等等。
接下来是量化,即将采样得到的离散信号转换成数字信号。
量化的过程是通过一个模数转换器(ADC)来完成的。
模数转换器会将采样得到的离散信号转换成一系列的数字代码,这些代码代表了信号的幅度。
量化的精度通常以位数来表示,比如8位、16位、24位等等,位数越多,表示精度越高,能够更准确地表示原始信号的幅度。
最后是编码,即将量化得到的数字代码转换成二进制形式。
这个过程通常是通过一个编码器来完成的,编码器会将数字代码转换成二进制形式,以便于数字设备进行处理和存储。
总的来说,数模转换器的工作原理可以简单概括为将连续的模拟信号经过采样、量化和编码三个步骤转换成离散的数字信号。
这种转换过程是通过时钟信号、模数转换器和编码器来完成的。
数模转换器的性能取决于采样频率、量化精度和编码方式,不同的应用场景需要选择合适的数模转换器来满足其要求。
在实际应用中,数模转换器的性能对于信号的质量和精度有着重要的影响。
因此,在设计数字设备和电子系统时,需要根据具体的应用需求选择合适的数模转换器,以确保信号的准确性和稳定性。
数模转换器接口技术应用

双缓冲方式的接口和应用
——两个锁存器都接成受控锁存方式。 两个锁存器都接成受控锁存方式。 都接成受控锁存方式
WR 8031 WR1 WR2 XFER CS ILE
你知道它与第二种 单缓冲方式的区别 吗?
Y6
锁 存 器 译 码 器
输入寄存器地址: 输入寄存器地址:00E0H DAC寄存器地址:00C0H 寄存器地址: 寄存器地址 对一个数字量的转换, 对一个数字量的转换,需 两步完成,程序如下: 两步完成,程序如下:
源程序清单如下: 源程序清单如下: ORG 0200 MOV DPTR,#0E000H DPTR, MOV A,#00H A, WW: MOVX @DPTR,A @DPTR, INC A NOP NOP AJMP WW ;延时 ;指向输入寄存器地址 ;转换初值 ;WR1有效,启动D/A转换 WR1有效 启动D/A转换 有效,
单片机 D/A转换 D/A转换 控制对象
D/A转换器的主要指标 D/A转换器的主要指标
转换速度:一般几十微秒到几百微秒,快速的可达1微秒。 转换速度:一般几十微秒到几百微秒,快速的可达1微秒。 转换精度(分辨率):决定于输入数字量的位数,位数越多, 转换精度(分辨率):决定于输入数字量的位数,位数越多, ):决定于输入数字量的位数 精度越高。 精度越高。
ILE=1,WR1=0时:直通 ILE=1,WR1=1时:锁存
XFER,WR2:控制DAC寄存器 XFER,WR2:控制DAC寄存器
XFER=0,WR2=0时:直通 XFER=1 or WR2=1时:锁存
单缓冲方式的接口( 单缓冲方式的接口(1)
——一个处于直通方式, ——一个处于直通方式,另一个处于受控的锁存方式 一个处于直通方式
数模转换与模数转换

数模转换与模数转换数模转换(Digital-to-Analog Conversion,简称DAC)和模数转换(Analog-to-Digital Conversion,简称ADC)是数字信号处理中常用的两种信号转换方法。
数模转换将数字信号转换为模拟信号,而模数转换则将模拟信号转换为数字信号。
本文将就数模转换和模数转换的原理、应用以及未来发展进行探讨。
一、数模转换(DAC)数模转换是将数字信号转换为模拟信号的过程。
在数字系统中,所有信号都以离散的形式存在,如二进制码。
为了能够将数字信号用于模拟系统中,需要将其转换为模拟信号,从而使得数字系统与模拟系统能够进行有效的接口连接。
数模转换的原理是根据数字信号的离散性质,在模拟信号上建立相似的离散形式。
常用的数模转换方法有脉冲幅度调制(Pulse Amplitude Modulation,简称PAM),脉冲宽度调制(Pulse Width Modulation,简称PWM)和脉冲位置调制(Pulse Position Modulation,简称PPM)等。
这些方法根据传输信号的不同特点,在转换过程中产生连续的模拟信号。
数模转换在很多领域有广泛应用。
例如,在音频领域,将数字音频信号转换为模拟音频信号,使得数字音频可以通过扬声器播放出来。
另外,在电信领域,将数字信号转换为模拟信号后,可以用于传输、调制解调、功率放大等过程。
二、模数转换(ADC)模数转换是将模拟信号转换为数字信号的过程。
模拟信号具有连续的特点,而数字系统只能处理离散的信号。
因此,当需要将模拟信号用于数字系统时,就需要将其转换为数字形式。
模数转换的原理是通过采样和量化来实现。
采样是将模拟信号在时间上进行离散化,而量化是将采样信号在幅度上进行离散化。
通过这两个过程,可以将连续的模拟信号转换为离散的数字信号。
模数转换在很多领域都有应用。
例如,在音频领域,将模拟音频信号转换为数字音频信号,使得音频信号可以被数字设备处理和存储。
数模和模数转换器的应用

的内容在DAC 寄存器中锁存。
• (3) 进入DAC 寄存器的数据送入D/ A 转换器转换成模拟信号, 且随时 可读取。DAC0832 在不同信号组合的控制下可实现三种工作方式: 双缓冲器型、单缓冲器型和直通型, 如图8-6 所示。
上一页 下一页 返回
8. 2 数/ 模转换器(DAC)
• ①双缓冲器方式, 如图8-6 (a) 所示: 首先, 给
下一页 返回
8. 3 模/ 数转换器(ADC)
• 1. 取样和保持 • 取样(又称抽样或采样) 是将时间上连续变化的模拟信号转换为时间上
离散的模拟信号, 即转换为一系列等间隔的脉冲。其过程如图8-7 信 号, UO 为取样后输出信号。 • 取样电路实质上是一个受控开关。在取样脉冲CP 有效期τ 内, 取样开 关接通, 使UO =UI; 在其他时间(Ts -τ) 内, 输出UO =0。因此, 每经过一 个取样周期, 在输出端便得到输入信号的一个取样值。 • 为了不失真地用取样后的输出信号UO 来表示输入模拟信号UI, 取样频 率f s 必须满足fs≥2fmax (此式为取样定理)。其中, fmax 为输入信号UI 的 上限频率(即最高次谐波分量的频率)。
• 倒T 型电阻网络DAC 的组成框图如图8-2 所示, 数据锁存器用来暂时 存放输入的数字量, 这些数字量控制模拟电子开关, 将参考电压源UREF 按位切换到电阻译码网络中变成加权电流, 然后经运放求和输出相应 的模拟电压, 完成D/ A 转换过程。
下一页 返回
8. 2 数/ 模转换器(DAC)
输入寄存器直接存入DAC 寄存器中并进行转换。这种工作方式称为
单缓冲方式, 即通过控制一个寄存器的锁存, 达到使两个寄存器同时选
通及锁存。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数模转换器设计与应用技术数模转换器是现代电子技术领域中一项重要的技术,它可以将数字信号转换为模拟信号,实现数字与模拟之间的互相转换。
在多种应用中,数模转换器都发挥着不可或缺的作用。
本文将介绍数模转换器的设计原理和应用技术。
一、数模转换器的设计原理
1.1 数模转换器的基本概念
数模转换器是一种电路,它可以将数字信号转换为模拟信号。
数字信号的特点是离散的,而模拟信号是连续的。
通过数模转换器,我们可以将数字信息转换为连续的电压信号,以供后续的处理和分析。
1.2 数模转换器的基本结构
数模转换器通常由模数转换器(ADC)和数模转换器(DAC)两部分组成。
其中,ADC将模拟信号转换为数字信号,而DAC则将数字信号转换为模拟信号。
1.3 数模转换器的工作原理
数模转换器的工作原理基于采样和量化的概念。
首先,采样器会周期性地对模拟信号进行采样,将连续的信号转换为离散的采样值。
接下来,量化器会对采样值进行量化处理,将其转换为离散的数字值。
最后,DAC会将数字值转换为相应的模拟信号输出。
二、数模转换器的应用技术
2.1 音频领域中的应用
数模转换器在音频领域中有广泛的应用。
例如,在音频播放器中,DAC起到将数字音频信号转换为模拟音频信号的作用,以供耳机或扬声器播放。
另外,ADC也常用于音频采集领域,将模拟音频信号转换为数字音频信号进行存储和处理。
2.2 通信领域中的应用
在通信领域中,数模转换器也扮演着重要的角色。
例如,在数码电视和无线通信系统中,ADC会将模拟视频信号或模拟音频信号转换为数字信号进行传输和处理。
而DAC则在数字调制解调器中将数字信号转换为模拟信号,以供解调和输出。
2.3 测量与控制领域中的应用
在测量和控制领域中,数模转换器也应用广泛。
例如,在温度传感器中,ADC会将模拟温度信号转换为数字信号进行测量和控制。
而在机器人控制系统中,DAC会将数字信号转换为模拟控制信号,以控制机器人的运动和动作。
2.4 图像与视频领域中的应用
在图像与视频处理领域,数模转换器也发挥着重要的作用。
例如,数码相机中的ADC会将模拟图像信号转换为数字信号进行图像采集和存储。
而在数字显示器中,DAC则将数字图像信号转换为模拟信号进行显示。
三、数模转换器的发展趋势
随着科技的不断发展,数模转换器也在不断创新与改进。
未来,数模转换器的发展趋势主要体现在以下几个方面:
3.1 高精度和高速率
随着应用需求的增加,数模转换器需要具备更高的精度和更快的速率。
未来的数模转换器将更加注重信号的精细度和转换速度,以满足各种复杂应用的需求。
3.2 低功耗和小尺寸
随着电子设备的迅速发展,对数模转换器的功耗和尺寸也提出了更高的要求。
未来的数模转换器将趋向于低功耗和小尺寸,以适应移动设备和嵌入式系统等应用场景。
3.3 集成化和智能化
未来的数模转换器将趋向于集成化和智能化。
通过集成更多的功能和算法,数模转换器可以实现更多样化的应用,并提供更方便的用户体验。
总结起来,数模转换器是一项重要的技术,通过将数字信号转换为模拟信号,实现了数字与模拟之间的互相转换。
它在音频、通信、测量与控制、图像与视频等领域都有广泛的应用。
未来,数模转换器将以高精度、高速率、低功耗、小尺寸、集成化和智能化的方向发展,为各行各业带来更多的创新和便利。