空气分离的原理
3-空气分离原理

3 空气分离原理3.1 概述本装置的氮气、氧气、氩气采用低温精馏方法从空气中分离出来的,通过若干物理过程来实现,这些过程包括:1)空气压缩,其最基本的作用是使流体获得能工艺线路输送所需的能量及工艺要求。
2)物理吸附法,脱除掉所有可能在低温下凝固的杂质。
3)换热:使热空气降温和低温液体产品复热气化。
4)产冷:a.为了开车启动期间的逐渐降温。
b.补偿系统的冷损(主要是由于空气与产品气之间的温差、产液体以及装置的跑冷损失造成的)。
5)脱除冷凝蒸发器中的有害杂质,降低冷凝蒸发器中易与氧发生危险反应的有害杂质(如碳氢化合物)的含量。
6)低温物理分离工艺,使空气中的氮、氧分离。
3.2空分装置主要流路图3.1空分装置主要流路3.2.1 冷箱物料平衡及热量平衡关系表 3.1 冷箱物料平衡及热量平衡关系3.2.2 在气体分离、液化或压缩的过程中所消耗的能量(主要是蒸汽和电的能量)图3.2 能量流向示意图P0:大气压力 T0:大气温度P:限定温度下的压力 Te:在P0压力下的蒸发温度3.3 自洁式过滤器原理3.3.1 过滤过程空气经过过滤筒,由于重力、惯性扩散、静电、接触阻力等综合作用,灰尘沉降、堆积在过滤元件上,干净空气经文氏管再到出风口送出。
3.3.2 自洁过程空气过滤元件上的灰尘,用定时或定差压的方式,由微电脑自动控制,依次对过滤筒反吹,将沉降物的颗粒灰尘吹落到大气中,每次仅一组(六个)过滤筒处于自洁过程,间隔时间为30秒,其它过滤筒仍处于正常过滤工作状态,过滤器照常运行。
3.4 空气预冷系统3.4.1 预冷的作用原理预冷系统设置在空气压缩机与纯化器之间,由空气冷却塔、水冷塔、螺杆式冷水机组、氨冷器及四台多级离心式水泵组成,起到降低进纯化器空气温度、减少空气中的含水量,提高分子筛的吸附值的作用。
同时,经水洗的空气可去除某些可溶性有害物质,如NH3、SO2、NO2、Cl2、HCl等,也可除去空气中部分固体颗粒。
2_1_空气分离的基本原理

分子筛——硅酸盐
《煤炭气化工艺》
分子筛
分子筛的吸附顺序
。
CH4 C2H6 C3H8 N2O C2H4
CO2 C2H2 C3H6 nC4H10 iC4H10 C6H6 C3H6O O3 NO
H2O
甲烷 乙烷 丙烷 一氧化二氮 乙烯 二氧化碳 乙炔 丙烯 正丁烷 异丁烷 苯 丙酮 臭氧 一氧化氮 水
3、液化精馏工艺流程分为空气的净化、空 气的液化、空气的分离三个工序。
2-2 空气分离的工艺流程
一、空气的净化 1、机械杂质的脱除
空气中灰尘的处理大多以过滤为主,并辅 以惯性和离心式来处理,大中型空分均使 用无油干式除尘器。目前国内外空分装置 使用的气体过滤器有:
惯性除尘器---初步除尘
原理:是根据空气中各组分的沸点不同,经加压、预冷、纯化、 并利用大部分由透平膨胀机提供的冷量使之液化,再进行精馏, 从而获得所需要的氧气、氮气及其它稀有气体的过程。具体原理 为空气经过增压膨胀对外作功处于冷凝温度,当穿过比它温度低的 氧、氮组成的液体层时,由于气、液之间温度差的存在,要进行热交 换,温度低的液体吸收热量开始蒸发,其中氮组分首先蒸发,温度较高 的气体冷凝,放出冷凝热,气体冷凝时,首先冷凝氧组分.此过程一直 进行到气、液处于平衡状态。这时,液相由于蒸发,使氮组分减少,同 时由于气相冷凝的氧也进入液相,因此液相的氧浓度增加了,同样气 相由于冷凝,使氧组分减少,同时由于液相的氮进入气相,因此气相的 氮浓度增加了.
0% 0% 50 % 50 % 70 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
2.空气的液化 空气的液化必须采用深冷技术 深冷技术:工业上常将获得-100oC以下温度的方法称为深 度冷冻法,简称深冷法 工业上深度冷冻一般利用高压气体进行绝热膨胀来获得 低温 (1)节流膨胀---对外不做功
空气分离原理

空气分离原理
空气分离原理是指将空气中的氧气、氮气和其他气体分离出来的过程。
空气主要由氮气(约占78%)和氧气(约占21%)
以及少量的水蒸气、氩气、二氧化碳等组成。
空气分离的方法有多种,常见的包括压力摩擦吸附(Pressure Swing Adsorption,简称PSA)、膜分离和气体液化等技术。
以下是其中两种常见的空气分离原理:
1. 压力摩擦吸附技术(PSA):该技术利用吸附剂对气体分子
的吸附选择性来实现分离。
通常情况下,吸附剂对氮气的亲和力较强,因此当空气通入吸附塔时,氮气会被吸附在吸附剂表面,而氧气等其他气体则通过吸附剂层,得到分离。
然后,在降低吸附塔的压力或提高吸附塔温度的条件下,吸附剂释放出吸附的氮气,以再生吸附剂,实现气体的分离和提纯。
2. 气体液化技术:该技术利用气体的不同沸点来实现分离。
根据不同气体的沸点特性,通过降低空气温度使其达到沸点以下,将氧气等易液化气体液化收集,而将剩余的氮气通过分流器排出。
这一方法主要应用于工业氧气和工业氮气的生产中,因为在常温下氧气的沸点较低,而氮气的沸点较高,利用这一特性可实现它们的分离。
综上所述,空气分离原理主要包括压力摩擦吸附技术和气体液化技术。
这些技术能够根据气体的物理化学性质实现对氧气、氮气等气体的有效分离和提纯,为空气分离行业提供了重要的技术基础。
空气分离的基本原理

3、液化精馏工艺流程分为空气的净化、空 气的液化、空气的分离三个工序。
2-2 空气分离的工艺流程
一、空气的净化 1、机械杂质的脱除
空气中灰尘的处理大多以过滤为主,并辅以 惯性和离心式来处理,大中型空分均使用 无油干式除尘器。目前国内外空分装置使 用的气体过滤器有:
惯性除尘器---初步除尘
7
2、空分基本原理
空气分离的基本原理,就是低温精馏原理。 利用空气中氧、氮沸点的不同,经膨胀机 制冷而获得的液空,在精馏塔中经过多次 部分蒸发和部分冷凝,而将各组份分离开 来,获得合格氧氮产品的过程。
当空气穿过比它温度低的氧、氮组成的液 体层时,由于气、液之间温度差的存在,要进 行热交换,温度低的液体吸收热量开始蒸发, 其中氮组分首先蒸发,温度较高的气体冷凝, 放出冷凝热,气体冷凝时,首先冷凝氧组分.这 过程一直进行到气相和液相的温度相等为 止,也即气、液处于平衡状态。
6
多次的重复上述过程,气相的氮浓度就不断增加,液相的氧浓度也能 不断的增加.这样经过多次的蒸发与冷凝就能完成整个精馏过程,从 而将空气中的氧和氮分离开来。
2、吸附法:
原理:利用分子筛对不同的分子具有选择性吸附的特点,有的 分子筛(如5A、13X等)对氮具有较强的吸附性能,让氧分子通 过,可得到较高纯度的氧气;有的分子筛(碳分子筛等)对氧具 有较强的吸附性能,让氮分子通过,可得到较高纯度的氮气,从 而实现空气的分离。但吸附法目前的氧气纯度只有93%左右。
项目二 空分操作
2-1 空气分离的基本原理
主要内容
一、空分的含义 二、空气的组成及沸点 三、空分方法
一、空分的含义
是利用物理或者化学方法将空气分离,获 得纯氧气和纯氮气及一些稀有气体的过程。
空气分离原理

一、空气分离的方法和原理空分的含义:简单说就是利用物理或者化学方法将将空气混合物各组进行分开,获得高纯氧气和高纯氮气以及一些稀有气体的过程。
空分分离的方法和原理:空气中的主要成分是氧和氮,它们分别以分子状态存在,均匀地混合在一起,通常要将它们分离出来比较困难,目前工业上主要有3种实现空气分离方法。
1)深冷法(也称低温法):先将混合物空气通过压缩、膨胀和降温,直至空气液化,然后利用氧、氮汽化温度(沸点)的不同(在标准大气压下,氧的沸点为﹣183℃;氮的沸点为﹣196℃,沸点低的氮相对于氧要容易汽化这个特性,在精馏塔内让温度较高的蒸气与温度较低的液体不断相互接触,低沸点组分氮较多的蒸发,高沸点组分氧较多的冷凝的原理,使上升蒸气氮含量不断提高,下流液体中的氧含量不断增大,从而实现氧、氮的分离。
要将空气液化,需将空气冷却到﹣173℃以下的温度,这种制冷叫深度冷冻(深冷);而利用沸点差将液态空气分离为氧、氮、氩的过程称之为精馏过程。
深冷与精馏的组合是目前工业上应用最广泛的空气分离方法;2)吸附法:利用多孔性物质分子筛对不同的气体分子具有选择性咐附的特点,对气体分子不同组分有选择性的进行吸附,达到单高纯度的产品。
吸附法分离空气流程简章,操作方便运行成本较低,但不能获得高纯度的的双高产品。
3)膜分离法:利用一些有机聚合膜的潜在选择性,当空气通过薄膜或中空纤维膜时,氧气穿过膜的速度比氮快的多的特点,实现氧、氮的分离。
这种分离方法得到的产品纯度不高,规模也较小,目前只适用于生产富氧产品。
二、空气的组成氧、氮、氩和其他物质一样,具有气、液和固三态。
在常温常压下它们呈气态。
在标准大气压下,氧被冷凝至-183℃,氮被冷凝至-196℃,氩被冷凝至-186℃即会变为液态,氧和氮的沸点相差13 ℃,氩和氮的沸点相差10 ℃,空气的分离就是充分利用其沸点的不同来将其进行分离。
空气中除氧、氮和氩外,还有氖、氦、氪、氙等稀有气体,这些稀有气体广泛应用在国防、科研及工业上,稀有气体的提取也直接关系到空分装置氧气的提取率和生产运行能耗。
空气分离的基本原理 空气分离的基本原理是利用低温精馏法1

《空气分离流程工艺》课程:过程装备成套技术姓名:刘小菲学号: 08180224学院:石油化工学院班级:基地一班一.空气分离简介及基本原理空气分离简称空分,利用空气中各组分物理性质不同(见表),采用深度冷冻、吸附、膜分离等方法从空气中分离出氧气、氮气,或同时提取氦气、氩气等稀有气体的过程。
空气分离最常用的方法是深度冷冻法(如图示)。
此方法可制得氧、氮与稀有气体,所得气体产品的纯度可达98.0%~99.9%。
此外,还采用分子筛吸附法分离空气(见变压吸附),后者用于制取含氧70%~80%的富氧空气。
近年来,有些国家还开发了固体膜分离空气的技术。
氧气、氮气及氩气、氦气等稀有气体用途很广,所以空气分离装置广泛用于冶金、化工、石油、机械、采矿、食品、军事等工业部门。
空气分离的基本原理是利用低温精馏法,将空气冷凝成液体,按照各组分蒸发温度的不同将空气分离。
双级精馏塔在上塔顶部和底部同时获得纯氮气和纯氧气;也可以在主冷的蒸发侧和冷凝侧分别取出液氧和液氮。
精馏塔中空气分离分为两级,空气在下塔进行第一次分离,获得液氮,同时得到富氧液空;富氧液空被送向上塔进行精馏,获得纯氧和纯氮。
上塔又分为两段:以液空进料口为界,上部为精馏段,精馏上升气体,回收氧组分,提纯氮气纯度,下段为提馏段,将液体中的氮组分分离出来,提高液体的氧纯度。
二.空气设备简史到50年代,由于吹氧炼钢和高炉鼓风工艺的推广应用以及氮肥工业的迅速发展,空气分离设备向大型化发展,并应用了近代的科研成果,如采用透平压缩机、透平膨胀机、板翅式换热器、微型计算机和分子筛吸附器等设备之后,空气分离设备不断得到改进和完善,设备中的空气压力从高压(20兆帕)降到低压(小于1兆帕),单位产品的电耗也逐渐下降(每立方米氧的电耗从1.5降至0.6千瓦·小时)。
现代空气分离设备能生产各种容量、不同纯度的气态或液态产品,也能制造超高纯度的氧和氮(如含氧99.998%和含氮99.9995%)空气分离设备还能根据用户的需要,通过电子计算机的控制,随时增减产品的数量,达到经济用氧的目的。
空气分离的原理初中

空气分离的原理初中
空气分离是一种将空气中的成分按照其物理或化学特性分离的过程,通常用于制取高纯度的氧气、氮气等工业气体。
空气主要由氮气、氧气、二氧化碳、氩气等成分组成,其中氮气和氧气的含量最多。
空气分离的原理主要基于气体在固体界面上的吸附、吸附剂的选择性吸附以及分子量和沸点的差异。
下面将从吸附法、压缩法和分子筛法这三个主要方法对空气分离的原理进行详细介绍。
一、吸附法:吸附法是通过固体吸附剂的选择性吸附来实现空气分离的。
一般采用活性炭、分子筛等材料作为吸附剂。
这种方法的原理是根据不同气体在固体表面的吸附性质的差异,将氮气和氧气分离。
由于氧气优先被固体吸附剂吸附,所以只要将空气经过吸附床,氧气就会被吸附,而氮气则通过床层输出。
二、压缩法:压缩法是通过对空气进行压缩,再利用不同组分的沸点差异进行分离的。
当空气被压缩到一定压力后,通过降低温度使不同组分的沸点差别体现出来,进而实现分离。
在压缩机的作用下,空气经过冷却装置进行降温,使氮气和氧气发生液化,液态氧气收集起来,而未液化的氮气则通过返回到压缩机进行循环压缩。
三、分子筛法:分子筛法是利用分子筛吸附剂对气体分子的筛选作用来实现空气分离的。
在分子筛中,吸附剂的孔径较小,而氮气的分子尺寸较大,相对氧气等
其他气体来说,较难穿过分子筛的孔隙,因此可以通过分子筛来将氮气和其他气体分离开来。
当空气经过分子筛时,氮气被吸附下来,而氧气等其他气体则通过分子筛,实现了分离。
需要注意的是,这三种方法都是通过将空气中的氮气和氧气等组分分离出来,而得到高纯度的氧气或氮气。
根据实际需要,可以选择合适的方法进行空气分离。
分离液态空气法的原理

分离液态空气法的原理分离液态空气法是一种用于从空气中提取氧气、氮气等气体的方法。
它利用了气体的沸点差异,通过连续的冷却和加热过程,将空气中的不同气体分离出来。
这种方法在工业生产和科学研究中有着重要的应用,下面将详细介绍其原理及过程。
首先,我们需要了解一些基本的物理知识。
在常温常压下,氮气的沸点为-196℃,而氧气的沸点为-183℃。
这意味着在低于这些温度时,氮气和氧气会变成液态。
因此,分离液态空气的方法就是通过控制温度,使得氮气和氧气在不同的温度下转化为液态,然后再将它们分离出来。
具体的分离过程包括以下几个步骤:首先,将空气通过压缩机进行压缩,然后通过冷凝器冷却至低于-196℃的温度。
在这个温度下,氮气会凝结成液体,而氧气则仍然是气态。
接着,将液态氮气收集起来,留下未凝结的氧气。
然后,将未凝结的氧气再次通过压缩机进行压缩,然后经过另一个冷凝器冷却至低于-183℃的温度。
在这个温度下,氧气也会凝结成液体。
此时,液态氮气和液态氧气就被成功分离了。
最后,将液态氮气和液态氧气分别收集起来,就完成了分离液态空气的过程。
这种方法的原理就是利用了氮气和氧气的沸点差异,通过连续的冷却和加热过程,将它们分离出来。
这种方法不仅可以用于提取氮气和氧气,也可以用于提取其他气体,如氩气、氩氦氖氪氡等。
因此,它在工业生产和科学研究中有着广泛的应用。
总的来说,分离液态空气法是一种基于气体沸点差异的分离方法,通过控制温度,将不同气体转化为液态,然后再将它们分离出来。
这种方法简单、高效,广泛应用于气体提取和制备领域。
希望通过本文的介绍,读者对分离液态空气法的原理有所了解,并能够在相关领域有所应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空气分离的原理
空气分离的原理是利用空气中不同气体的物理性质和化学性质的差异,通过一系列的物理方法、化学方法或者物理化学方法将空气中的气体分离出来。
空气中主要包含氮气、氧气、氩气和其他少量的气体成分。
下面介绍几种常见的空气分离方法:
1. 稀释法:根据各种气体的沸点和沸点的升降顺序,将空气进行逐渐稀释,再通过冷凝和蒸发等方法,分离出不同沸点的气体。
这种方法主要应用于空气中气体含量较低的场合,如制取高纯度气体。
2. 压缩-膨胀法:将空气先经过压缩,然后通过减压膨胀,根据不同气体的压缩系数和膨胀系数的差异,使气体分离出来。
这种方法常用于制取液态空气。
3. 冷凝法:利用空气中不同气体的沸点差异,通过控制温度使其中某些气体冷凝成液体,然后通过蒸发等方法将液体气体分离出来。
这种方法主要用于制取液态氧气。
4. 吸附法:利用吸附材料对空气中的气体有选择性地吸附,再通过改变温度或者压力,将吸附气体从吸附剂上解吸出来。
这种方法适用于制取高纯度气体和分离混合气体成分。
以上是几种常见的空气分离方法,通过这些方法可以将空气中的不同气体分离出来,从而得到单一气体或者高纯度气体。
这些分离气体的应用广泛,涉及到制药、工业、医疗等领域。