土坡稳定安全系数
土压力、地基承载力和土坡稳定计算要求

z
z
Eo
1 2
h2Ko
K0z
h h/3
静止土压力系数 采用经验公式K0 = 1-sinφ’ 计算
作用在挡土结构背K面0h的静止土压力可视为天然土层自重
应力的水平分量。
6.2 作用在挡土墙上的土压力
若墙后填土中有地下水,则计算静止土压力时, 水中土的重度应取浮重度
6.3 朗金土压力理论
基本原理
朗金土压力理论是根据半空间的应力状态和土的极限平 衡条件而得出的土压力计算方法。
弹性平衡状态
6.3 朗金土压力理论
当整个土体都处于静止状态时,各点都处于弹性平衡状态,设土的重
度为γ,应力状态如图所示,此时应力状态用莫尔圆表示为所示圆Ⅰ,该
点处于弹性平衡状态,故莫尔圆没有与抗剪强度包线相切。
力两部分,可分作两层计算,一般假设地下水位上下土层的抗剪强度
指标相同,地下水位以下土层用浮重度计算。
6.3 朗金土压力理论
土压力强度
A点
aA 0
B点
aB h1Ka
水压力强度
B点
wB 0
C点
aCh 1K ah2K a C点
wC wh2
作用在墙背的总压力为土压力和水压力之和,作用 点在合力分布图形的形心处。
=17kN/m
3
c=8kPa
=20o
h=6m
• 【解答】
2c√Ka
主动土压力系数 Ka ta2n4o 52= 0.49
6m
z0 (h-z0)/3
墙底处土压力强度
Ea
ah K a 2 cK a = 3 8 .8 k P a
hKa-2c√Ka
临界深度
z02c/( Ka)= 1.3m 4
有限元强度折减系数法计算土坡稳定安全系数.

有限元强度折减系数法计算土坡稳定安全系数摘要:有限元强度折减系数法在边坡稳定分析中的应用正逐渐受到人们的重视。
本文较为全面地分析了土体屈服准则的种类、有限元法自身计算精度以及H(坡高)、β(坡角)、C(粘聚力)、Φ(摩擦角)对折减系数法计算精度的影响,并给出了提高计算精度的具体措施。
通过对106个算例的比较分析,表明折减系数法所得稳定安全系数比简化Bishop法平均高出约5.7%,且离散度极小,这不仅验证了文中所提措施的有效性,也说明了将折减系数法用于分析土质边坡稳定问题是可行的。
关键词:强度折减系数边坡稳定屈服准则误差分析自弗伦纽期于1927年提出圆弧滑动法以来,至今已出现数十种土坡稳定分析方法,有极限平衡法、极限分析法、有限元法等。
不少研究表明,各种方法所得稳定安全系数都比较接近,可以说,这些方法已经达到了相当高的精度。
近年来,由于计算机技术的长足发展,基于有限元的折减系数法在边坡稳定分析中的应用备受重视。
与极限平衡法相比,它不需要任何假设,便能够自动地求得任意形状的临界滑移面以及对应的最小安全系数,同时它还可以真实的反映坡体失稳及塑性区的开展过程。
到目前为止,已有很多学者对折减系数法进行了较为深入的研究[1,2,3],并在一些算例中得到了与极限平衡法十分接近的结果。
但总体说来,此法仍未在工程界得到确认和推广,究其原因在于影响该法计算精度的因素很多,除了有限元法引入的误差外,还依赖于所选用的屈服准则。
此论文的目的有两点:(1)力图全面分析屈服条件和有限元法本身对折减系数法计算精度的影响,并提出应选用何种屈服准则以及提高有限元法计算精度的具体措施;(2)结合工程实例,分析对边坡稳定安全系数影响最大的4个主要参数(H坡高、β坡角、C粘聚力、Φ摩擦角)对折减系数法计算精度的影响。
从以往的计算结果来看,严格法(Spencer)所得稳定安全系数比简化Bishop法平均高出约2%~3%,而通过106个算例的比较分析,表明:折减系数法所得稳定安全系数比简化Bishop法平均高出约5.7%,且误差离散度极小,可以认为是正确的解答[4]。
(整理)边坡稳定性计算方法

一、边坡稳定性计算方法在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。
根据边坡不同破裂面形状而有不同的分析模式。
边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。
这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。
(一)直线破裂面法化计算这类边坡稳定性分析采用直线破裂面法。
能形成直线破裂面的土类包括:均质砂性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。
图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗剪度指标为c、φ。
如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析该滑动体的稳定性。
沿边坡长度方向截取一个单位长度作为平面问题分析。
图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(ΔABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为:T=W · sina和则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。
对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时当 F s =1时,β=φ,表明边坡处于极限平衡状态。
此时β角称为休止角,也称安息角。
此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。
这类滑坡滑动面的深度与长度之比往往很小。
当深长比小于 0.1时,可以把它当作一个无限边坡进行分析。
图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。
取一单位长度的滑动土条进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为稳定系数。
土力学与基础工程期末复习题答案

土力学与基础工程期末复习题答案一.基本概念(2′×15)1.粘性土的最优含水率、最大干密度粘性土在某种压实功能作用下,达到最密时的含水率称为最优含水率;对应的干密度称为最大干密度。
2.土坡稳定安全系数土坡稳定安全系数:土坡的抗滑力矩与滑动力矩的比值,即RTM KM抗滑力矩滑动力矩3.地震基本烈度地震的基本烈度:一个地区今后50年内,在一般场地条件下,可能遭遇超载概率为10%的地震烈度称为基本烈度。
4.土层自重应力、附加应力土层自重应力:在未修建筑物之前,由土体本身自重引起的应力称为土的自重应力。
土层的附加应力:建筑物荷载在地基中增加的压力称为附加压力。
5.季节性冻土、隔年冻土、多年冻土季节性冻土:指地壳表层冬季冻结而在夏季又全部融化的土。
隔年冻土:指冬季冻结而翌年夏季并不融化的那部分冻土。
多年冻土:指持续冻结时间在两年或两年以上的土。
6.膨胀土膨胀土:膨胀土是指土中粘粒成分主要由亲水矿物组成,同时具有显著的吸水膨胀和失水收缩两种变性特性的粘土。
7.正常固结土、超固结土、欠固结土正常固结土:正常固结土指土层历史上经受的最大压力,等于现有覆盖土的自重压力。
超固结土:超固结土指土层历史上曾经受过大于现有覆盖土重的前期固结压力。
欠固结土:欠固结土指土层目前还没有达到完全固结,土层实际固结压力小于土层自重压力。
8.地基承载力特征值地基承载力特征值是指,由荷载试验测定的地基土压力变形曲线线性变形阶段内规定的变形所对应的压力值,其最大值称为比例界限值。
9.箱形基础箱型基础:箱型基础是指由底板、顶板、侧墙及一定数量内隔墙构成的整体刚度较大的钢筋混凝土箱形结构,渐成箱基。
10.土的极限平衡条件土体的极限平衡条件是指土体处于极限平衡状态时土的应力状态和土的抗剪强度指标之间的关系式,即13,σσ与内摩擦角φ和粘聚力c 之间的数学表达式。
11.粘性土的液限、塑限、缩限液限:粘性土呈液态与塑态之间的分界含水率称为液限。
土坡稳定性计算

土坡稳定性计算书计算依据:1、《建筑基坑支护技术规程》JGJ120-20122、《建筑施工计算手册》江正荣编著3、《实用土木工程手册》第三版杨文渊编著4、《施工现场设施安全设计计算手册》谢建民编著5、《地基与基础》第三版计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。
本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。
一、参数信息:基本参数:放坡参数:序号 放坡高度L(m) 放坡宽度W(m) 平台宽度B(m) 1 3.5 2.25 0.75 2431.5荷载参数:土层参数:1 填土 3.5 19.8 7.4 20.4 8 202 粘性土 3.5 20 16.3 45.8 21 233 粘性土 3.6 20.3 17.4 64.1 23 23二、计算原理:根据土坡极限平衡稳定进行计算。
自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。
将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着:1、土条自重,2、作用于土条弧面上的法向反力,3、作用于土条圆弧面上的切向阻力。
将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.35的要求。
圆弧滑动法示意图三、计算公式:K sj=∑{c i l i+[ΔG i b i+qb i]co sθi tanφi}/∑[ΔG i b i+qb i]sinθi式子中:K sj --第j个圆弧滑动体的抗滑力矩与滑动力矩的比值;c i --土层的粘聚力;l i--第i条土条的圆弧长度;ΔG i-第i土条的自重;θi --第i条土中线处法线与铅直线的夹角;φi --土层的内摩擦角;b i --第i条土的宽度;h i --第i条土的平均高度;q --第i条土条土上的均布荷载;四、计算安全系数:将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数K sjmin:------------------------------------------------------------------------------------计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第1步 1.820 29.190 0.775 5.746 5.798示意图如下:计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第2步 1.504 33.548 1.699 11.450 11.575示意图如下:--------------------------------------------------------------------------------------计算结论如下:第1 步开挖内部整体稳定性安全系数K sjmin= 1.820>1.350 满足要求! [标高-4.000 m]第2 步开挖内部整体稳定性安全系数K sjmin= 1.504>1.350 满足要求! [标高-7.500 m]。
影响土质边坡稳定安全系数的主要因素

浅析影响土质边坡稳定安全系数的主要因素摘要:目前来说,简单的计算方法以及土工参数都影响土质边坡的稳定性以及安全性。
下文主要根据正交试验的方法,并提出了在工程运行管理中一定要尽量避免低水位或水位骤降情况,为土石坝以及类似工程的工程设计与工程运行管理提供了重要参考依据。
关键词:土质边坡;稳定安全;系数;因素通常,岩土边坡研究的重要内容指的是:边坡稳定分析,其分析方法比较多,每个方法都具有其本身的特点,并有一定的适用条件,但是目的都是为了确定临界滑裂面及其对应的安全系数。
目前基于极限平衡理论的各种计算方法仍然在实际工程中被广泛地应用,由于这些计算方法基于不同的假定条件,使得对同样的边坡使用不同的计算方法进行计算分析,可得到不同的结果,有的情况安全系数甚至相差很大。
此外,影响边坡稳定的因素有地形地貌、岩土的物理力学性质、水的作用、地震作用以及人为因素等。
本文主要采用正交试验法来研究不同的计算方法以及材料参数对边坡稳定安全系数计算值的影响,并进行敏感性分析,为边坡工程的勘察、设计、计算提供依据。
1.极限平衡法的基本概念1.1关于安全系数的定义土坡沿某一滑裂面滑动的安全系数是这样定义的:将土的抗剪强度指标降低为c′/f和tanφ′/f,则土体沿着此滑裂面处处达到极限平衡,即τ= c′e+σ′ntanφ′e(1)c′e= c′/f (2)tanφ′e=tanφ′/f (3)式中:τ、σ′n分别为达极限平衡时滑裂面上的剪应力和正应力;c′、φ′分别为土的有效粘聚力和摩擦角;c′e、φ′e分别为达极限平衡时土的粘聚力和摩擦角;f为安全系数。
1.2摩尔-库仑强度准则设想土体的某一部分沿着某一滑裂面滑动。
在这个滑裂面上,土体处处达到极限平衡,即正应力σ′n和剪应力τ满足摩尔-库仑强度准则。
设某一土条底的法向力和切向力分别为δn和δt,则有δt = c′eδxsecα+(δn-uδxsecα)tanφ′e(4)式中:α为土条底倾角;tanα=dy/dx;δx为土条水平宽度;u 为孔隙水压力,通常定义孔隙水压力系数ru=udw/dx(5)式中:w为土体自重。
基槽边坡稳定性计算

基槽边坡稳定性计算:本工程其坡面的土质基本为砂砾土的亚园砾土,属无粘性土边坡。
在土坡上的分力有土坡下滑趋势的剪切力T、单元土自重G、阻止土体下滑的抗剪力Tf,而阻止土体下滑的抗剪力Tf则为土方单元体自重在坡面法线方向的分力N引起的摩擦力,即Tf=Ntanα=G×cosβ×tanα。
抗滑力和滑动力的比值为安全系数K=Tf/T= G×cosβ×tanα/Gsinβ= tanα/ tanβ,由此可见从理论上讲当坡角小于土方内摩擦角时(β<α)K>1土坡是稳定的,一般性土坡为保证土坡稳定安全系数取值为K>1.3-1.5,所以查中砂园砾内摩擦角为45度,则tan45=1,tanβ=5.2/10=0.52 K= tanα/ tanβ=1/0.52=1.92>1.3-1.5(安全)结论是安全稳定的。
与3#楼相邻基槽边坡稳定性计算:与三号楼边坡高度为5.55m,三号楼基础宽为13.50m,坡角至坡顶水平距离为3m,三号楼压重为(钢筋80Kg/平米、混凝土0.5×2400=1200Kg/平米,1200+80=1280×14层=17920 Kg/平米)17920 Kg/平米=179.2KN/平米,坡面为砂砾土指标为天然自重γ=19 KN,内摩擦角为38度,粘聚力0Kpa。
1、基坑剖面如图所示。
2、取滑动园弧,下端通过坡角A点,上端通过3#楼基础边缘B 点,加入3#楼共14层自重和一层工作面施工荷载7KN=186.2KN 进行验算此土坡的稳定性,取半径R=21m。
3、取土条宽B=1/10R=2.1m4、土条编号:作园心O点的垂线,垂直线处为0条,依次编号为1-9条。
5、计算AB弧长L:设园心∠AOB=α由sinα/2=AB/2/R=0.517,得α=62.26L=αЛR/180=62.26×3.14×21/180=22.816、3#楼压重179.2KN+施工荷载7KN=186.2KN分布在6个土条上,每个土条为31.2KN。
土力学_第8章(土坡稳定性分析)

18
3
粘性土土坡的稳定性分析
瑞典(彼得森,K.E. Petterson, 1915年提出的) 瑞典圆弧法
滑动面
(a) 实际滑坡体
(b)假设滑动面是圆弧面
19
基本思想:
整体圆弧滑动。 稳定系数定义为:
f Fs
滑移面
也可定义为抗滑力矩与滑动力矩之比:
Fs
Mf Ms
f LAC R
1
i
Fs
m
[ci'bi (Wi ui bi ) tan ' ]
W sin
i
i
mi cos i (1
tani tan i ) Fs
பைடு நூலகம்27
考虑地震作用力后的计算公式:
Fs
c' bi bi (hi w hiw ) tan ' i 1 cos i (sin i tan ' ) / Fs
Ni Wi cosi P i 1 i ) 0 i 1 sin(
P i i 1 ) Tfi 0 i Wi sin i P i 1 cos(
li ci' ( N i ui li ) tan ' T fi Fs
由上面三个计算式,消去Ni、Tfi得到满足力极限平衡得方程为: 1 Pi Wi sin i [li ci' (Wi cos i ui li ) tan 'i ] Pi 1 i Fs Pi—剩余下滑力; i —传递系数。 tani ' sin( i 1 i ) i cos( i 1 i ) Fs
W x T
i i
fi
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.土坡稳定安全系数的表达形式?
答:土坡滑动的稳定性安全系数K等于稳定力矩Mr与滑动力矩Ms的比值表示,即即:K = Mr / Ms 。
土坡稳定能保障路面安全,行人安全,建筑安全。
土坡不稳定会使地质体容易在重力地质作用下发生蠕动滑坡泥石流等灾害。
土坡稳定主要是研究一般的边坡或者土石坝或者路堤等在荷载(或者无荷载)的情况下,土坡是否会发生滑动失稳等不良地质现象。
拓展资料无粘性土【cohesionless soil】指的是含粘土粒较少,透水性较大的土,包括粗粒土和粉土(因为粉土属于砂土和粘性土的过渡类型,其物质组成,结构构造,物理力学性质接近于砂土,所以通常将粉土列为无粘性土)。
无黏性土构成的土坡的稳定安全系数为:K=.tanθ其中,中和θ分别为土的内摩擦角和边坡坡角。
由此可见,对于均质无黏性土坡,理论上土坡的稳定性与坡高无关,只与坡角和土体内摩擦角有关。