(完整版)土坡稳定性计算

(完整版)土坡稳定性计算
(完整版)土坡稳定性计算

第九章土坡稳定分析

土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。

第一节概述

学习土坡的类型及常见的滑坡现象。

一、无粘性土坡稳定分析

学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。

二、粘性土坡的稳定分析

学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。

三、边坡稳定分析的总应力法和有效应力法

学习稳定渗流期、施工期、地震期边坡稳定分析方法。

四、土坡稳定分析讨论

学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。

第二节基本概念与基本原理

一、基本概念

1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土坡。

3.滑坡(landslide):土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳

定性的现象。

4.圆弧滑动法(circleslipmethod):在工程设计中常假定土坡滑动面为圆弧面,建立这一

假定的稳定分析方法,称为圆弧滑动法。它是极限平衡法的一种常用分析方法。

二、基本规律与基本原理

(一)土坡失稳原因分析

土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。1.产生滑动的内部因素主要有:

(1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。

(2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。

(3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性土有粘聚力,当土坡不高时尚可直立,但随时间和气候的变化,也会逐渐塌落。

2.促使滑动的外部因素

(1)降水或地下水的作用:持续的降雨或地下水渗入土层中,使土中含水量增高,土中易溶盐溶解,土质变软,强度降低;还可使土的重度增加,以及孔隙水压力的产生,使土体作用有动、静水压力,促使土体失稳,故设计斜坡应针对这些原因,采用相应的排水措施。(2)振动的作用:如地震的反复作用下,砂土极易发生液化;粘性土,振动时易使土的结

构破坏,从而降低土的抗剪强度;施工打桩或爆破,由于振动也可使邻近土坡变形或失稳等。

(3)人为影响:由于人类不合理地开挖,特别是开挖坡脚;或开挖基坑、沟渠、道路边坡时将弃土堆在坡顶附近;在斜坡上建房或堆放重物时,都可引起斜坡变形破坏。

(二)无粘性土坡稳定性分析

1.干的无粘性土坡

处于不渗水的砂、砾、卵石组成的无粘性土坡,只要坡面上颗粒能保持稳定,那么整个土坡便是稳定的。图9—1(见教材)为有均质无粘性土坡,坡角为β,自坡面上取一单元土体,其重量为W ,由W 引起的顺坡向下的滑力为T =Wsin β,对下滑单元体的阻力为 Tf =Ntg φ=Wcos βtg φ (式中φ为无粘性土的内摩擦角),因此,无粘性土坡的稳定系数为:

β

?β?βtg tg W tg W T T K f

===sin cos 由此可得如下结论:当β=φ时,K =1,土坡处于极限稳定状态,此时的坡角β为自然休止角;无粘性土坡的稳定性与坡高无关,仅取决与βt 角,当β<φ时,K >1,土坡稳定。

2.有渗流作用的无粘性土坡

有渗流作用的无粘性土坡,因受到渗透水流的作用,滑动力加大,抗滑力减小,见图沿渗流逸出方向的渗透力为J =i ×r w

由J 对单元土体产生的下滑分力和法向分力分别为

i ×r w COS(β一θ) ir w sin(β-θ)

其中:I :为渗透水力坡降;

r w : 为水的重度;

θ: 渗流方向与水平面的夹角。

因土渗水,其重量采用浮重度r ’进行计算,故其稳定系数为

)

cos(sin ')]sin(cos '[θββ?θββ-+--=w w ir r tg ir r k 当渗流方向为顺坡时,θ=β,i=sin β,则其K 为

β

?tg r tg r k sat '= 式中

1'≈sat r r ,说明渗流方向为顺坡时,无粘性土坡的稳定系数与干坡相比,将降低1/2。

当渗流方向为水平逸出坡面时,θ=0,i=tg β,则K 为

β

?βtg r r tg tg r r k w w )'(_)'(2+-= 式中 2

1''2<+-w w r r tg r r β,说明与干坡相比下降了一半多。 上述分析说明,有渗流情况下无粘性土坡只有当坡角β≤φ时,才稳定。

(三)粘性土坡稳定性分析

1.瑞典圆弧法

这个方法首先是由瑞典的彼得森所提出,故称瑞典圆弧法。

(1)基本假设:均质粘性土坡滑动时,其滑动面常近似为圆弧形状,假定滑动面以上的土体为刚性体,即设计中不考虑滑动土体内部的相互作用力,假定土坡稳定属于平面应变问题。

(2)基本公式:取圆弧滑动面以上滑动体为脱离体,图9-2所示(见教材),土体绕圆心O 下滑的滑动力矩为Ms =Wa ,阻止土体滑动的力是滑弧AED 上的抗滑力,其值等于土的抗剪强度τf 与滑弧AED 长度L 的乘积,故其抗滑力矩为

R L M f R )τ=

安全系数K =抗滑力矩/滑动力矩=1>=Wa

R L M M i s R )τ 式中:L ——滑弧弧长;

R ——滑弧半径;

α——滑动土体重心离滑弧圆心的水平距离。

该法适应于粘性土坡。后经费伦纽斯改进,提出φ=θ的简单土坡最危险的滑弧是通过坡角的圆弧,其圆心O 是为位于图9-3中AO 与BO 两线的交点,可查表确定。

2.瑞典条分法

(1)基本原理:当按滑动土体这一整体力矩平衡条件计算分析时,由于滑面上各点的斜率都不相同,自重等外荷载对弧面上的法向和切向作用分力不便按整体计算,因而整个滑动弧面上反力分布不清楚;另外,对于φ>0的粘性土坡,特别是土坡为多层土层构成时,求W 的大小和重心位置就比较麻烦。故在土坡稳定分析中,为便于计算土体的重量,并使计算的抗剪强度更加精确,常将滑动土体分成若干竖直土条,求各土条对滑动圆心的抗滑力矩和滑动力矩,各取其总和,计算安全系数,这即为条分法的基本原理。该法也假定各土条为刚性不变形体,不考虑土条两侧面间的作用力。

(2)计算步骤:图9—4为—土坡,地下水位很深,滑动土体所在土层孔隙水压力为0。条分法的计算步骤如下:

1)按一定比例尺画坡;

2)确定圆心O 和半径R ,画弧AB ;

3)分条并编号,为了计算方便,土条宽度可取滑弧半径的1/10,即b=0.1R ,以圆心O 为垂直线,向上顺序编为0、1、2、3、……,向下顺序为-1、-2、-3、……,这样,0条的滑动力矩为0,0条以上土条的滑动力矩为正值,0条以下滑动力矩为负值;

4)计算每个土条的自重

rhib Wi = (hi 为土条的平均高度)

5)分解滑动面上的两个分力

Ni =Wicos αi Ti =Wisin αi

式中:αi ——法向应力与垂直线的夹角。

6)计算滑动力矩

∑==n

i T ai Wi R M 1sin

式中:n :为土条数目。

7)计算抗滑力矩

RCL ai Wi Rtg M n

i R +=∑=1cos ?

式中:L 为滑弧AB 总长。

8)计算稳定安全系数(safetyfactor)。

∑∑==+==n i n i T R ai

Wi CL ai Wi tg M M k 1

1sin cos ? 9)求最小安全系数,即找最危险的滑弧,重复2)~8),选不同的滑弧,求K1、K2、K3…… 值,取最小者。

该法计算简便,有长时间的使用经验,但工作量大,可用计算机进行,由于它忽略了条间力对Ni 值的影响,可能低估安全系数(5~20)%。

3.毕肖普法

毕肖普法提出的土坡稳定系数的含义是整个滑动面上土的抗剪强度t f 与实际产生剪应力T 的比,即K =t f ÷t ,并考虑了各土条侧面间存在着作用力,其原理与方法如下:

图9—4所示(见教材),假定滑动面是以圆心为O ,半径为R 的滑弧,从中任取一土条i 为分离体,其分离体的周边作用力为:土条重Wi 引起的切向力Ti 和法向反力Ni ,并分别作用于底面中心处;土条侧面作用法向力Ei 、Ei+1:和切向力Xi 、Xl+i ,。

根据静力平衡条件和极限平衡状态时各土条力对滑动圆心的力矩之和为零等,可得毕肖 普法求土坡稳定系数的普遍公式,即

∑-++=+ai Wi tg X X Wi ai Li C m k i i i ai sin }

)]([cos {111? 或∑∑-++=+ai

Wi tg X X Wi Cibi m k i i ai sin }

)]([{111? 式中K

aitg ai m ai 1sin cos ?+= 上式用起来十分繁杂,为此,毕肖普忽略了条间切向力,即Xi+1-Xi =0,这样就得到了国内外广泛使用的毕肖普简化式

∑+=ai Wi Witg ai CiLi m k i ai sin )

cos (1? 由于推导中只忽略了条间切向力,比瑞典条分法更为合理,与更精确的方法相比,可能低 估安全系数(2~7)%。

4.泰勒图表法

土坡稳定分析大都需要经过试算,计算工作量很大,因此,曾有不少人寻求简化的图表法。图9—5是泰勒(Taylor)根据计算资料整理得到的极限状态时均质土坡内摩擦角φ、坡角α与稳定因数N =C /γH 之间关系曲线(C 是粘聚力,γ是重度,H 是土坡高度)。

利用这个图表,可以很快地解决下列两个主要的土坡稳定问题:

(1)已知坡角α、土的内摩擦角φ、粘聚力C ,重度γ,求土坡的容许高度H 。

(2)已知土的性质指标φ、C 、γ及坡高H ,求许可的坡角α。

此法可用来计算高度小于10m 的小型堤坝,作初步估算堤坝断面之用。

5.有限元法

(1)基本思路:上述方法都是把滑动土体切成有限宽度的土体,把土体当成刚体,根据静力平衡条件和极限平衡条件求得滑动面上力的分布,从而可计算出稳定安全系数。但由于土体是变形体,并不是刚体,用分析刚体的办法,不满足变形协调条件,因而计算出滑动面上的应力状态不可能是真实的,有限元法就是把土坡当成变形体,按照土的变形特性,计算出土坡内的应力分布,然后再引入圆弧滑动面的概念,验算滑动土体的整体抗滑稳定性。

(2)应用步骤:

1)将土坡划分成许多单元体(图9-6,见教材),用有限元法可以计算出每个单元的应力、应变和每个结点的结点力和位移,图9-7(见教材)是一座土坝用有限元法分析所得竣工时坝体的剪应变分布图,可以清楚地看出坝坡在重力作用下剪切变形的轨迹类似于滑弧面。

2)土坡的应力计算出来以后,再引入圆弧滑动面的概念。图9-6中表示一个可能的圆弧滑动面,把滑动面分成若干小弧段△Li ,小弧段△Li 上的应力用弧段中点的应力代表,其值可以按有限元法应力分析的结果,根据弧段中点所在的单元的应力确定,表示为σxi σzi σxzi 。如果小弧段△Li 与水平线的倾角θi ,则作用在弧段上的法向应力和剪应力分别为:

i i i

i zi xi xzi i xzi zi xi zi xi ni θσσθττθτθσσσσσ2sin )(2

12cos sin 2cos )(2

1)(21---=+--+= 根据摩尔-库仑强度理论,该点土的抗剪强度为: i tg Ci ni fi φστ+=

3)求边坡稳定安全系数。将滑动面上所有小弧段的剪应力和抗剪强度分别求出后,累加求沿着滑动面的总的剪切力∑τi △li 和抗剪力∑τfi ,边坡稳定安全系数为

∑∑==??+=n

i n i ni li

i li i tg Ci k 11

)(τ?σ (3)其它方法:山区一些±坡往往覆盖在起伏变化的基岩面上,土坡失稳多数沿着这些界面发生,对这种起伏不平的滑动面分析,国内常用不平衡推力传递法。

此外,土坡稳定分析也常用洛巴索夫图表法。

(四)边坡稳定分析的总应力法和有效应力法

由于许多情况下土体内存在孔隙水压力,因此,在讨论边坡稳定计算方法中,作用在滑动土体上的力是用总应力表示还是用有效应力表示,这是一个十分重要的问题。

当土坡中因某种原因存在孔隙水压力,计算摩阻力时如果扣除孔隙水压力,完全由有效

应力计算,抗剪强度指标应用有效强度指标,这样的分析方法称为有效应力法;如果不扣除孔隙水压力,摩擦阻力直接用公式了Tfi=Nitgφ计算,这就是总应力法。

教材对几个控制时期如何应用总应力法和有效应力法作较详细的探讨,其基本规律如下:

1.稳定渗流期土坡稳定分析,由于坝体内各点的孔隙水压力均能由流网确定,因此原则上用有效应力法分析,而不用总应力法。

2.施工期的边坡稳定分析,可以分别用总应力法和有效应力法,前者不直接考虑孔隙水压力的影响,后者必须先计算施工期填土内孔隙水压力的发生和发展情况,然后才能进行稳定计算。

3.地震对边坡稳定的影响有两种作用:一是在边坡土体上附加作用一个随时间变化的加速度,因而产生随时间变化的惯性力,促使边坡滑动;另一种作用是振动使土体趋于变密,引起孔隙水压力上升,即产生振动孔隙水压力,从而减小土的抗剪强度。对于密实的粘性土,惯性力是主要作用,对于饱和、松散的无粘性土和低塑性粘性土,则第二种的作用影响更大目前更有效应力法进行地震边坡稳定分析尚有一定的难度,一般情况下均采用总应力法。计算时将随时间变化的惯性力等价成一个静的地震惯性力,作用在滑动土体上,故称拟静力法。(五)土坡稳定分析的几个问题讨论

1.关于挖方边坡和天然边坡

人工挖出和天然存在的土坡是在天然地层中形成的,但与人工填筑土坡相比有独特之处。对均质挖方土坡和天然土坡稳定性分析,与人工填筑土坡相比,求得的安全系数比较符合实测结果,但对于超固结裂隙粘土,算得的安全系数虽远大于1,表面上看来已稳定,实际上都已破坏,这是由超固结粘土的特性决定的。随着剪切变形的增加,抗剪力增大到峰值强度,随后降至残余值,特别是粘聚力下降较大,甚至接近于零,这些特形对土坡稳定性有很大影响。

2.关于圆弧滑动法

该法把滑动面简单地当做圆弧,并认为滑动土体是刚性的,没有考虑分条之间的推力,或只考虑分条间水平推力(毕肖普公式),故计算结果不能完全符合实际,但由于计算概念明确,且能分析复杂条件下土坡稳定性,所以在各国实践中普遍使用。由均质粘土组成的土坡,该方法可使用,但由非均质粘土组成的土坡,如坝基下存在软弱夹层或土石坝等,其滑动面形状发生很大变化,应根据具体情况,采用非圆弧法进行计算比较。不论用哪—一种方法.都必须考虑渗流的作用。

3.土的抗剪强度指标选用问题

选用的土抗剪强度指标是否合理,对土坡稳定性分析结果有密切关系,如果使用过高的指标值来设计土坝,就有发生滑坡的可能。因此,应尽可能结合边坡实际加荷情况,填料性质和排水条件等,去合理选用土的抗剪强度指标。

4.安全系数选用问题

从理论上讲,处于极限平衡状态的土坡,其安全系数K=1,所以:若设计土坡时的K>1,就应满足稳定要求,但实际工程中,有些土坡安全系数虽大于1,还是发生了滑动;而有些土坡安全系数小于1,却是稳定的。这是因为影响安全系数的因素很多,如抗剪强度指标的选用、计算方法的选择、计算条件的选择等。目前对土坡稳定容许安全系数的数值,各部门尚无统一标准,选用时要注意计算方法、强度指标和容许安全系数必须相互配合,并要根据工程不同情况,结合当地已有经验加以确定。

三、基本方法

(一)确定最危险滑动面圆心的方法

对φ=0的均质土坡,可按前述瑞典圆弧法确定。对φ>o的土坡,其圆心确定需多次

试算。先按φ=o的情况根据土坡坡度查表,得β1,β2角,AO与BO线交点为O,如图9—8所示(见教材),由坡角A向下作垂线为边坡高度H,再向右作水平线4.5H为E点,边EO,在EO延长线上取一点为圆心01,以OlA为半径作圆弧交坡顶于C1。试算时可在EO延长线几个圆心O1、O2……,计算相应的稳定安全系数,在垂直EO的方向上按比例画出代表各安全系数K1、K2……数值的线段,然后连成K曲线。在该曲线最小的K值处作垂线FG,在FG线上另取几个圆心O1’、O2’……计算相应的稳定安全系数,同样可作出K’值曲线,并以K'值曲线上的最小值为K'min,而相应的O’为最危险滑动面的圆心。现已有程序进行电算,以节省计算工作量。

(二)复合滑动面土坡稳定分析方法

当土坡相邻土层的强度相差太大时,就有可能有部分滑动面沿着强度较低的土层界面生成,不沿圆弧剪破,图9—9(见教材)所示滑动面即为复合滑动面。

复合滑动属非圆弧滑动的一种。针对非圆弧滑动,人们提出了很多计算方法,其中詹布(N.Janbu)法、传递系数法等已成为我国一些专业规范推荐使用。下面介绍一种简化复合滑动面稳定分析法。

图9—9的简单土坡地基中有一软弱薄层,简化分析假定BF面上作用有主动土压力Pa,CE面上作用有被动土压力Pp,分析FBCE沿BC面的滑动稳定性,安全系数K,表示为:

Pa

Pp C

B c

Wtg

K +

+

=

?

式中:W:为土体FBCE的重量;

C、φ:为软层的强度指标;

BC:为BC段长度;

Pa,Pp:分别为主、被动土压力,可按朗肯理论计算。

如果图9-9中软层本身是均匀的,只需验算沿软层底面的滑动;如果软层顶部强度底,底部强度高,沿软层底面,顶面的滑动都需要验算,取K小者。

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

边坡稳定分析与计算例题

边坡工程计算例题1. Consider the infinite slope shown in figure. (1) Determine the factor of safety against sliding along the soil-rock interface given H = 2.4m. H, will give a factor of safety, F, of 2 against sliding along (2) What height, s the soil-rock interface?. ??25?1k k1H Soil Rock Solution ⑴Equation is ?naCt?F?, s2???natna?r?H?cost?? Given ,,,r,HC We have 24?F1.s(2) Equation is C, ?H?nat2??n??cotsa?r?(F) s?nta??,,F,C,r Given s We have m11?1.H32??. 2. A cut is to be made in a soil that has,, and mkN/16.5?m?29kN/c?15?The side of the cut slope will make an angle of 45°with the horizontal. What FS, of 3?depth of the cut slope will have a factor of safety,S2?.If, and then Solution We are given 3FS?mkN/c?29??15C FSFS andshould both be equal to 3. We have?C c?FS c c d Or cc292mkN/??c??9.67d FSFS3SC Similarly, ?tan?FS??tan d??tan15tantan???tan?d3FSFS?s Or tan15???1?tan5.1?????d3?? ?into equation givesand Substituting the preceding values of c dd??????cos4csin45cos5.19.67sin?4dd m?H?7.1????? ???????5.1??1cos1?16.5cos45?????d 某滑坡的滑面为折线,其断面和力学参数如图和表所示,拟设计抗滑结构物,3.。,

土坡稳定性计算计算书7.9

土坡稳定性计算书 计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《地基与基础》第三版 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 基本参数: 放坡参数: 荷载参数: 土层参数:

二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.2的要求。

圆弧滑动法示意图 三、计算公式: K sj=∑{c i l i+[ΔG i b i+qb i]cosθi tanφi}/∑[ΔG i b i+qb i]sinθi 式子中: K sj --第j个圆弧滑动体的抗滑力矩与滑动力矩的比值; c i --土层的粘聚力; l i--第i条土条的圆弧长度; ΔG i-第i土条的自重; θi --第i条土中线处法线与铅直线的夹角; φi --土层的内摩擦角; b i --第i条土的宽度; h i --第i条土的平均高度; q --第i条土条土上的均布荷载; 四、计算安全系数: 将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数K sjmin:

计算方法算法的数值稳定性实验报告

专业 序号 姓名 日期 实验1 算法的数值稳定性实验 【实验目的】 1.掌握用MATLAB 语言的编程训练,初步体验算法的软件实现; 2.通过对稳定算法和不稳定算法的结果分析、比较,深入理解算法的数值稳定性及其重要性。 【实验内容】 1.计算积分 ()dx a x x I n ?+=1 0) (n (n=0,1,2......,10) 其中a 为参数,分别对a=0.05及a=15按下列两种方案计算,列出其结果,并对其可靠性,说明原因。 2.方案一 用递推公式 n aI I n 1 1n + -=- (n=1,2,......,10) 递推初值可由积分直接得)1 ( 0a a In I += 3. 方案二 用递推公式 )1 (11-n n I a I n +-= (n=N,N-1,......,1) 根据估计式 ()()()11111+<<++n a I n a n 当1 n a +≥n 或 ()()n 1 111≤<++n I n a 当1 n n a 0+< ≤ 取递推初值为 ()()()() 11212])1(1111[21N +++=++++≈N a a a N a N a I 当1 a +≥ N N 或

()()]1111[21N N a I N +++= 当1 a 0+< ≤N N 计算中取N=13开始 【解】:手工分析怎样求解这题。 【计算机求解】:怎样设计程序?流程图?变量说明?能否将某算法设计成具有形式参数的函数 形式? 【程序如下】: % myexp1_1.m --- 算法的数值稳定性实验 % 见 P11 实验课题(一) % function try_stable global n a N = 20; % 计算 N 个值 a =0.05;%或者a=15 % %-------------------------------------------- % % [方案I] 用递推公式 %I(k) = - a*I(k-1) + 1/k % I0 =log((a+1)/a); % 初值 I = zeros(N,1); % 创建 N x 1 矩阵(即列向量),元素全为零 I(1) =-a*I0+1; for k = 2:N I(k) =-a*I(k-1)+1/k; end % %--------------------------------------------

深基坑边坡稳定性计算书

土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m): 1.56 ; 基坑内侧水位到坑顶的距离(m): 14.000 ; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m)条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数:

土层参数: 二、计算原理 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第 i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足 >=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

稳定性验算

承载能力极限状态 1)根据JTJ250-98《港口工程地基规范》的5.3.2规定,土坡和地基的稳定性验算,其危险滑弧应满足以下承载能力极限状态设计表达式: /Sd Rk R M M γ≤ 式中:Sd M 、Rk M ——分别为作用于危险滑弧面上滑动力矩的设计值和抗滑力矩的标准值; R γ为抗力分项系数。 2)采用简单条分法验算边坡和地基稳定,其抗滑力矩标准值和滑动力矩设计值按下式计算: ()cos tan ()sin Rk ki i ki i ki i ki Sd s ki i ki i M R C L q b W M R q b W α?γα??=+ +?? ??=+?? ∑∑∑ 式中:R ——滑弧半径(m ); s γ——综合分项系数,取1.0; ki W ——永久作用为第i 土条的重力标准值(KN/m ),取均值,零压线以 下用浮重度计算; ki q ——第i 土条顶面作用的可变作用的标准值(kPa ); i b ——第 i 土条宽度(m ); i α——第i 土条滑弧中点切线与水平线的夹角(°); ki ?、ki C ——分别为第i 土条滑动面上的内摩擦角(°)和粘聚力(kPa ) 标准值,取均值; i L ——第 i 土条对应弧长(m )。 3)地基稳定性计算步骤 (1) 确定可能的滑弧圆心范围。通过边坡的中点作垂直线和法线,以坡面中点为圆心,分别以1/4坡长和5/4坡长为半径画同心圆,最危险滑弧圆心即在该4条线所包含的范围内。

(2) 作滑动滑弧。选定某些滑动圆心,作圆与软弱层相切,则与防波堤及土层相交的圆弧即为滑弧。 (3) 进行条分。对滑弧内的土层等进行条分,选择土条的宽度,并且对土条进行编号。 (4) 计算各个土条的自重力。利用公式ki i i i W h b γ=计算各个土条的自重力。 (5) 计算滑弧中点切线与水平线的夹角。作滑弧的中点切线,读出它与水平线之间的夹角,注意滑弧滑动的方向,确定夹角的正负。 (6) 确定土条内滑弧的内摩擦角与粘聚力。对于不同的土层,内摩擦角与粘聚力取均值。 (7) 计算危险弧面上的滑动力矩与抗滑力矩。利用公式计算抗滑力 矩 和 滑 动 力 矩。 抗滑力矩为 ( )c o R k k i i k i i k i i k i M R C L q b W α???= ++ ?? ∑ ∑;而滑动力矩为()sin Sd s ki i ki i M R q b W γα??=+??∑。 确定是否满足要求。利用承载能力极限状态设计表达式/Sd Rk R M M γ≤判断是否满足稳定性的要求。

用理正岩土计算边坡稳定性

运用《理正岩土边坡稳定性分析》 作定量计算 (整理人:朱冬林,2012-2-21) 1、我目前手上理正岩土的版本为5.11版,有新版本的请踊跃报名,大家共同进步! 2、为什么要用理正岩土边坡稳定性分析? 现在山区公路项目地形条件越来越复杂,对于一些斜坡(指一般自然坡)或边坡(指开挖后的坡体)的稳定性评价是不可避免,比如桥位区沿斜坡布线,桥轴线与坡向大角度相交,自然坡度20~40°,覆盖层比较厚,到底是稳定还是不稳定?会不会有隐患和危险?必将困扰每个勘察技术人员,说它稳定吧,又怕将来出问题,说不稳定,目前又没有出现开裂变形滑动迹象,那在报告中如何评价桥址的安全性?再比如,路线从大型堆积体上经过,究竟稳定性如何评价?仅靠钻探或地质调查无法对其稳定性进行合理评价。这时候,就要辅以定量分析计算来提供证据了。 还有,我们在报告中提路堑边坡的岩土经验参数,常常遭设计诟病,按报告

中提的参数,自然坡都垮得一塌糊涂了,更不要说开挖了。我们在正式报告中提出“问题参数”会大大降低了勘察在设计心目中的光辉(灰)形象。如果我们事先对自然斜坡的横断面进行过初步计算,提出的参数就不会太离谱,必将给设计留下“很专业”的印象。 3、是否好用? 很好用。在保宜项目我一天计算几十个断面,既有效又快。 4、断面图能不能直接从CAD图读入? 可以。只需事先转化为dxf即可(用dxfout命令保存)。对图形的条件是所有的线段都是直线段组成(对于多段线需要炸开,对于样条曲线可以用多段线描一下再炸开即可),另外图形边界要封闭(事先可以用填充命令试一下,看各个区域是否封闭)。注意,图中只能有直线段,不能有其它图元(记得按上面操作完后,全选(Ctrl+A),看“属性”(Ctrl+1),全部为直线,则OK)。 5、下面结合实例讲解计算过程,保证学一遍就上手。 以土质边坡计算为例(最常用) 进入土质边坡稳定性分析程序

(完整版)土坡稳定性计算

第九章土坡稳定分析 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 第一节概述 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土坡。 3.滑坡(landslide):土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳 定性的现象。 4.圆弧滑动法(circleslipmethod):在工程设计中常假定土坡滑动面为圆弧面,建立这一 假定的稳定分析方法,称为圆弧滑动法。它是极限平衡法的一种常用分析方法。 二、基本规律与基本原理 (一)土坡失稳原因分析 土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。1.产生滑动的内部因素主要有: (1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。 (2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。 (3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性土有粘聚力,当土坡不高时尚可直立,但随时间和气候的变化,也会逐渐塌落。 2.促使滑动的外部因素 (1)降水或地下水的作用:持续的降雨或地下水渗入土层中,使土中含水量增高,土中易溶盐溶解,土质变软,强度降低;还可使土的重度增加,以及孔隙水压力的产生,使土体作用有动、静水压力,促使土体失稳,故设计斜坡应针对这些原因,采用相应的排水措施。(2)振动的作用:如地震的反复作用下,砂土极易发生液化;粘性土,振动时易使土的结

第一性原理计算判断材料稳定性的几种方法

第一性原理计算判断材料稳定性的几种方法 当我们通过一些方法,如:人工设计、机器学习和结构搜索等,设计出一种新材料的时候,首先需要做的一件事情就是去判断这个材料是否稳定。如果这个材料不稳定,那么后续的性能分析就犹如空中楼阁。因此,判断材料是否稳定是材料设计领域中非常关键的一个环节。接下来,我们介绍几种通过第一性原理计算判断材料是否稳定的方法。 1.结合能 结合能是指原子由自由状态形成化合物所释放的能量,一般默认算出来能量越低越稳定。对于简单的二元化合物A m B n(A,B为该化合物中包含的两种元素,m,n为相应原子在化学式中的数目),其结合能可表示为: 其中E(A m B n)为化学式A m B n的能量,E(A)和E(B)分别为自由原子A和B的能量,E b越低,越稳定。 2.形成能 形成能是指由相应单质合成化合物所释放的能量。同样,对于二元化合物A m B n,其形成能可表示为: 其中E(A)和E(B)分别为对应单质A和B归一化后的能量。 用能量判断某一材料稳定性的时候,选择形成能可能更符合实际。因为实验合成某一材料的时候,我们一般使用其组成单质进行合成。如果想进一步判断该材料是处于稳态还是亚稳态,那

么需要用凸包图(convex hull)进行。如图1所示,计算已知稳态A x B y的形成能,构成凸包图(红色虚线),其横轴为B在化学式中所占比例,纵轴为形成能。通过比较考察化合物与红色虚线的相对位置,如果在红色虚线上方则其可能分解(如:图1 插图中的D,将分解为A和B)或处于亚稳态(D的声子谱没有虚频);如果在红色虚线下方(如:图1 插图中的C),则该化合物稳定。 图 1:凸包图用于判断亚稳态和稳态[[1]] 3.声子谱 声子谱是表示组成材料原子的集体振动模式。如果材料的原胞包含n个原子,那么声子谱总共有3n支,其中有3条声学支,3n-3条光学支。声学支表示原胞的整体振动,光学支表示原胞内原子间的相对振动。 计算出的声子谱有虚频,往往表示该材料不稳定。因为

(完整版)土坡稳定性分析

第七章土坡稳定性分析 第一节概述 土坡就是由土体构成、具有倾斜坡面的土体,它 的简单外形如图7-1所示。一般而言,土坡有两种类 型。由自然地质作用所形成的土坡称为天然土坡,如 山坡、江河岸坡等;由人工开挖或回填而形成的土坡 称为人工土(边)坡,如基坑、土坝、路堤等的边坡。 土坡在各种内力和外力的共同作用下,有可能产生剪 图7-1 土坡各部位名称 切破坏和土体的移动。如果靠坡面处剪切破坏的面积 很大,则将产生一部分土体相对于另一部分土体滑动的现象,称为滑坡。土体的滑动一般系指土坡在一定范围内整体地沿某一滑动面向下和向外移动而丧失其稳定性。除设计或施工不当可能导致土坡的失稳外,外界的不利因素影响也触发和加剧了土坡的失稳,一般有以下几种原因: 1.土坡所受的作用力发生变化:例如,由于在土坡顶部堆放材料或建造建筑物而使坡顶受荷。或由于打桩振动,车辆行驶、爆破、地震等引起的振动而改变了土坡原来的平衡状态; 2.土体抗剪强度的降低:例如,土体中含水量或超静水压力的增加; 3.静水压力的作用:例如,雨水或地面水流入土坡中的竖向裂缝,对土坡产生侧向压力,从而促进土坡产生滑动。因此,粘性土坡发生裂缝常常是土坡稳定性的不利因素,也是滑坡的预兆之一。 在土木工程建筑中,如果土坡失去稳定造成塌方,不仅影响工程进度,有时还会危及人的生命安全,造成工程失事和巨大的经济损失。因此,土坡稳定问题在工程设计和施工中应引起足够的重视。 天然的斜坡、填筑的堤坝以及基坑放坡开挖等问题,都要演算斜坡的稳定性,亦既比较可能滑动面上的剪应力与抗剪强度。这种工作称为稳定性分析。土坡稳定性分析是土力学中重要的稳定分析问题。土坡失稳的类型比较复杂,大多是土体的塑性破坏。而土体塑性破坏的分析方法有极限平衡法、极限分析法和有限元法等。在边坡稳定性分析中,极限分析法和有限元法都还不够成熟。因此,目前工程实践中基本上都是采用极限平衡法。极限平衡方法分析的一般步骤是:假定斜坡破坏是沿着土体内某一确定的滑裂面滑动,根据滑裂土体的静力平衡条件和莫尔—库伦强度理论,可以计算出沿该滑裂面滑动的可能性,即土坡稳定安全系数的大小或破坏概率的高低,然后,再系统地选取许多个可能的滑动面,用同样的方法计算其稳定安全系数或破坏概率。稳定安全系数最低或者破坏概率最高的滑动面就是可能性最大的滑动面。 本章主要讨论极限平衡方法在斜坡稳定性分析中的应用,并简要介绍有限元法的概念。 182

边坡稳定性案例分析

边坡稳定性分析方法综述及案例研究 摘要:本文首先介绍实际工程中边坡稳定性分析及处治技术研究的意义,其次介绍边坡破坏的形式及影响因素,并系统地介绍边坡稳定性分析的三大类方法及其原理。最后结合工程实际案例,采用赤平投影方法和FLAC3D软件数值模拟对案例中涉及的边坡进行了稳定性评价,并提出合理的加固措施。 关键词:边坡稳定性,稳定性分析方法,赤平投影法,数值模拟,边坡加固 ABSTRACT: This article firstly introduces the meaning of slope stability analysis in practical projects and study on treatment technology, then demonstrates the forms of slope failure and the influence factors. The article also introduces the three main methods on slope stability analysis and their theories systematically. In the end, according to a practical project, stereographic projection and numerical simulation through FLAC3D software are employed to conduct estimation of stability of a slope involved in the project, and thus the reasonable reinforcement measures. Key Words:slope stability analysis, stability analysis methods, stereographic projection, numerical simulation, slope reinforcement

恒智天成安全计算软件土坡稳定性计算

土坡稳定性计算计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 条分块数:50; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):2.000 基坑内侧水位到坑顶的距离(m):6.000

二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式: 式子中: F s --土坡稳定安全系数; c --土层的粘聚力; l i--第i条土条的圆弧长度; γ --土层的计算重度; θi --第i条土到滑动圆弧圆心与竖直方向的夹角;

φ --土层的内摩擦角; b i --第i条土的宽度; h i --第i条土的平均高度; h1i――第i条土水位以上的高度; h2i――第i条土水位以下的高度; γ' ――第i条土的平均重度的浮重度; q――第i条土条土上的均布荷载; 四、计算安全系数: 将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs: 第1步:安全系数=1.417,标高=-2.000,圆心X=0.962米,圆心Y=1.344米,半径R=3.344米示意图如下:

计算方法算法的数值稳定性实验报告

专业 序号 姓名 日期 实验1算法的数值稳定性实验 【实验目的】 1.掌握用MATLAB 语言的编程训练,初步体验算法的软件实现; 2.通过对稳定算法和不稳定算法的结果分析、比较,深入理解算法的数值稳定性及其重要性。 【实验内容】 1.计算积分 ()dx a x x I n ?+=1 0)(n (n=0,1,2......,10) 其中a 为参数,分别对a=0.05及a=15按下列两种方案计算,列出其结果,并对其可靠性,说明原因。 2.方案一 用递推公式 n aI I n 11n + -=- (n=1,2,......,10) 递推初值可由积分直接得)1(0a a In I += 3. 方案二 用递推公式 )1(11-n n I a I n +-= (n=N,N-1,......,1) 根据估计式 ()()() 11111+<<++n a I n a n 当1n a +≥n 或 ()()n 1111≤<++n I n a 当1 n n a 0+<≤ 取递推初值为 ()()()()11212])1(1111[21N +++=++++≈N a a a N a N a I 当1 a +≥N N 或 ()()]1111[21N N a I N +++= 当1a 0+< ≤N N 计算中取N=13开始 【解】:手工分析怎样求解这题。 【计算机求解】:怎样设计程序?流程图?变量说明?能否将某算法设计成具有形式参数的函数形式? 【程序如下】: % myexp1_1.m --- 算法的数值稳定性实验 % 见 P11 实验课题(一) % function try_stable global n a N = 20; % 计算 N 个值 a =0.05;%或者a=15 % %--------------------------------------------

边坡稳定性计算方法11111

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗 剪度指标为c、φ。如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析 该滑动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(Δ ABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为: T=W · sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为 从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当 F s =1时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小 于 0.1时,可以把它当作一个无限边坡进行分析。 图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条 进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的 剪应力等于土的抗剪强度,即 得 式中N s =c/ γ H 称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无粘性 土。α =φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森( K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图 9 - 3 表示一均质的粘性土坡。AC 为可能的滑动面,O为圆心,R 为半径。假定 边坡破坏时,滑体ABC在自重W 作用下,沿AC绕O 点整体转动。滑动面 AC 上的力 系有:促使边坡滑动的滑动力矩 M s =W · d ;抵抗边坡滑动的抗滑力矩,它应该包括由 粘聚力产生的抗滑力矩M r =c ·AC · R ,此外还应有由摩擦力所产生的抗滑力矩,这里 假定φ= 0 。边坡沿AC的安全系数F s 用作用在 AC面上的抗滑力矩和下滑力矩之比表 示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ= 0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法 前述圆弧滑动法中没有考虑滑面上摩擦力的作用,这是由于摩擦力在滑面的不同位置其方向和大小都在改变。为了将圆弧滑动法应用于φ> 0 的粘性土,在圆弧法分析粘性土坡稳定性的基础上,瑞典学者 Fellenius 提出了圆弧条分析法,也称瑞典条分法。条会法就是将滑动土体竖向分成若干土条,把土条当成刚塑体,分别求作用于各土条上的力对圆心的滑动力矩和抗滑力矩,然后按式( 9-5 )求土坡的稳定安全系数。 采用分条法计算边坡的安全系数F ,如图 9 - 4 所示,将滑动土体分成若干土条。土条的宽度越小,计算精度越高,为了避免计算过于繁

钢梁稳定性计算步骤

钢梁整体稳定性验算步骤 1. 根据《钢结构设计规范》(GB 50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。 2. 如需要计算 2.1 等截面焊接工字形和轧制H 型钢简支梁 b 1 b 1 t 1 t 1 h x x y y b 1b 2t 2x x y y h t 1y (a)双轴对称焊接工字形截面 (b)加强受压翼缘的单轴对称焊接工字形截面 b 1 b 2t 1 x y y (c)加强受拉翼缘的单轴对称焊接工字形截面 t 2 x h b 1b 1t 1 h x x y y (d)轧制H 型钢截面 t 1 1)根据表B.1注1,求ξ。 l 1——H 型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l 1为其跨度;对跨中有侧向支撑点的梁,l 1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b1——截面宽度。 2)根据表B.1,求βb。 3)根据公式B.1-1注,求I1和I2,求αb。如果αb>0.8,根据表B.1注6,调整βb。 4)根据公式B.1-1注,计算ηb。 5)根据公式B.1-1,计算φb。 6)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。 7)根据公式4.2.2,验算稳定性。 2.2 轧制普通工字钢简支梁 1)根据表B.2选取φb。 2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。 3)根据公式4.2.2,验算稳定性。 2.3 轧制槽钢简支梁 1)根据公式B.3,计算φb。 2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。 3)根据公式4.2.2,验算稳定性。 2.4 双轴对称工字形等截面(含H型钢)悬臂梁 1)根据表B.1注1,求ξ。 l1——悬臂梁的悬伸长度。 b1——截面宽度。 2)根据表B.4,求βb。

用理正岩土计算边坡稳定性66816讲解学习

用理正岩土计算边坡稳定性66816

运用《理正岩土边坡稳定性分析》 作定量计算 (整理人:朱冬林,2012-2-21) 1、我目前手上理正岩土的版本为5.11版,有新版本的请踊跃报名,大家共同进步! 2、为什么要用理正岩土边坡稳定性分析? 现在山区公路项目地形条件越来越复杂,对于一些斜坡(指一般自然坡)或边坡(指开挖后的坡体)的稳定性评价是不可避免,比如桥位区沿斜坡布线,桥轴线与坡向大角度相交,自然坡度20~40°,覆盖层比较厚,到底是稳定还是不稳定?会不会有隐患和危险?必将困扰每个勘察技术人员,说它稳定吧,又怕将来出问题,说不稳定,目前又没有出现开裂变形滑动迹象,那在报告中如何评价桥址的安全性?再比如,路线从大型堆积体上经过,究竟稳定性如何评价?仅靠钻探或地质调查无法对其稳定性进行合理评价。这时候,就要辅以定量分析计算来提供证据了。

还有,我们在报告中提路堑边坡的岩土经验参数,常常遭设计诟病,按报告中提的参数,自然坡都垮得一塌糊涂了,更不要说开挖了。我们在正式报告中提出“问题参数”会大大降低了勘察在设计心目中的光辉(灰)形象。如果我们事先对自然斜坡的横断面进行过初步计算,提出的参数就不会太离谱,必将给设计留下“很专业”的印象。 3、是否好用? 很好用。在保宜项目我一天计算几十个断面,既有效又快。 4、断面图能不能直接从CAD图读入? 可以。只需事先转化为dxf即可(用dxfout命令保存)。对图形的条件是所有的线段都是直线段组成(对于多段线需要炸开,对于样条曲线可以用多段线描一下再炸开即可),另外图形边界要封闭(事先可以用填充命令试一下,看各个区域是否封闭)。注意,图中只能有直线段,不能有其它图元(记得按上面操作完后,全选(Ctrl+A),看“属性”(Ctrl+1),全部为直线,则OK)。 5、下面结合实例讲解计算过程,保证学一遍就上手。 以土质边坡计算为例(最常用) 进入土质边坡稳定性分析程序

深基坑边坡稳定性计算书

... . . 土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度 (m) 坑壁土的重 度γ(kN/m3) 坑壁土的摩 擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 三、计算公式:

土坡稳定性计算计算书

土坡稳定性计算计算书 品茗软件大厦工程;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天;施工单位:某某施工单位。 本工程由某某房开公司投资建设,某某设计院设计,某某勘察单位地质勘察,某某监理公司监理,某某施工单位组织施工;由章某某担任项目经理,李某某担任技术负责人。 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 条分块数:14; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):2.000; 基坑内侧水位到坑顶的距离(m):6.000; 放坡参数:

序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 1 2.00 3.00 1.00 0.00 2 3.00 4.00 1.00 0.00 荷载参数: 序号类型面荷载q(kPa) 基坑边线距离b0(m) 宽度b1(m) 1 满布 10.00 0.00 0.00 土层参数: 序号土名称土厚度(m) 坑壁土的重度γ(kN/m3) 坑壁土的内摩擦角φ(°) 内聚力C(kPa) 饱容重(kN/m3) 1 填土 7.00 18.00 20.00 10.00 22.00 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

6-7m土坡稳定性计算计算书

6-7m土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 条分块数:50; 不考虑地下水位影响; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 1 2 荷载参数: 序号类型面荷载q(kPa) 基坑边线距离b 1(m) 宽度b (m) 1 满布 -- -- 土层参数:

土厚度(m)土的重度γ(kN/m3)22 土的内摩擦角φ(°)45粘聚力C(kPa)30 极限摩擦阻力(kPa)60饱和重度γ sat (kN/m3)22 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥的要求。 三、计算公式: F s =∑{c i l i +[(γh 1i +γ'h 2i )b i +qb i ]cosθ i tanφ i }/∑[(γh 1i +γ 'h 2i )b i +qb i ]sinθ i 式子中: F s --土坡稳定安全系数;

相关文档
最新文档