土的力学指标经验参考值及土坡稳定性计算
土压力、地基承载力和土坡稳定计算要求

z
z
Eo
1 2
h2Ko
K0z
h h/3
静止土压力系数 采用经验公式K0 = 1-sinφ’ 计算
作用在挡土结构背K面0h的静止土压力可视为天然土层自重
应力的水平分量。
6.2 作用在挡土墙上的土压力
若墙后填土中有地下水,则计算静止土压力时, 水中土的重度应取浮重度
6.3 朗金土压力理论
基本原理
朗金土压力理论是根据半空间的应力状态和土的极限平 衡条件而得出的土压力计算方法。
弹性平衡状态
6.3 朗金土压力理论
当整个土体都处于静止状态时,各点都处于弹性平衡状态,设土的重
度为γ,应力状态如图所示,此时应力状态用莫尔圆表示为所示圆Ⅰ,该
点处于弹性平衡状态,故莫尔圆没有与抗剪强度包线相切。
力两部分,可分作两层计算,一般假设地下水位上下土层的抗剪强度
指标相同,地下水位以下土层用浮重度计算。
6.3 朗金土压力理论
土压力强度
A点
aA 0
B点
aB h1Ka
水压力强度
B点
wB 0
C点
aCh 1K ah2K a C点
wC wh2
作用在墙背的总压力为土压力和水压力之和,作用 点在合力分布图形的形心处。
=17kN/m
3
c=8kPa
=20o
h=6m
• 【解答】
2c√Ka
主动土压力系数 Ka ta2n4o 52= 0.49
6m
z0 (h-z0)/3
墙底处土压力强度
Ea
ah K a 2 cK a = 3 8 .8 k P a
hKa-2c√Ka
临界深度
z02c/( Ka)= 1.3m 4
土坡稳定性分析计算

土坡稳定性分析的目的和意义
土坡稳定性分析是工程地质和岩土工程领域的重要研究内容 ,其目的是预测和评估土坡在各种工况下的稳定性,为工程 设计和施工提供科学依据。
通过土坡稳定性分析,可以确定土坡的临界高度、安全系数 等参数,为土坡设计、加固和防护提供技术支持,同时也有 助于提高工程的安全性和经济性。
02土坡稳定性分析与其他学科领域的交叉 融合,如环境工程、地理信息科学等,拓展其应用领 域和应用范围。
THANKS
感谢观看
土坡稳定性分析计算
• 引言 • 土坡稳定性分析的基本原理 • 土坡稳定性分析的常用方法 • 土坡稳定性分析的步骤与流程 • 工程实例与案例分析 • 结论与展望
01
引言
土坡稳定性问题的重要性
01
土坡是自然和工程地质中常见的 一种现象,其稳定性直接关系到 人民生命财产安全和自然环境的 保护。
02
土坡失稳会导致滑坡、泥石流等 地质灾害,给人类社会和自然环 境带来巨大的损失和破坏。
06
结论与展望
土坡稳定性分析的重要性和应用前景
土坡稳定性分析是岩土工程领域的重要研究内容,对于保障工程安全、防止自然灾 害具有重要意义。
随着城市化进程的加速和基础设施建设的不断推进,土坡稳定性分析的应用前景将 更加广阔,涉及的领域也将更加多样化。
土坡稳定性分析可以为工程设计、施工和监测提供科学依据,提高工程的安全性和 可靠性,降低工程风险。
有限元法
总结词
有限元法是一种基于数值分析方法的土 坡稳定性分析方法,通过将土坡划分为 一系列有限元单元,模拟土坡的应力分 布和变形过程,从而确定土坡的稳定性 。
VS
详细描述
该方法考虑了土坡内部的应力分布和变形 过程,能够模拟复杂的滑裂面形状和分布 ,得到更准确的稳定性分析结果。该方法 适用于各种类型的土坡,包括非均质、不 连续、有节理的土坡。
土坡稳定性分析计算方法

⼟坡稳定性分析计算⽅法第五章⼟压⼒和⼟坡稳定(7学时)内容提要1.挡⼟墙的⼟压⼒ 2.朗肯⼟压⼒理论 3.库仑⼟压⼒理论 4.挡⼟结构设计简介 5. ⼟坡的稳定性分析能⼒培养要求1.⽤朗肯理论计算均质⼟的主动⼟压⼒与被动⼟压⼒。
2.⽤朗肯理论计算常见情况下的主动⼟压⼒。
3.⽤库仑理论计算⼟的主动与被动⼟压⼒。
4.会分析挡⼟墙的稳定性,简单挡⼟结构设计。
5.⽆粘性⼟坡的稳定分析。
6.⽤条分法对粘性⼟⼟坡进⾏的稳定分析。
7.会分析⼟坡失稳的原因,提出合理的措施。
教学形式教师主讲、课堂讨论、学⽣讲评、提问答疑、习题分析等第⼀节挡⼟墙的⼟压⼒教学⽬标1.掌握三种⼟压⼒的概念。
2.掌握静⽌⼟压⼒计算。
教学内容设计及安排【基本内容】⼀、挡⼟墙的位移与⼟体的状态⼟压⼒的类型⼟压⼒(kN/m )??→?→?→?如桥墩墙推⼟被动⼟压⼒如⼀般的重⼒式挡⼟墙⼟推墙主动⼟压⼒如地下室侧墙墙不动静⽌⼟压⼒p a E E E 01.静⽌⼟压⼒——挡⼟墙在⼟压⼒作⽤下不发⽣任何变形和位移(移动或转动)墙后填⼟处于弹性平衡状态,作⽤在挡⼟墙背的⼟压⼒。
2.主动⼟压⼒——挡⼟墙在⼟压⼒作⽤下离开⼟体向前位移时,⼟压⼒随之减少。
当位移⾄⼀定数值时,墙后⼟体达到主动极限平衡状态。
此时,作⽤在墙背的⼟压⼒称为主动⼟压⼒。
3.被动⼟压⼒——挡⼟墙在外⼒作⽤下推挤⼟体向后位移时,作⽤在墙上的⼟压⼒随之增加。
当位移⾄⼀定数值时,墙后⼟体达到被动极限平衡状态。
此时,作⽤在墙上的⼟压⼒称为被动⼟压⼒。
【讨论】△a<<△p , E a⼆、⼟压⼒的计算简化处理——作⽤在挡⼟结构物背⾯上的静⽌⼟压⼒可视为天然⼟层⾃重应⼒的⽔平分量。
如图所⽰,在墙后填⼟体中任意深度z处取⼀微⼩单元体,作⽤于单元体⽔平⾯上的应⼒为γz ,则该点的静⽌⼟压⼒,即侧压⼒强度为:p 0=K 0γz (kPa ) K 0——⼟的侧压⼒系数,即静⽌⼟压⼒系数:静⽌⼟压⼒系数的确定⽅法??'采⽤经验值—较适合于砂⼟—-=采⽤经验公式:—较可靠—测定通过侧限条件下的试验sin 10K由上式可知,静⽌⼟压⼒沿墙⾼为三⾓形分布,如图所⽰,取单位墙长计算,则作⽤在墙上的静⽌⼟压⼒为(由⼟压⼒强度沿墙⾼积分得到)E 0=0221K h γ(kN/m )——静⽌⼟压⼒分布图⾯积如图所⽰⼟压⼒作⽤点——距墙底h/3处(可⽤静⼒等效原理求得)静⽌⼟压⼒的应⽤隧道涵洞侧墙底版连成整体)⽔闸、船闸边墙(与闸拱座(没有位移)岩基上的挡⼟墙地下室外墙【讨论】如果墙后有均布荷载q ,怎样求静⽌⼟压⼒?第⼆节朗肯⼟压⼒理论教学⽬标掌握朗肯⼟压⼒理论的原理与假定,并能计算各种情况下的主动、被动⼟压⼒。
第八章 土坡稳定性分析与计算

O
R
Vi+1
MR
(c l N tan ) T R R
i i i i i
H
i
Wi
Ti
Fs
Ms MR
(c l N tan ) R W sin R
i i i i i i
O i 2 1 -1 -2 0
R b B 3 4 5 6
C
7
计 算 程 序 流 程
计算 mi
Fs Fs
计算
Fs
No
Fs Fs Fs
A
变化圆心 O 和半径 R
Fs 最小
END
3.简化毕肖普法的特点
★假设滑裂面为圆弧; ★假设条块间作用力只有法向力没有切向力 (Vi=0); ★满足整体力矩平衡条件; ★满足各条块力的多边形闭合条件,但不满足条块的 力矩平衡条件; ★满足滑动面上的极限平衡条件。
i
f 土坡稳定 安全系数
(一) 瑞典条分法的基本原理
1、假设圆弧滑动面 确定圆心和半径
2、把滑动土体分成若干条(条分法) 3、取第i条土条进行受力分析
O
R
Vi+1 Hi hi Vi Wi Hi+1 hi+1
i
Ti Ni
瑞典条分法
静定化条件:假设条块两侧的作用 力合力Si,Si+1 大小相等、方向相 反且作用于同一直线上——不考虑 条块间的作用力。 1)根据径向力的静力平衡条件 得
表层滑动
砂土
概述 表层滑动的边 坡稳定分析
天然休止角
无粘性土
土坡稳定和土压力计算

渗透力为体积力
Fs
Tf T
[ cos i
w
sin( )] tan
w
J
sin i
cos( )
T
W
N
分析:1.当渗流顺坡时 =
i sin
Fs Tf T Tf [ cos i
w
sin( 0 )] tan
P sin( ) P
2
w tan w
2
1 2
与干坡相比降低了一半多
二、粘性土土坡稳定性分析 1.瑞典圆弧法 2.瑞典条分法
二、粘性土土坡稳定性分析
1.瑞典圆弧法(Swedish circle method) 基本假定:均质粘性土坡滑动时,滑动面近似为 圆弧形状,假定滑动面以上的土体为刚体,假定 属于平面应变问题
a
a
Pa
1 2
H
2
tan ( 45
2
0
2
)
1 2
H K a
2
Pa 1 2
1 2
( H z 0 )( HK
2
a
2c 2c
Ka )
2
H K a 2 cH
Ka
外 力
滑动方向
3
1
1
1
ph
45
0
2
被动土压力计算原理
2 ) 2 c tan( 45
Preventing a house from moving with the unstable material
毕肖普法计算土坡稳定系数课件

式(7.5.1)若以有效应力表示,则土条滑动面上的抗剪力为
T i fili cili N i tani (7.5.1)
Ks
Ks
T i fili cli N i tan ,代入上式得
Ks Ks
Ks
N i
1 mi
Wi
X i
uibi
cli Ks
s in i
mi
cosi
tan K
s
sin
i
整个滑动土体对圆心求力矩平衡:此时相邻土条之间侧壁作用力的力矩将互 相低消,而各土条滑面上的法向力的作用线通过圆心。
xi R sini
T i fili cli N i tan
Wi xi T iR 0
Ks Ks
Ks
N i
1 mi
Wi
X i
uibi
cli Ks
s in i
WiR sini
,
s
如此反复迭代,直至前后两次的Ks非常接近为止。通常只要迭代3-4次就可满足工程精度要求。
注意:
N i
1 mi
Wi
X i
uibi
cli Ks
s in i
(1) 对于为θi负值的那些土条,要注意会不会使 mi 趋近于
零。如果是这样,简化毕肖普条分法就不能使用,因为此时
Ni 会趋于无限大,这显然是不合理的。当任一土条的 mi 小于或等于0.2时,计算就会产生较大的误差,此时最好采用
(若令Xi 0, 所产生的误差仅为1%)
计算时:
(1)首先假定Ks
1 ,按式(7.6.4):mi
cosi
tan K
s
sin
i
,计算mi;
(2)按式(7.6.7):Ks
第七章 土坡稳定计算

第七章 土坡稳定计算
第一节 条分法的基本概念
第 i 条土的作用力
条分法中的力和求解条件
未知量:5n-2个
求解条件(方程):共3n个 Wi 如土条极薄
Xi+1
Q
Ei zi Xi
Ei+1 zi+1 Ni
土条底部合力作用点
未知量减少n个
近似认为作用于土条底部中点
Ti
未知量仍多n-2个
第七章 土坡稳定计算
一、瑞典圆弧滑动法基本概念
如经土条底部中点M等势线与地下水面交于N:
若地下水面平行滑裂面 土条很薄
bi li cos i
hwi cili bi ( h1i m h2i w cos2 ) cos itgi i Fs bi ( h1i m h2i ) sin i
第二节
最简单的条分法:瑞典圆弧滑动法
二、最危险滑弧位置的确定 张天宝对土坡最危险滑弧位置变化规律的分析: 坡高和坡比一定时,最危险的滑弧位置的变化规律: ⑴滑弧圆心横坐标X随S的增加而增加 理想砂土:最危险滑面与坡面重合的平面 纯粘性土:最危险滑弧在无限深处 ⑵最危险滑弧圆心位置随s变化的轨迹:
Ni
共n个 1个
未知数合计=2n+3(n-1)+1=5n-2
第七章 土坡稳定计算
第一节 条分法的基本概念
第 i 条土的作用力
条分法中的力和求解条件
未知量:5n-2个 求解条件(方程):。 水平向静力平衡条件: Xi+1 Wi x=0 共n个 Ei+1 Ei 垂直向静力平衡条件: Q zi+1 zi y=0 共n个 Xi 力矩平衡条件: Ti Ni M0 =0 共n个 共3n个 未知数的数目超过了方程的数目 是一个高次超静定问题
土力学土坡稳定分析(最新修改)

2n-1
未知数: 4n-1 方程数: 4n
2.3 粘性土坡的稳定分析
∑Fz=0 Wi Ni cosi Ti sini
极限平 衡条件
Ti
cili
Nitgi
Fs
方程组求解,得到:
A
Ni
(Wi
cili Fs
sini )
mi
O
R
C
i
bB 67
-2 -1 0 1 2 3 4 5
简布法的讨论 未知数: 4n-1 方程数: 4n
Hi+1 Pi+1
(1) 任意形状滑裂面,不一定 是圆弧
Pi hi Hi
Wi
i
Ti
hi+1
(2) 计算较复杂
Ni
Pn=0
11
10
89
P0=0 12
3
4
5
6
7
2.3 粘性土坡的稳定分析
几种方法总结
方法
整体圆弧法 简单条分法 毕肖普法
简布法
滑裂面形状
圆弧
O R
思考: 为什么粘性土坡通 常不会发生表面滑 动?
2.3 粘性土坡的稳定分析
计算方法: 1 整体圆弧滑动法(瑞典Petterson) 2 瑞典条分法(瑞典Fellenius) 3 毕肖普法( Bishop) 4 Janbu法 5 Spencer方法 6 Morgenstern-Price方法 7 陈祖煜的通用条分法 8 不平衡推力传递法 9 Sarma方法
A N
W T
R W
N
5)抗滑安全系数:
Fs
抗滑力 滑动力
R T
W W