第八章 土坡稳定性分析与计算

合集下载

第08章土坡稳定-精选

第08章土坡稳定-精选
二、有水渗流时的土坡稳定计算
浸润线以下部分应考虑水的 浮力作用,采用浮重度,动 水可按下式计算:
JG D Aw I A
ΔA——浸润线以下部分面积, 即动水力作用区域的面积。
in
in
KMs Mi
R(tg Wi cosi c li)
i1 in
i1
R Wi sini rJ
i1
§ 8. 4 水对边坡稳定的影响
k O k kO O m i n 2 5k k 1 1m i2 n1 11 1 O O O O OO OOkO O Ek B B k m i n52kOOO555Okk64k5O55OO14kO5O4k54kO5OkA564OO4355OO114kk6O44454kOk13O125O4OO34kk1k354kO2433311kkO4O1k1kmk2311kOOk123mk22i2kO231i2kknkO1n11O21kOm2kk111O1kEi2m25k11E1Ein21O11En11kOkEE11E1k111E1E141
➢计算滑动力矩和稳定力矩:
M siT iRW iRsini
M r ifiliR ( W ic o sitg i c ili) R
➢计算土坡的稳定安全系数
•对于均质土坡 ci c i
in
K Ms Mi
R (Wi cositgi cili)
i1 in R Wi sini
i1
in
)
K
条分法对非均质土坡、土坡外形复杂、土坡部分 在水下情况均适用。
§ 8.3 粘性土土坡稳定分析
二、圆弧滑动面的整体稳定分析
1、分析计算方法
1)假设条件: • 均质土 • 二维 • 圆弧滑动面 • 滑动土体呈刚性转动 • 在滑动面上处于极限平衡状态

土坡稳定性分析计算

土坡稳定性分析计算

土坡稳定性分析的目的和意义
土坡稳定性分析是工程地质和岩土工程领域的重要研究内容 ,其目的是预测和评估土坡在各种工况下的稳定性,为工程 设计和施工提供科学依据。
通过土坡稳定性分析,可以确定土坡的临界高度、安全系数 等参数,为土坡设计、加固和防护提供技术支持,同时也有 助于提高工程的安全性和经济性。
02土坡稳定性分析与其他学科领域的交叉 融合,如环境工程、地理信息科学等,拓展其应用领 域和应用范围。
THANKS
感谢观看
土坡稳定性分析计算
• 引言 • 土坡稳定性分析的基本原理 • 土坡稳定性分析的常用方法 • 土坡稳定性分析的步骤与流程 • 工程实例与案例分析 • 结论与展望
01
引言
土坡稳定性问题的重要性
01
土坡是自然和工程地质中常见的 一种现象,其稳定性直接关系到 人民生命财产安全和自然环境的 保护。
02
土坡失稳会导致滑坡、泥石流等 地质灾害,给人类社会和自然环 境带来巨大的损失和破坏。
06
结论与展望
土坡稳定性分析的重要性和应用前景
土坡稳定性分析是岩土工程领域的重要研究内容,对于保障工程安全、防止自然灾 害具有重要意义。
随着城市化进程的加速和基础设施建设的不断推进,土坡稳定性分析的应用前景将 更加广阔,涉及的领域也将更加多样化。
土坡稳定性分析可以为工程设计、施工和监测提供科学依据,提高工程的安全性和 可靠性,降低工程风险。
有限元法
总结词
有限元法是一种基于数值分析方法的土 坡稳定性分析方法,通过将土坡划分为 一系列有限元单元,模拟土坡的应力分 布和变形过程,从而确定土坡的稳定性 。
VS
详细描述
该方法考虑了土坡内部的应力分布和变形 过程,能够模拟复杂的滑裂面形状和分布 ,得到更准确的稳定性分析结果。该方法 适用于各种类型的土坡,包括非均质、不 连续、有节理的土坡。

第八章 土坡稳定性分析与计算

第八章 土坡稳定性分析与计算
重力Wi 产生的滑动力矩为 M s Wi sin i R 滑动面上抗滑力Ti 产生的抗滑力矩为
O
R
Vi+1
MR
(c l N tan ) T R R
i i i i i
H
i
Wi
Ti
Fs
Ms MR
(c l N tan ) R W sin R
i i i i i i
O i 2 1 -1 -2 0
R b B 3 4 5 6
C
7
计 算 程 序 流 程
计算 mi
Fs Fs
计算
Fs
No
Fs Fs Fs
A
变化圆心 O 和半径 R
Fs 最小
END
3.简化毕肖普法的特点
★假设滑裂面为圆弧; ★假设条块间作用力只有法向力没有切向力 (Vi=0); ★满足整体力矩平衡条件; ★满足各条块力的多边形闭合条件,但不满足条块的 力矩平衡条件; ★满足滑动面上的极限平衡条件。
i
f 土坡稳定 安全系数
(一) 瑞典条分法的基本原理
1、假设圆弧滑动面 确定圆心和半径
2、把滑动土体分成若干条(条分法) 3、取第i条土条进行受力分析
O
R
Vi+1 Hi hi Vi Wi Hi+1 hi+1
i
Ti Ni
瑞典条分法
静定化条件:假设条块两侧的作用 力合力Si,Si+1 大小相等、方向相 反且作用于同一直线上——不考虑 条块间的作用力。 1)根据径向力的静力平衡条件 得
表层滑动
砂土
概述 表层滑动的边 坡稳定分析
天然休止角

无粘性土

边坡稳定性分析

边坡稳定性分析
由此可见,边坡失稳,将会影响工程的顺利进行和施工安全,对相邻建筑物构成威胁, 甚至危及人民的生命安全。因此,在工程建设中,必须根据场地的工程地质和水文地质条件 进行调查与评价,排除潜在的威胁以及直接有危害的整体不稳定山坡地带,并对周围环境以 及施工影响等因素进行分析,判断其是否存在失稳的可能性,采取相应的预防措施。
T f = N tan ϕ = W cosθ tan ϕ
式中 N 是单元体自重在坡面法线方向的
分力,ϕ 是土的内摩擦角。无粘性土土
T
θ
θN
W
坡的稳定安全因数定义为最大抗剪力与 剪切力之比,即
图 8.2.1 均质无粘性土坡稳定性分析
Ks
= Tf T
= W cosθ tanϕ = tanϕ W sinθ tanθ
均质无粘性土坡如图 8.2.1 所示,土坡的坡角θ,土的内摩擦角ϕ 。现从坡面上任取
一侧面竖直、底面与坡面平行的土体单元,假定不考虑该单元土两侧应力对稳定性的影响。
设单元体的自重 W,则它下滑的剪切力就只有 W 在顺坡方向的分力
T=Wsinα
阻止土体下滑的力是此单元体与下面土体
之间的抗剪力,其所能发挥的最大值为
(3)人工填筑的土堤、土坝、路基等,形成地面以上新的土坡。由于这些工程的长度很 大,边坡稍微改陡一点,往往可以节省工程量。
由此可见,土坡稳定在工程上具有很重要的意义,影响土坡稳定的因素很多,包括土坡 的边界条件、土质条件和外界条件。具体因素如下:
(1)边坡坡角θ,坡角θ越小就越安全但不经济;坡角θ太大,则经济而不安全。 (2)坡高 H,试验研究表明,其它条件相同的土坡,坡高 H 越小,土坡越稳定。 (3)土的性质,土的性质越好,土坡越稳定。例如,土的重度γ和抗剪强度指标 c、φ 值大的土坡,比γ、c、φ小的土坡更安全。 (4)地下水的渗透力,当土坡中存在与滑动方向一致的渗透力时,对土坡不利。如水库 土坝下游土坡就可能发生这种情况。 (5)震动作用如强烈地震、工程爆破和车辆震动等,会使土的强度降低,对土坡稳定性 产生不利影响。 (6)施工不合理,对坡角的不合理开挖或超挖,将使坡体的被动抗力减小。这在平整场 地过程中经常遇到。不适当的工程措施引起古滑坡的复活等,均需预先对坡体的稳定性作出 估计。 (7)人类活动和生态环境的影响。

第八章+土坡稳定性分析

第八章+土坡稳定性分析

土力学与地基基础
• 由于计算上述安全系数时,滑动面为任意 假定,并不是最危险的滑动面,因此所求 结果并非最小的安全系数。通常在计算时 需要假定一系列滑动面,进行多次试算, 计算工作量很大。 • W.费伦纽斯(Fellenius,1927)通过大量计 算分析,提出了以下所介绍的确定最危险 滑动面圆心的经验方法。
土力学与地基基础
瑞典条分法和毕肖普法的比较
• 瑞典条分法忽略各条间力对Ni的影响,i土 条上只有Gi,Ni,Ti三种力作用,低估安全系 数5~20%。 • 毕肖普法忽略土条竖向剪切力的作用,考 虑了土条两侧的作用力,比瑞典条分法更 合理,低估安全系数约为2~7%。
土力学与地基基础
li
K
1 m cb Gi ui b X i tan i
G sin
i
i
土力学与地基基础
• 毕肖普条分法考虑了土条两侧的作用力, 计算结果比较合理。 • 分析时先后利用每一土条竖向力的平衡及 整个滑动土体的力矩平衡条件,避开了Ei 及其作用点的位置,并假定所有的 X i 均等 于零,使分析过程得到了简化。 • 但该方法同样不能满足所有的平衡条件, 还不是一个严格的方法,由此产生的误差 约为2%~7%。另外,毕肖普条分法也可以 用于总应力分析,即在上述公式中采用总 应力强度指标c、φ计算即可。
土力学与地基基础
土坡形态及各部分名称
坡肩 坡顶
坡高 坡脚
坡面
坡角
土力学与地基基础
土力学与地基基础
土力学与地基基础
土力学与地基基础
4.土坡由于其表面倾斜,在自重或外部荷 载的作用下,存在着向下移动的趋势, 一旦潜在滑动面上的剪应力超过了该面 上的抗剪强度,稳定平衡遭到破坏, 就可 能造成土坡中一部分土体相对于另一部 分的向下滑动,该滑动现象称为滑坡。 5.天然的斜坡、填筑的堤坝以及基坑放坡 开挖等问题,都要演算土坡的稳定性。 亦即比较可能滑动面上的剪应力与抗剪 强度,这种工作称为稳定性分析。

土坡稳定分析

土坡稳定分析
2016年12月19日
ai
d H 6 R 8.35m 2 sin 2 sin sin 2 sin 40 cos 34
是否安全与合理,边坡过陡可能发生坍塌,过缓
则使土方量增加。 土坡的稳定安全度用稳定安全系数K表示,它是 指土的抗剪强度 f 与土坡中可能滑动面上产生的 剪应力 间的比值,
f K
2016年12月19日
砂性土的土坡稳定分析
砂性土中,一般均假定其滑动面为平面。 已知:土坡高度H,坡角β,土的容重γ,土的抗剪强度
稳定力矩 M r K 滑动力矩 M s Wa
f LR
泰勒的分析方法仅适用于均质简单土坡,对非均质、复 杂坡形以及有水渗流等情况均不适用。而费伦纽斯提出
的条分法很好地解决了这一问题,至今得到广泛应用。
2016年12月19日
基本原理
为了尽量减小计算τf 时的法向应力的误差,怎么办?
——化整为零 基本原理:将滑动土体分成若干块竖直土条,分别考虑 其法向应力和抗剪强度τf ,求各土条对滑动圆心的抗滑 力矩和滑动力矩,最后取其总和,计算安全系数。
2016年12月19日
泰勒的分析方法
泰勒提出了确定均质简单土坡稳定安全系数的图表法。他 认为圆弧滑动面的3种形式是同土的内摩擦角φ值、坡角β
以及硬层埋深等因素有关,经过大量计算分析后提出:
当φ>3°或当φ=0且 β>53°时,滑动面均
为坡脚圆,其最危险滑
动面圆心位臵,可根据 φ及β角值,从右图中的 曲线中查得θ及α值作图 求得。
c=16.7kPa。试用条分法验算土坡的稳定安全系数。
解:1)按比例绘出土 坡的剖面图。按泰勒 的经验方法确定最危 险滑动面圆心的位臵。
当φ=12°、β=55°

9.土坡稳定分析

9.土坡稳定分析

第八章土坡稳定分析由于边坡表面倾斜,在岩土体自重及其外力作用下,整个岩土体都有从高处向地处滑动的趋势,当边坡丧失其原有的稳定性,一部分岩土体相对于另一部分岩土体发生滑坡现象。

引起滑坡的根本原因在于土体内部某个面上的剪应力达到它的抗剪强度,稳定平衡遭到破坏。

剪应力达到抗剪强度的原因在于两个方面:一是由于剪应力的增加,使土体内部剪应力加大;二是由于土体本身抗剪强度的减小,导致剪应力达到其抗剪强度。

一、无粘性土坡稳定分析1、一般情况下的无粘性土土坡对于均质的无粘性土土坡,土颗粒之间无粘结力,对于土坡而言,只要位于坡面上的土颗粒能够保持稳定,那么整个土坡就是稳定的。

最大抗剪力与下滑力之比为无粘性土土坡稳定安全系数。

2、有渗流作用时的无粘性土坡当土坡中存在渗流作用时,土体内部的渗流作用会使土体受到渗流力的作用,导致土坡稳定安全系数降低。

顺坡出流时,安全系数为二、粘性土土坡稳定分析粘性土由于颗粒之间存在粘结力,发生滑坡时是整块土体向下滑动的,坡面上任一单元体的稳定条件不能用来代表整个土坡的稳定条件,因此要考虑对土坡整体进行稳定性分析。

1、瑞典圆弧法对于均质粘性土土坡,实际的滑动面与圆柱面接近,安全系数采用滑动面上的最大抗滑力矩与滑动力矩之比来确定。

2、条分法对于大于零的粘性土土坡,滑动面上各点的抗剪强度与该点的法向应力有关,在假定整个滑动面各点安全系数相同的前提下,首先要求设法求出滑动面上法向应力的分布,才能求得安全系数值。

常见的方法是将滑动土体分成若干条块,分析每一条块上的作用力,然后利用每一土条上的力和力矩的静力平衡条件,求出安全系数表达式。

3、泰勒图表法泰勒通过上述土坡稳定分析,通过分析归纳出影响土坡稳定性的五个参数,分别是土的抗剪强度指标C 和,土的重度,坡角,极限坡高H cr 。

通过定义稳定数按不同的绘出与N S 的关系曲线,采用泰勒图表法可以解决简单土坡稳定分析中的问题。

三、土坡稳定分析中的一些问题1、挖方边坡与天然边坡2、土的抗剪强度指标的选取3、圆弧滑动条分法的讨论4、安全系数的采用 第一节 无粘性土坡稳定分析提示:双击自动滚屏一、一般情况下的无粘性土土坡对于均质的无粘性土土坡,土颗粒之间无粘结力,对于土坡而言,只要位于坡面上的土颗粒能够保持稳定,那么整个土坡就是稳定的。

土力学 第8章 土坡稳定分析

土力学 第8章 土坡稳定分析
《建筑边坡工程技术规范》(GB50330-2013)坡率允许值:
四、坡率法确定边坡坡度

谢!
u
4) 振动:地震、爆破
土坡滑动的预防措施
(1)改善排水条件 (2)种植适当的植被,避免土壤侵蚀 (3)减轻土坡上部的重量,增加坡脚土体的 重量 (4)减小坡高或坡角 (5)避免在坡顶堆放荷载,避免人、畜对坡 面的践踏 (6)对陡坡采用一定的坡面或坡体保护措施 (7)修复坡顶裂缝 (8)危险评估和预警
第 8 章 土坡稳定分析
第八章 土坡稳定分析
一、概述
二、无黏性土土坡的稳定性分析 三、黏性土土坡的稳定性分析 四、坡率法确定边坡坡度
一. 概述
1、土坡:是指具有一定倾斜坡面的土体。
各部分名称 坡肩 坡 高 坡趾 坡角 坡顶
一. 概述
2、分类:
天然土坡 人工土坡 天然土坡:是指自然界在成土过程中形成的山坡和河道岸 坡。多存在于山区或丘陵地区。
地震引发的滑坡
暴雨与地震引发泥石流-菲律宾
2006年2月17日菲律宾中东部莱特省因连日暴雨和南部 地区里氏2.6级轻微地震,爆发泥石流致近3000人遇难
云南徐村水电站溢洪道土坡滑坡-开挖
江岸崩塌滑坡-渗流
三峡库区滑坡问题-蓄水造成的滑坡
2001年,重庆市云阳县发生两次大型滑坡,其中武隆边坡失稳 造成79人死亡。国务院拨款40亿元用于三峡库区地质灾害治理
《建筑边坡工程技术规范》(GB50330-2013)规定:
如何分析、判断?
无黏性土土坡—相对简单 黏性土土坡—复杂
二、无黏性土土坡的稳定性分析
右下图表示坡角为β的无黏性土土坡,不考虑 渗流的影响。 纯净的干砂颗粒间无黏聚力c,其抗剪强度只有 摩擦力(内摩擦角φ ),颗粒的自重W在垂直和平行于 坡面方向的分力分别为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ni cosi Wi Vi Ti sini
Hi
Vi+1 Wi
Hi+1
2)根据满足安全系数为Fs的极限平衡条件 Vi
Ti

cili

Ni tan i
Fs
i
Ti Ni
将此式代入第一式并整理后得:
Ti
Ni

1 mi
Wi
Vi

cili Fs
s in i

式中
mi
Fs
H
i
Wi
Hi+1
Vi
Ti
Ms MR
Wi siniR
(cili Ni tani ) R
Fs
i Ni
代入Ni 值,整理简化后得:
安全系数: Fs
1 mi
cibi

(Wi

Vi ) tani
Wi sini
Fs
1 mi
cibi
(Wi

Vi ) tani
Wi sin i
设Vi=0 ——忽略条间切向力
Fs
1 m i
(Cibi
Witgi )
Wi sini
简化Bishop公式
其中
mi
cosi

sin i tg i
Fs
2. 毕肖甫法计算步骤
mi
cosi

sin i tg i
单元体 稳定
均质无粘性土坡
边坡上土单元自重为 W z cos
N W cos
下滑力: T W sin
抗滑力 Tf N tan
β
W cos tan
N T
W
安全系数Fs

抗滑力 下滑力

WKcosTf tanWcostantan W sTin W stiann
圆弧滑动
瑞典条分法 毕 肖 普 法 简 布 法
基于条分法的边 坡稳定分析
巩固与提高1
选择题
1. 无粘性土土坡的稳定性( ) 。 a)与密实度无关 c)与土的内摩擦角无关
b)与坡高无关 d)与坡角无关
2. 无粘性土土坡在自然稳定状态下的极限坡角,称为( ) 。
a)内摩擦角
b)地层倾斜角
c)自然休止角
Fs
1)初选圆心O,半径R
2)设Fs=1.0,计算 mi、Fs
Fs
1 m i
(Cibi
Witgi )
Wi sini
3)若满足 Fs Fs Fs 则进行步骤5
4)若不满足,令 Fs Fs ,重复步骤2
5)变化圆心O和半径R,返回1重复步骤1~4
6)算至Fs最小结束
各种方法的比较
方法
整体圆弧法
瑞典条分法 毕肖普法
滑裂面形状
圆弧
圆弧
圆弧
假设 计算条件
刚性滑动体,滑动面上 忽略条间力 考虑条间力
极限平衡
Xi=0(简布)
软粘土不排水
一般均质土 一般均质土
误差分析
Fs偏小10% Xi=0,误差
~20%
2%~7%
• 土体抗剪强度指标的选用
★ 有效应力法——有效强度指标c'、φ' ★ 总应力法——根据计算阶段中孔隙水压力可能发
6.算至 Fs 最小结束。
讨论:
1.土坡中有孔隙水压力作用时: 2.土成层时:
3. 土坡坡顶或坡面有超载作用时:
(三) 瑞典条分法的讨论
1.假设圆弧滑裂面,与实际滑裂面有差别; 2.忽略了条间力,它只满足滑动土体整体力矩平衡 条件而不满足条块的静力平衡条件;--主要特点
3.计算得到的安全系数Fs偏小
和坡高h
Ns

c
h
稳定因数
土坡的临界高 度或极限高度
根据不同的 绘出 与Ns的关系曲线,如图
8-5
泰勒图表法适宜解决简单土坡稳定分析的问题:
①已知坡角及土的指标c、、,求稳定的坡高H; ②已知坡高H及土的指标c、、,求稳定的坡角。
8.3.2 瑞典条分法
条分法
O
C
βi
B
R
d
c
H
i A

' tan sat tan
8.3 粘性土土坡的稳定性
粘性土颗粒之间存在粘结力,导致土坡整块下滑趋势。
均质粘性土坡发生滑坡时,其滑动面形状大多数为一近似 于圆弧面的曲面。为了简化,在进行理论分析时通常采用圆弧 面计算。
8.3.1 整体圆弧滑动法
1. 基本原理
a O
C
AB
W
假定滑动面为圆柱面,截面为圆 弧,利用土体极限平衡条件下的 受力情况:
3.荷载:
4.土体中水的影响: 降雨、蓄水、使岩土软化;水流冲刷使坡脚变陡; 存在渗透力;
5.振动:爆破、地震引起土体抗剪强度减小。

成 土 坡 失
的 因 素

外在因素:剪应力的增加 内在因素:土体自身抗剪强度的降低
1996 年发生在美国加州的 La Conchita , 因居民已提前撤离,
固未造成人员伤亡
(二)瑞典条分法计算步骤
1.初选圆心O和半径R
2.以b=R/10为宽度分条
3.编号:过圆心垂线为0#条中线,右侧为正,编号递增; 左侧为负,编号递减
4.列表计算 li、Wi、i以及安全系数
Fs
(Cili Wi cositgi ) Wi sini
5.变化圆心O和半径R,返回1重复步骤1~4
城市中的滑坡问题(香港,重庆)
挖 方 填 方
1972年香港宝城大厦因滑坡倒塌
江岸滑坡
开挖和填筑引起滑坡
8.2 无粘性土坡的稳定性
均质的无粘性土土 坡,在干燥或完全 浸水条件下,土粒 间无粘结力
Tf
T N
W
土坡整 体稳定
只要位于坡面上的土单 元体能够保持稳定,则 整个坡面就是稳定的
Tf >T
cosi

sin i tg i
Fs
Wi
Ni
ΔVi=Vi+1-Vi
ΔHi=Hi+1-Hi
O
3)考虑整体力矩平衡条件(对圆心力矩): R
重力Wi 产生的滑动力矩为 Ms Wi siniR
Vi+1
滑动面上抗滑力Ti 产生的抗滑力矩为
M R
Ti R
(cili Ni tani ) R
JT N
W
稳定条件:T>(T+J)
T ' sin
J wi w sin
N ' cos
Tf N tan ' cos tan
安全系数
砂土的内 摩擦角
抗滑力与滑 动力的比值
K

Tf TJ

' cos tan ' sin w sin
ef
土坡稳定 安全系数
对于非均质土坡或比较复杂 的土坡 、 >0的粘性土土坡, 土体分层情况时,要确定滑 动土体的重量及其重心位置 比较困难,而且抗剪强度的 分布不同,一般采用条分法 分析。
滑动土体 分为若干 垂直土条
各土条对滑弧 圆心的抗滑力 矩和滑动力矩
(一) 瑞典条分法的基本原理
1、假设圆弧滑动面 确定圆心和半径 2、把滑动土体分成若干条(条分法) 3、取第i条土条进行受力分析
f c tan
D

K
抗滑力矩 滑动力矩
f LR
Wa
L ——滑动圆弧AD的长度
u 0, 即 f cu
对饱和粘土,在不排水剪条件下:
^
K cu L R
Wa
2. Fellenius 确定最危险滑动面圆心的方法
对于均质粘性土 土坡,其最危险 滑动面通过坡脚
展的状态,分别采用快剪(不排水剪)或固结快剪 (固结不排水剪)等强度指标 ★ 原则:使试验的模拟条件尽量符合现场土体的实际 受力和排水条件,保证试验指标具有一定的代表性
•容许安全系数
第八章 边坡稳定 小结
小结
概述
表层滑动
砂土
天然休止角

无 粘 性 土
表层滑动的边 坡稳定分析
φ=0 饱和粘土 整体圆弧滑动法
迭代法
圆心 O,半径 R
设 Fs=1.0
O
R
C
计 算
计算 mi
i
bB 67
程 Fs Fs 序
No
计算 Fs
A
-2 -1 0 1 2 3 4 5

Fs Fs Fs

变化圆心 O 和半径 R
Fs 最小
END
3.简化毕肖普法的特点
★假设滑裂面为圆弧; ★假设条块间作用力只有法向力没有切向力 (Vi=0); ★满足整体力矩平衡条件; ★满足各条块力的多边形闭合条件,但不满足条块的 力矩平衡条件; ★满足滑动面上的极限平衡条件。
一般情况下,Fs偏小10%左右,工程应用中偏于安全
8.3.3 毕肖甫(Bishop)法
1. 基本原理
1、假设圆弧滑动面 确定圆心和半径 2、把滑动土体分成若干条(条分法) 3、取第i条土条进行受力分析
O
R
Vi+1
Hi hi Vi
i
Wi
Hi+1
hi+1
Ti
Ni
毕肖普法
假设条块处于静力平衡状态
1)根据竖向力的平衡条件 Fz 0
d)滑动角
3. 在稳定分析中,如果采用 0分析法,这时土的抗剪强度指
标应该采用下列哪种方法测定?( ) 。
相关文档
最新文档