gaas单晶制备方法
砷化镓半导体材料解读

1.2 GaAs太阳电池 早在1956年,GaAs太阳电池就已经被研制。 20世纪60年代,同质结GaAs太阳电池的制备和 性能研究开始发展,一般采用同质结p-GaAs/nGaAs太阳电池,由于GaAs衬底表面复合速率大 6 于10 cm/s,入射光在近表面处产生的光生载流 子出一部分流向n-GaAs区提供光生电流外,其 余则流向表面产生表面复合电流损失,使同质结 GaAs太阳电池的光电转换效率较低。
极性:砷化镓具有闪锌矿型结构,在[111]方向上,由
一系列的Ⅲ族元素Ga及Ⅴ族元素As组成的双原子层
(也是电偶极层)依次排列。在[111]和
是不等效的,从而具有极性,如图1.2所示 。
方向上
存在Ga面和As面,在这两个面上形成两种不同
的悬挂键,如图1.3所示,As面的未成键电子偶促使表
面具有较高的化学活泼性,而Ga面只有空轨道,化学
图2.1.LEC法示意图
2.水平布里奇曼法(HB)
图2.2.HB法示意图
该方法的特点使熔体通过具有一定梯度的温区而获得单晶生长
2.1 GaAs单晶材料的制备
LEC法和HB法是初期的GaAs晶体生长的工艺方法,有一定的 优点和缺点。 HB法 优点——单晶的结晶质量高,工艺设备较简单。 缺点——晶锭尺寸和形状受石英舟形状的限制,最大晶体尺寸 为2.5寸;生长周期长,同时熔体与石英舟反应引入 硅的沾污,无法得到高纯GaAs单晶。 LEC法 优点——可生长适用于直接离子注人的高纯非掺杂半绝缘单晶, 单晶纯度高,尺寸大,适于规模生产。 缺点——是结晶质量略差,位错密度较高,生长工艺复杂,工 艺设备昂贵,成本高。 为了进一步提高单晶的质量,随后又发展了一些新工艺,主 要是垂直梯度凝固法(VGF )和垂直布里奇曼法(VB ) 。
砷化镓材料制备工艺

砷化镓材料制备工艺从20世纪50年代开始,已经开发出了多种砷化镓单晶生长方法。
目前主流的工业化生长工艺包括:液封直拉法(LEC)、水平布里其曼法(HB)、垂直布里其曼法(VB)以及垂直梯度凝固法(VGF)等。
3.1液封直拉法(Liquid Encapsulated Czochralski,简称LEC)LEC法是生长非掺半绝缘砷化镓单晶(SI GaAs)的主要工艺,目前市场上80%以上的半绝缘砷化镓单晶是采用LEC法生长的。
LEC法采用石墨加热器和PBN坩埚,以B2O3作为液封剂,在2MPa的氩气环境下进行砷化镓晶体生长。
LEC工艺的主要优点是可靠性高,容易生长较长的大直径单晶,晶体碳含量可控,晶体的半绝缘特性好。
其主要缺点是:化学剂量比较难控制、热场的温度梯度大(100~150 K/cm)、晶体的位错密度高达104以上且分布不均匀。
日本日立电线公司于1998年首先建立了6英寸LEC砷化镓单晶生产线,该公司安装了当时世界上最大的砷化镓单晶炉,坩埚直径400mm,投料量50公斤,生长的6英寸单晶长度达到350 mm。
德国Freiberger公司于2000年报道了世界上第一颗采用LEC工艺研制的8英寸砷化镓单晶。
3.2 水平布里其曼法(Horizontal Bridgman,简称HB)HB法是曾经是大量生产半导体(低阻)砷化镓单晶(SC GaAs)的主要工艺,使用石英舟和石英管在常压下生长,可靠性和稳定性高。
HB法的优点是可利用砷蒸汽精确控制晶体的化学剂量比,温度梯度小从而达到降低位错的目的。
HB砷化镓单晶的位错密度比LEC 砷化镓单晶的位错密度低一个数量级以上。
主要缺点是难以生长非掺杂的半绝缘砷化镓单晶,所生长的晶体界面为D形,在加工成晶片过程中将造成较大的材料浪费。
同时,由于高温下石英舟的承重力所限,难以生长大直径的晶体。
目前采用HB工艺工业化大量生产的主要是2英寸和3英寸晶体,报道的HB法砷化镓最大晶体直径为4英寸。
砷化镓单晶的制备及应用

砷化镓单晶的制备及应用李卫学号24101901672 序号38摘要随着全球科技的快速发展,当今世界已经进入了信息时代.作为信息领域的命脉,光电子技术和微电子技术无疑成为了科技发展的焦点。
砷化镓作为第二代III-V族化合物半导体材料,现在虽然还没有硅材料应用的普及,但它凭借着工作速度和频率上的优势也在迅速地扩大着它的使用领域。
为了能让大家更好地了解砷化镓这个具有无限潜力和广阔前景的半导体单晶,我决定对砷化镓的制备工艺过程及其应用做一些介绍。
一、砷化镓的制备过程随着对砷化镓使用的愈加广泛,人类对砷化镓的制备工艺也在进行着不断地研究和完善,到目前为止已经有多种砷化镓的制备工艺技术,其中最主要的要属水平布里奇曼法和液态密封法。
下面我将对液态密封法制备砷化镓工艺全过程做一些介绍。
液态密封法也称LEP法或LEC法,它是目前拉制大直径III—V族化合物晶体的最重要的方法。
它的大概过程是再高压炉内,将欲拉制的化合物材料盛于石英坩埚中,上面覆盖一层透明而黏滞的惰性熔体,将整个化合物熔体密封起来,然后再在惰性熔体上充以一定压力的惰性气体,用此法来抑制化合物材料的离解。
LEC法制备砷化镓单晶的工艺流程如下:1.装料:一石英杯装Ga,一石英安瓶装As,石英坩埚中装B2O3.2。
抽真空下,B2O3加热脱水(900—1000度),Ga杯,As瓶烘烤除去氧化膜。
3。
降温至600—700度,将Ga倒入坩埚内沉没在B2O3下,充Ar气。
3.降温至600-700度,将Ga倒入坩埚内沉没在B2O3下,充Ar气。
4.As安瓶下端的毛细管尖插入Ga夜中,升温至合成温度,As受热气化溶入Ga内生长GaAs。
5。
拔出安瓶管,并按Si直拉法拉晶程序,引晶-缩颈-放肩-等径生长—收尾拉光等步骤拉制GaAs单晶.下面对整个制备工艺过程的几个方面加以详细介绍:(一)、密封化合物熔体的惰性熔体应具备以下条件:1.密度比化合物材料小,熔化后能浮在化合物熔体上面。
半导体GaAs太阳能电池制备

半导体GaAs太阳能电池制备一:GaAs材料简介1:GaAs材料做太阳能电池的优势:GaAs材料有良好的吸收系数,在波长0.85μm一下,GaAs的光吸收系数急剧升高,达到104 cm-1以上,比硅材料要高一个数量级,而这正是太阳光谱中最强的部分。
因此,对于GaAs太阳能电池而言,只要厚度达到3μm,就可以吸收太阳光谱中约95%的能量。
GaAs太阳能电池的抗辐射能力强,有研究指出,经过1×1015cm-2的1MeV的高能电子辐射,高效空间硅太阳能嗲吃的效率降低为原来的66%,而GaAs太阳能电池的效率仍保持在75%以上。
显然,GaAs太阳能电池在辐射强度大的空间飞行器上有更明显的优势。
2:GaAs材料的能带结构:图1.11GaAs的能带结构由图1.1可以看出,它的导带的极小值位于K=0处,等能面是球型等能面。
导带底电子有效质量是各向同性的。
3:GaAs材料具有负阻特性。
这是因为,GaAs的[100]方向上具有双能谷能带结构,除K=0处导带有极小值外,在[100]方向边缘上存在另一个比中心极小值仅高0.36eV的导带极小值,因此电子可处于主,次两个能谷。
在室温下,主能谷的电子很难跃迁到次能谷中去,因为室温时电子的平均热能约为0.026eV。
但电子在主能谷中有效质量较小,迁移率大,而在次能谷中有效质量大,迁移率小,且次能谷中的状态密度又比主能谷大。
一旦外电场超过一定的阈值,电子就能由迁移率大的主能谷转移到迁移率小的次能谷,从而出现电场增大,电流减小的负阻现象。
【1】4:GaAs材料特征。
GaAs材料在室温下呈暗灰色,有金属光泽,较硬,性脆,相对分子质量为144.64;在空气或水蒸气中能稳定存在;但在空气中,高温600 度时可以发生氧化反应,高温800度以上可以产生化学离解,常温下化学性质也很稳定,不溶于盐酸,但溶于硝酸和王水。
【2】和其他三五族化合物半导体能带结构的一些共同特征。
因为闪锌矿和金刚石型结构类似,所以第一布里渊区也是截角八面体的形式。
lec砷化镓单晶生长技术

lec砷化镓单晶生长技术
砷化镓(GaAs)单晶生长技术是一项关键的半导体制备技术,
用于制造高性能光电子器件和集成电路。
砷化镓单晶生长技术通常
采用金属有机化学气相沉积(MOCVD)或分子束外延(MBE)等方法。
MOCVD是一种常用的砷化镓单晶生长技术,它利用金属有机化
合物和气相的反应来沉积单晶薄膜。
在MOCVD过程中,砷化镓单晶
通常在高温下(约600-700摄氏度)通过热分解金属有机化合物来
实现。
通过控制反应条件和衬底表面的结构,可以实现高质量、均
匀性好的砷化镓单晶生长。
另一种常见的生长技术是分子束外延(MBE),它是一种高真空
技术,通过分子束的热蒸发来沉积单晶薄膜。
在MBE过程中,砷化
镓单晶通常在超高真空环境下通过热蒸发金属源和砷源来实现。
MBE
技术能够实现非常精确的控制,因此在制备复杂结构和多层异质结
的器件时具有优势。
除了MOCVD和MBE,还有其他一些砷化镓单晶生长技术,如气
相外延(VPE)、液相外延(LPE)等。
这些技术各有优缺点,适用
于不同的应用场景和器件制备要求。
总的来说,砷化镓单晶生长技术是一个复杂而关键的领域,需要充分考虑材料的纯度、均匀性、晶格匹配等因素,以实现高质量的砷化镓单晶生长。
随着半导体器件的不断发展和应用需求的不断变化,砷化镓单晶生长技术也在不断创新和进步。
无机半导体材料GaAs的结构、制备及应用

无机半导体材料GaAs的结构、制备及应用摘要砷化镓(GaAs)是Ⅲ-Ⅴ组化合物半导体中最重要、用途最广的半导体材料。
本文综述了GaAs材料的结构性质、主要制备方法及其典型应用。
关键词GaAs 结构性质制备应用1. 前言化合物半导体材料砷化镓(GaAs)和磷化铟(InP)是微电子和光电子的基础材料,而GaAs则是化合物半导体中最重要、用途最广泛的半导体材料,也是目前研究得最成熟、生产量大的化合物半导体材料。
由于GaAs具有电子迁移率高、禁带宽度大且为直接带隙,容易制成半绝缘材料、本征载流子浓度低、光电特性好、以及具有耐热、抗辐射性能好和对磁场敏感等优良特性。
用GaAs材料制作的器件频率响应好、速度快、工作温度高,能满足集成光电子的需要。
它是目前最重要的光电子材料,也是继硅材料之后最重要的微电子材料,它适合于制造高频、高速的器件和电路。
2. 结构性质[1]GaAs是一种无机非线性光学材料,它的导带极小值位于k=0处,等能面是球形等能面。
导带底电子有效质量是各向同性的。
m e*=0.068m0。
由于这一导带底对应的能量水平较低,故相应的极值能谷称为下能谷。
与此同时,在[100]方向还存在另一极小值,能量比k=0的极小值高0.36eV。
由于它的能带曲率小,故对应的电子有效质量大,m e*=1.2m0,该导带的底部能量水平高,故称为上能谷。
GaAs的价带极值位于k=0处,而且也有两支在k=0重合。
有一支重空穴,一支轻空穴。
重空穴所在能带,空穴有效质量为(m p)h=0.45m0;轻空穴所在能带,空穴有效质量为(m p)l=0.082m0。
GaAs的能带结构有下述特点:①GaAs导带极小值k=0处,价带极大值也在k=0处,为直接带隙型。
对GaAs来说,Eg=1.34eV, 因此GaAs中电子跃迁产生或吸收的光子波长λ=9×102nm,光子的波失大致是q=7×104cm-1,而电子的波失k=2л/a。
砷化镓的化学式

砷化镓的化学式砷化镓是一种重要的半导体材料,其化学式为GaAs。
它由镓和砷两种元素组成,具有优异的电学性能和光学性能,被广泛应用于光电子学、电子学、通信、计算机等领域。
本文将介绍砷化镓的化学式、物理性质、制备方法、应用及安全性等方面的内容。
一、砷化镓的化学式及物理性质砷化镓的化学式为GaAs,其中Ga表示镓元素,As表示砷元素。
它的相对分子质量为144.64,密度为5.31 g/cm,熔点为1238℃,沸点为?。
砷化镓具有非常高的电子迁移率和热导率,同时也具有良好的光学性能。
它是一种直接能隙半导体,其带隙宽度为1.42 eV,在可见光范围内有很好的吸收性能。
此外,砷化镓还具有高的硬度和化学稳定性,不易受到氧化、腐蚀等影响。
二、砷化镓的制备方法砷化镓的制备方法主要有以下几种:1. 气相外延法气相外延法是一种常用的制备砷化镓晶体的方法。
它通过将镓和砷的气态前驱物输送到基片表面,使其在基片上形成砷化镓晶体。
这种方法可以制备出高质量、大尺寸的砷化镓单晶,并且可以控制其形貌和结构。
2. 分子束外延法分子束外延法是一种高温高真空下的制备方法,它通过将分子束照射到基片表面,使其在基片上形成砷化镓晶体。
这种方法可以制备出高质量、低缺陷密度的砷化镓薄膜,并且可以控制其厚度和结构。
3. 液相外延法液相外延法是一种制备砷化镓晶体的传统方法,它通过在高温下将砷和镓的液态前驱物混合,使其在基片上形成砷化镓晶体。
这种方法可以制备出大尺寸的砷化镓晶体,但是晶体质量较差,缺陷密度较高。
三、砷化镓的应用砷化镓作为一种重要的半导体材料,具有广泛的应用前景。
它被广泛应用于光电子学、电子学、通信、计算机等领域,主要包括以下几个方面:1. 光电子学砷化镓具有优异的光学性能,可以用于制备高效的光电器件,如光电探测器、太阳能电池、激光器等。
2. 电子学砷化镓具有高的电子迁移率和热导率,可以用于制备高速、高频的电子器件,如高速场效应晶体管、微波集成电路等。
半导体材料课件III-V族化合物半导体的特性 GaAs单晶的生长方法

高效太阳电池
霍尔元件
吉林大学电子科学与工程学院
半导体材料
GaAs在我们日常生活中的一些应用
遥 控 器 是 通 过 GaAs 发 出 的 红 外光把指令传给主机的。
家电上的红色、绿色指示灯是 以 GaAs 等 材 料 为 衬 底 做 成 的 发光二极管。
吉林大学电子科学与工程学院
CD, DVD,BD光盘是用以 GaAs为衬底制成的GaAlAs激 光二极管进行读出的。
吉林大学电子科学与工程学院
半导体材料
非凝聚体系p-T-x相图各投影图的含义
GaAs体系 p-T-x相图
¾G a - A s 的 T - x 图 , 反 映 体 系sGaAs+l+g三相平衡时的 温度与xAs组成的关系。
质很不相同,把这种不对称性叫做极性
吉林大学电子科学与工程学院
半导体材料
极性(闪锌矿是非中心对称的)
[111]
Ⅲ
[111]
Ⅴ
表面A
Ⅲ
ⅤⅤ ⅢⅢ
Ⅴ
[1 1 1]
Ⅲ
Ⅴ
表面B
[1 1 1]
闪锌矿结构在[110]面上的投影 显示在[111]方向和[1 1 1] 方向的差别
吉林大学电子科学与工程学院
半导体材料
从垂直[111]方向看,GaAs是一系列由Ga原子和As 原子组成的双原子层,因此晶体在对称晶面上的性 质不同。如[111]和[111]是不同的。 III族:A原子,对应的{111}面称为A面 V族:B原子,对应的{111}面称为B面 ¾ A—B组成的双原子层称为电偶极层 ¾ A边和B边化学键,有效电荷不同,电学和化学性
直接3.4eV 间接2.26eV 直接 1.43eV 直接 0.73eV
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
gaas单晶制备方法
GaAs(Gallium Arsenide)是一种III-V族化合物半导体材料,具有优异的电子特性和光电特性,广泛应用于高速电子器件和光电器件领域。
本文将介绍GaAs单晶的制备方法。
GaAs单晶的制备方法主要有以下几种:分子束外延(MBE)、金属有机化学气相沉积(MOCVD)和液相外延(LPE)。
分子束外延是一种常用的GaAs单晶制备方法。
该方法利用分子束在表面上沉积材料,通过控制束流的能量和角度来控制沉积的位置和形貌。
首先,通过高温热解四甲基三甲基镓(TMGa)和砷化氢(AsH3)等有机金属化合物,生成金属有机气体。
然后,将金属有机气体导入到高真空条件下的反应室中,同时加热单晶衬底。
金属有机气体在表面上热解,释放出金属原子和砷原子,通过控制流量和沉积时间,使金属和砷原子按照一定的比例在单晶衬底上沉积并结晶形成GaAs单晶。
金属有机化学气相沉积是另一种常用的GaAs单晶制备方法。
该方法与分子束外延类似,也是通过金属有机气体的热解来沉积材料。
不同的是,金属有机化学气相沉积使用的反应器是封闭的,而不是高真空条件下的反应室。
在金属有机化学气相沉积中,金属有机气体和载气(如氢气)一起导入反应器中,通过加热反应器来热解金属有机气体。
金属原子和砷原子在载气的作用下在单晶衬底上沉积
并结晶形成GaAs单晶。
液相外延是一种传统的GaAs单晶制备方法。
该方法使用溶液中的金属和砷化合物来沉积材料。
首先,将金属(如镓)和砷化合物(如砷化镓)加入到溶剂中,形成溶液。
然后,将单晶衬底浸入溶液中,通过加热反应器来控制溶液中金属和砷化合物的浓度和温度。
金属和砷化物在单晶衬底上沉积并结晶形成GaAs单晶。
除了上述三种常用的制备方法外,还有其他一些方法,如分子束激光外延(MBE)、金属有机激光外延(MOCVD)等。
这些方法在一定程度上可以提高GaAs单晶的质量和生长速率。
GaAs单晶的制备方法主要包括分子束外延、金属有机化学气相沉积和液相外延等。
这些方法在实际应用中具有各自的优势和适用范围,可以根据具体需求选择合适的方法进行制备。
随着科学技术的不断发展,GaAs单晶制备方法也在不断改进和创新,为GaAs材料的应用提供了更多可能性。