2014公开课用代入消元法解二元一次方程组第一课时
代入消元法解二元一次方程组步骤

代入消元法解二元一次方程组步骤代入消元法是解决二元一次方程组的一种常用方法。
通过该方法,我们可以通过将一个方程的一些变量表示为另一个方程中的变量的函数,然后将其代入另一个方程,从而将方程组化简为只含有一个变量的方程。
以下是详细的步骤:步骤1:观察方程组首先,我们需要观察方程组的形式,并且确定我们希望通过代入消元法消去哪个变量。
方程组一般写作如下形式:a₁x+b₁y=c₁a₂x+b₂y=c₂步骤2:选择合适的方程从方程组中选择其中一个方程(通常选择其中一个系数较小的方程)作为代入方程,将该方程中的一个变量表示为另一个方程中的变量的函数。
选择的变量通常是未知数的系数较小的那个。
在本例中,我们选择第一个方程作为代入方程。
步骤3:将一个变量表示为另一个变量的函数将代入方程中的变量表示为另一个方程中的变量的函数。
通常,这涉及到将代入方程中的一个变量表示为常数减去该变量与其他变量的乘积。
我们将代入方程中的y表示为c₁减去x与b₁的乘积,表示为y=c₁-(a₁/b₁)x。
步骤4:将代入方程代入到第二个方程将代入方程中的变量的表达式代入到第二个方程中的相应变量。
利用步骤3中得到的y的表达式,将y替换为c₁-(a₁/b₁)x。
这样我们就得到了一个只含有一个变量x的方程。
a₂x+b₂(c₁-(a₁/b₁)x)=c₂步骤5:化简方程将方程中的项进行展开和合并,化简为只含有一个变量的方程。
首先,我们将b₂与c₁相乘并将b₂(a₁/b₁)x替换为(a₁b₂/b₁)x,得到a₂x+b₂c₁-(a₁b₂/b₁)x=c₂然后,我们将a₂x和-(a₁b₂/b₁)x合并,得到(a₂-a₁b₂/b₁)x+b₂c₁=c₂以及[(a₁b₂-a₂b₁)/b₁]x=c₂-b₂c₁步骤6:求解单变量方程将方程中只含有一个变量x的那一边除以系数[(a₁b₂-a₂b₁)/b₁],并将另一边除以[(a₁b₂-a₂b₁)/b₁],得到x=(c₂-b₂c₁)/[(a₁b₂-a₂b₁)/b₁]步骤7:求解另一个变量将我们求得的x的值代入到步骤3中得出的y的表达式中,即y=c₁-(a₁/b₁)x,并计算出y的值。
代入法解二元一次方程组(教案)

代入法解二元一次方程组(教案) 8.2消元——解二元一次方程组第一课时:代入法解二元一次方程教学目标:1.能够用代入消元法解简单的二元一次方程组;2.初步理解解二元一次方程组的思想是“消元”;3.在探究代入消元法的过程中体会化归思想。
教学重难点:1.教学重点:用代入法解简单的二元一次方程组;2.教学难点:将“二元”转化为“一元”,消元思想。
教学方法:引导发现、练法相结合教具准备:多媒体设备教学过程:一)复旧知,引入新课1.判断下列式子是否为二元一次方程:① xy + 3 = 0② x - y = 2③ x² + x = 10④ 1/x + y = -3⑤ x + 3y = -22.判断下列式子是否为二元一次方程组:x + 3y = 102x + z = -1ab = -12a + b = 15m + n = -13m - n = -23t + s = 1s = 11t3.已知二元一次方程 x - y = 2,如何用 x 表示 y?如何用 y 表示 x?将含 x 的项和常数项移到方程的右边,含 y 的项移到方程的左边,再将 y 的系数化为 1.①用 x 表示 y:x - y = 2②用 y 表示 x:x - y = 2y = 2 - xy = -2 + x练:课本 P93 练1将下列方程改写为含 x 的式子表示 y 的形式:1)2x - y = 32)3x + y - 1 = 0二)层层递进,探索新知探究:(回顾引例)解法一:设这个队胜了 x 场,负了 y 场。
由题意得:2x + y = 16y = 4解法二:设这个队胜了 x 场,则负了 (10-x) 场。
由题意得:2x + (10 - x) = 16x = 6问题:1)观察问题中的一元一次方程和二元一次方程组之间有什么联系?2)我们可以把方程②中的 y 替换为 10-x 吗?怎么换?3)这时,二元一次方程组转换为什么方程?这个方程可以解吗?可以求哪个未知数的值?问题解决了吗?4)另一个未知数 y 的值如何求?5)上述过程中,我们是如何消元的?解答:1)一元一次方程可以从二元一次方程组中得到;2)可以,将 y 的值用 10-x 替换;3)二元一次方程组转换为一元一次方程,可以解出 x 的值,还需求 y 的值;4)将 x 的值带入方程中,求出 y 的值;5)通过替换 y 的值,将二元一次方程组转换为一元一次方程,实现消元。
第2节消元第一课时代入消元法(1)

第2节 消元第一课时 代入消元法(1)要点突破一、代入法解二元一次方程组由二元一次方程组中的一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。
代入法解二元一次方程组需要注意以下几点:①正确用代入法解二元一次方程组的一般步骤;②从方程组中选一个系数比较简单的方程变形;③求得的两个未知数的值要用大括号括起来。
二、用代入法解二元一次方程组的一般步骤:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成y =ax +b (或x =ay +b )的形式。
②将y =ax +b (或x =ay +b )代入另一个方程中,消去y (或x )得到一个关于关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把求得的x (或y )的值代入y =ax +b (或x =ay +b )中,求出y (或x )的值。
⑤把求得的x ,y 的值用“{”联立起来,就是方程组的解。
典例剖析:例 (2007年南京市)解方程组425x y x y +=⎧⎨-=⎩ 思路探索:由x +y =4变形得y =4-x ③,把③代入②求得x 的值。
解析:由①得:y =4-x ③把③代入②得:2(4)5x x --=解得:x =3把x =3代入③得:y =1∴这个方程组的解为31x y =⎧⎨=⎩规律总结:利用代入法解二元一次方程组的一般步骤:1°选择一个系数比较简单的二元一次方程,把这个方程化成y kx b =+(或x ky b =+)的形式。
2°将y kx b =+(或x ky b =+)代入另一个方程,得到一个关于x (或y )的一元一次方程,解这个一元一次方程,求出x (或y )的值。
3°将求得的x (或y )的值代入y kx b =+(或x ky b =+)中,求出另一个未知数。
《解二元一次方程组(第1课时)》教学设计

《解二元一次方程组(第1课时)》教学设计【教学目标】1.知识与能力:了解解方程组的概念,了解解方程组的基本思路是“消元”,会阐述用代入法解二元一次方程组的基本思路──通过“代入”达到“消元”的目的,从而把解二元一次方程组转化为解一元一次方程,掌握代入消元法解二元一次方程组的步骤。
2.过程与方法:通过浅显易懂并形象的“天平”实例,引入代入消元法,直观地揭示了代入消元的实质。
通过例2的学习,让学生经历代入消元法解二元一次方程组的一般步骤,归纳出用代入消元法解二元一次方程组的一般步骤。
通过揭示解二元一次方程组本质思想——消元,让学生初步体验化“未知”为“已知”,化复杂问题为简单问题的化归思想,提高学生观察、归纳、猜想、验证的能力,不断增强解题能力。
3.情感态度与价值观:提供适当的情景,吸引学生的注意力,激发学生的学习兴趣;在合作学习中,学会交流与合作。
【教学重点、难点】重点:了解解方程组的基本思路是“消元”,了解代入消元法的思想和操作方法,掌握代入消元法解二元一次方程组的步骤。
难点:例2要把其中一个方程变形后用含一个未知数的一次式来表示另一个未知数的形式时,方能代入。
【教学准备】电脑、投影【教学过程】(一)创设情景,提出问题提问:1. 什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?2. 下列哪些数对14x y =-⎧⎨=⎩21x y =⎧⎨=⎩10x y =⎧⎨=⎩12x y =⎧⎨=⎩是方程组31x y x y +=⎧⎨-=⎩的解。
3. 引导性材料:我国古代数学名著《孙子算经》上有这一一题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几头?如果设鸡有x 头,兔有y 头,所得的式子怎样?上节我们碰到过二元一次方程组20010x y y x +=⎧⎨=+⎩,可知95105x y =⎧⎨=⎩是方程组20010x y y x +=⎧⎨=+⎩的解,但这是通过观察检验后得来的,那么,有没有一种一般解法?鸡兔同笼问题又如何解答?(二)合作交流,探索新知 观察课本P93合作学习中图示,小组讨论下列问题:1、观察图4-3,你得到什么启发?2、如何解二元一次方程组20010x y y x +=⎧⎨=+⎩,观察x+(x+10)=200与200(1)10(2)x y y x +=⎧⎨=+⎩有没有内在联系?有什么内在联系?(通过较短时间的观察,学生通常都能说出上面的二元一次方程组与一元一次方程的内在联系──把方程①中的“y”用“x +10”去替换就可得到一元一次方程。
《8.2消元——解二元一次方程组》第1课时教案

《8.2消元——解二元一次方程组》第1课时教案《《8.2消元——解二元一次方程组》第1课时教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、内容及内容解析:1.内容:“用代入法解二元一次方程组”是人教实验版教科书七年级下册第八章第二节的第一课时.2.内容解析:本节内容是在学习了一元一次方程的基础上的进一步深入,本节对比根据题意列出的二元一次方程组和一元一次方程,发现把方程组中一个方程变形为用含一个未知数的式子表示另一个未知数后,将它代入方程组中的另一个方程,原来的二元一次方程组就转化为一元一次方程.这种转化对解二元一次方程很重要,它的基本思路是“将未知数的个数由多化少,逐一解决”的消元思想. 通过代入法,减少了未知数的个数,使多元方程最终转化为一元方程,达到消元的目的.在提出消元思想后,又归纳得出代入法的基本步骤,既渗透了算法中程序化的思想,又有助于培养学生良好的学习习惯,提高思考的深度.基于此,本节课的教学重点是:会用代入消元法解简单的二元一次方程组,能体会“代入法”解二元一次方程组的基本思路是“消元“.二、目标及目标解析:1.目标(1).会运用代入消元法解二元一次方程组.(2).理解代入消元法的基本思想体现的“化未知为已知”的化归思想方法.2.目标解析达成目标(1)的标志是:学生掌握代入消元法解二元一次方程组的一般步骤,并能正确的求出二元一次方程组的解.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.达成目标(2)的标志是:学生通过探索,逐步发现解方程的基本思想是“消元”,化二元一次方程组为一元一次方程.通过代入消元,使学生初步理解把未知转化为已知和复杂问题转化为简单问题的思想方法.三、问题诊断分析:1、教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.2、用代入法解二元一次方程组时,学生选择哪一个方程进行变形,容易出现不一样的选择.因此,教师讲解例题时要注意由简到繁,由易到难,逐步加深,而且要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以迅速解方程,而且可以减少错误.基于此,本节的教学难点是:灵活运用代入法解二元一次方程组.四、教学过程设计:1.创设情境,复习导入二元一次方程组:有___个未知数,含有每个未知数的项的次数都是____,并且一共有____个方程的方程组.二元一次方程的解:使二元一次方程两边的值相等的______________.二元一次方程组的解:二元一次方程组的两个方程的________.2.探究新知问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?问题一:你会用一元一次方程解决这个问题吗?解:设胜x场,则有:.问题二:你会用二元一次方程组解决这个问题吗?解:设胜x场,负y场,则问题三:怎样求得二元一次方程组的解呢?(设计意图:这题说明要想求出两个未知数的值,必须先知道其中一个未知数的值.这为用代入法解二元一次方程组打下基础:即消去一个未知数的值,转化为一元一次方程去解。
(完整版)代入消元法解二元一次方程组公开课课件.ppt

(2)
x 1 y 3
用代入法解方程组
(1)32xx
y 5 4y 2
y 2x 3 (2) 3x 2 y 8
课堂小结
• 解二元一次方程组的基本思想——消 元(即:将二元转化为一元)
• 消元的关键:用含一个未知数的代数式表 示另一未知数(选择一个系数较为简单的 方程变形,将变形后的式子代入另一个方 程得一个一元一次方程)。
总场数= 胜的场数+负的场数 总积分= 胜的积分+负的积分
解:设胜x场,则负(22-x)场, 根据题意得方程
y = 22-x ③
2x+ (22-x) =40 解得 x=18
22-18=4
答:这个队胜18场,只负4场.
把③ 代入② ,得
2x+ 22y-x = 40 解这个方程,得
x=18
设篮球队胜了x场,负了y场. 根据题意得方程组
教学难点:体会代入消元法和化未知为已知的 数学思想
复习巩固:
问题1:什么是二元一次方程?
含有两个未知数,并且所含未知数的项的次数都是1的整 式方程叫做二元一次方程。
问题2:什么是二元一次方程组?
把具有相同未知数的两个二元一次方程合在一起, 就组成了一个二元一次方程组。
问题3:什么是二元一次方程的解?
x y
=2 = -1
写
3、把这个未知数的值代入上 面的式子,求得另一个未知数 的值;
4、写出方程组的解。
变式练习
1. 把下列方程写成用含x的式子表示y的形式.
(1)2x y 3 y 2x 3
(2)3x y 1 0 y 1 3x
2.你能把上面两个方程写成用含y的式子表示x的形式?
(Hale Waihona Puke ) x 3 y8.2 消元
代入消元法解二元一次方程组第一课时

8.2消元-----用代入法解二元一次方程组(第一课时)【学习目标】1、 知识与技能:会用代入法解简单的二元一次方程组。
2、 过程与方法:经历探索代入消元法解二元一次方程组的过程,理解代入消元法的基本思想所体现的化归思想方法。
3、 情感与态度:通过提供适当的情景资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识。
【教学重点】用代入法解二元一次方程组的消元过程。
【教学难点】探索如何用代入法将“二元”转化为“一元”的消元过程。
【教学过程】一、体验园1、把方程写成用含x 的式子表示y 的形式2、把写成用含y 的式子表示x 的形式.二、探索园 问题 篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分.某队10场比赛中得到16分,那么这个队胜负场数分别是多少?问题1 你能根据问题中的等量关系列出二元一次方程组吗?问题2 这个实际问题能列一元一次方程求解吗?问题3 对比方程和方程组,你能发现它们之间的关系吗?问题4 对于二元一次方程组,你能写出求出x 的过程吗?问题5 怎样求出y ?例题:解方程组 ⎩⎨⎧=-=-14833y x y x23;x y -=23;x y -=1、解二元一次方程组的一般步骤:1、 ____2、____3、_____4、______2、上面解方程组的基本思路是把“二元”转化为“一元” —— “消元”,即将未知数的个数由多化少、逐一解决的思想.3、代入消元法:三、训练园1、方程-x+4y=-15用含y 的代数式表示x 为( )A .-x=4y-15B .x=-15+4yC. x=4y+15 D .x=-4y+152、将y=-2x-4代入3x-y=5可得( )A.3x-(2x+4)=5B. 3x-(-2x-4)=5C.3x+2x-4=5D. 3x-2x+4=53、用代入法解方程组⎩⎨⎧=+=+832152y x y x 较为简便的方法是( ) A .先把①变形B .先把②变形C .可先把①变形,也可先把②变形D .把①、②同时变形4、用代入法解二元一次方程组(1)⎩⎨⎧-==+32823x y y x (2)⎩⎨⎧=+=-24352y x y x解: 解:四、三省园对自己说,你有什么收获?对同学说,你有什么温馨提示?对老师说,你还有什么困惑?。
人教版数学七年级下册8.2《代入消元法解二元一次方程组》第一课时教学设计

1.创设情境,激发兴趣:通过引入生活中的实际问题,让学生感受到数学的实用性和趣味性,激发学生学习代入消元法的兴趣。
2.分步骤教学,循序渐进:将代入消元法的步骤分解,从简单的例子入手,逐步引导学生掌握每个步骤的操作,降低学习难度。
3.小组合作,互动交流:在教学过程中,组织学生进行小组合作,让学生在讨论、交流中相互学习,共同进步。
7.关注个体差异,因材施教:在教学过程中,关注每个学生的掌握情况,对学习困难的学生给予更多关心和指导,确保每个学生都能跟上教学进度。
8.精讲精练,提高效率:在课堂上,教师要以精讲为主,注重启发学生思考,同时设计具有针对性的练习题,提高课堂效率。
9.课后巩固,拓展提升:通过课后作业和拓展任务,巩固所学知识,培养学生自主学习的习惯,提高学生的综合素养。
五、作业布置
为了巩固本节课所学内容,培养学生的自主学习和解决问题的能力,特布置以下作业:
1.请同学们完成课本第8.2节后的练习题1、2、3,并认真检查答案,确保解题过程正确无误。
2.选择一道生活中的实际问题,将其转化为二元一次方程组,并运用代入消元法求解。要求写出详细的解题过程和答案。
3.小组合作,共同探讨以下问题:在代入消元法中,为什么需要先确定一个方程为已知方程,另一个方程为未知方程?请给出理由。
2.提问:我们之前学过解一元一次方程,那么对于这个二元一次方程组,我们应该如何求解呢?从而引出本节课的学习内容——代入消元法解二元一次方程组。
(二)讲授新知,500字
1.教师讲解代入消元法的概念和原理,通过具体的二元一次方程组实例,演示代入消元法的步骤和操作。
2.讲解代入消元法的三个步骤:
a.确定一个方程为已知方程,另一个方程为未知方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知 识 梳 理 通过本节课的研究,学习,你有
哪些收获?
(1)3xx22y
; 4
x 5 y (2)2x4y 7;
x y 3 (3)3x2y 5;
6x3y 7 (4)3x3y 5;
3x2y 5 (5)4x3y 1.
消元
基本思路: 二元一次方程组
一元一次方程
转化
一般步骤: 变形 代入 求解 写出
变形技巧:选择系数比较简单的方程进行变形。
y=2x-3
2x- y=5 ⑵
3x +4y=2
3x-2y=8 ①
⑴ y=2x-3
②
记得检验:把x=2,y=1代入方程①和②得, 看看两个方程的左边 是否都等于右边.
解:把② 代入①得,3x- 2(2x-3)= 8
解得,x= 2 把x = 2 代入②得 y=2×2-3, y= 1
∴原方程组的解为
x= 2 y=1
布置作业
1.课本P103练习1、2 2.创新练习P83巩固训练与拓展探 究
归纳小结
回顾本节课的学习过程,并回答以下问题: (1)代入法解二元一次方程组大致有哪些步
骤? (2)解二元一次方程组的核心思想是什么? (3)在探究解法的过程中用到了什么思想方
法,你还有哪些收获?
2x- y=5 ①
⑵
3x +4y=2 ②
解:由①得,y=2x-5③ 把③代入②得,3x+4(2x-5)=2
解得,x=2 把x=2代入③得,y=2×2-5,y=-1
x=2 ∴原方程组的解为 y=-1
抢答: 请举手
1.方程-x+4y=-15用含y的代数式表示x为(C ) A.-x=4y-15 B.x=-15+4y C. x=4y+15 D.x=-4y+15
x+y=10, 2x+y=16.
2x+(10-x)=16.
探究新知
问题4
对于二元一次方程组
x+y=10, 2x+y=16.
你能写出求出x的过程吗?
x+y=10, ① 2x+y=16. ②
解:由①,得 y10x. ③
把③代入②,得
2x10x16. x 6.
探究新知
问题5 怎样求出y?
代入①或代入② 可不可以?哪种 运算更简便?
说说方法
例2 解方程组
x –y = 3 ① 3x -8 y = 14 ②
用代入法解二元一次 方程组的一般步骤
解:由①得:x = 3+ y ③ 变
1、将方程组里的一个方程变 形,用含有一个未知数的式子
把③代入②得:
表示另一个未知数;
3(3+y)– 8y= 14 代 2、用这个式子代替另一个方
程中相应的未知数,得到一个
2.将y=-2x-4代入3x-y=5可得(B ) A.3x-(2x+4)=5 B. 3x-(-2x-4)=5
C.3x+2x-4=5
D. 3x-2x+4=5
3.用代入法解方程组 A.先把①变形
2x+5y=21 x +3y=8
较为简便的方法是( B
)
B.先把②变形
C.可先把①变形,也可先把②变形
D.把①、②同时变形
探究新知
问题 篮球联赛中,每场都要分出胜负,每队胜 1场得2分,负1场得1分.某队10场比赛中得到 16分,那么这个队胜负场数分别是多少?
问题2 这个实际问题能列一元一次方程求解吗?
解:设胜x场,则负(10-x)场. 2x+(10-x)=16.
探究新知
问题3 对比方程和方程组,你能发现它们之 间的关系吗?
9+3y– 8y= 14
一元一次方程,求得一个未知
– 5y= 5
数的值;
y= – 1 求
把y= – 1代入③,得
x = 3+(-1)=2 ∴方程组的解是
x y
=2 = -1
写
3、把这个未知数的值代入上 面的式子,求得另一个未知数 的值;
4、写出方程组的解。
练一练 用代入法解二元一次方程组
3x+2y=8 ⑴
课前热身
1. 把下列方程写成用含x的式子表示y的形式.
(1)2 x y 3
y2x3
(2)3 x y 1 0 y13x
2.你能把上面两个方程写成用含y的式子表示x的形式?
(1) x 3 y
2
(2)
x 1 y 3
3.如何解这样的方程组
自学课本90—91内容
1.什么是代入消元法? 2.代入法解二元一次方程组大致有哪些步骤? 3.用代入消元法解方程选择具有什么特点的方程
变形简便? 3.解二元一次方程组的核心思想是什么?
时间:9分钟
探究新知
问题 篮球联赛中,每场都要分出胜负,每队胜 1场得2分,负1场得1分.某队10场比赛中得到 16分,那么这个队胜负场数分别是多少?
问题1 你能根据问题中的等量关系列出二元一 次方程组吗?
解:设胜x场,负y场. x+y=10, 2x+y=16.
把 x 6代入③,得
y 4.
这个方程组的解是
x 负4场.
探究新知
上面的解方程组的基本思路是什么? 基本步骤有哪些?
上面解方程组的基本思路是把“二元” 转化为“一元” —— “消元” 消元思想:
将未知数的个数由多化少、逐一解决 的思想.
探究新知
把二元一次方程组中一个方程的一个 未知数用含另一个未知数的式子表示出来, 再代入另一个方程,实现消元,进而求得 这个二元一次方程组的解.这种方法叫做 代入消元法,简称代入法.