电压控制增益可变放大器
程控可变增益射频宽带放大器

程控可变增益放大器参赛队员:摘要本系统由宽带放大器OPA847、压控放大器VCA810和电流型运放OPA695组成。
系统前级通过OPA847实现10倍固定增益放大,中间级由压控放大器VCA810实现0.05~5V/V增益变化,后级由OPA695和继电器实现5~25V/V增益变化,末级由电阻网络进行10倍衰减,达到0dB~60dB 增益范围可调。
系统采用屏蔽盒进行电磁屏蔽,提高稳定性和抗干扰能力。
经测试,系统达到了题目所设定的所有指标。
关键词:放大器,VCA810,OPA847 ,OPA695AbstractThe system is designed with a broadband amplifier OPA847, Voltage controlled amplifier VCA810 and current-feedback operational amplifier OPA695.In the first stage, the system can achieve 10 times fixed-gain by OPA847.Then, in the intermediate stage, it uses VCA810 to achieve 0.05 ~ 5V / V gain range. In the latter part, the system achieves 5 ~ 25V / V gain variation by OPA695 and relays. In the last stage, the system achieves 10 times attenuation by the resistor network, so that the overall gain can be adjusted in the range of 0~60dB. In order to improve the stability and anti-jamming capability, the system uses the shield case to carry electromagnetic shielding. According to the test, all the indicators of the topic have reached .Keywords:RF broadband amplifier,VCA810,OPA847,OPA695目录1、方案论证1.1、≥60dB增益设计1.2、放大增益可调设计1.3、系统框图2、理论分析与计算2.1、宽带放大器设计2.2、频带内增益起伏控制2.3、射频放大器稳定性分析2.4、增益调整2.5、放大器带宽设计3、电路与程序设计3.1、前期固定增益电路设计3.2、VCA电路设计3.3、后级电路设计4、系统测试4.1、测试仪器4.2、测试方案及测试条件4.3、测试结果及分析5、参考文献输入VCA810输出输出一、方案论证1.≥60dB增益设计方案一:采用三极管实现。
可变增益放大器vga原理

可变增益放大器vga原理
可变增益放大器(VGA)在无线通信的收/发信机模拟前端中起着至关重要的作用。
其原理是,通过对信号进行放大或衰减,以满足不同的信号处理需求。
VGA通常用于补偿射频模块和中频模块的增益衰减,将输出信号放大到
A/D转换器需要的幅度。
此外,VGA还通过AGC环路改变接收机的增益,调整各级信号动态范围,稳定输出信号功率。
在VGA电路中,有几个重要的性能指标,包括IIP3和THD。
由于VGA的输出信号幅度很大,因此这两个指标尤其重要。
此外,为了实现宽增益范围调节,同时保持不同增益输入功率下恒定的输出建立时间,VGA的增益与控制电压需要成dB线性关系。
VGA增益步长越小越精确,对ADC的要求也越低。
数字控制的VGA电路提供了30 dB的增益控制范围,使用7 b精确控制增益大小,具有较小的面积和功耗。
以上信息仅供参考,如有需要,建议查阅专业书籍或文献或咨询专业人士。
VCA810中文资料

VCA810高增益调节范围,宽带,可变增益放大器VCA810特点:1、高增益调节范围:±40分贝2、微分/单端输出3、低输入噪声电压:2.4nV/√Hz的4、恒定带宽与增益:达到35MHz5、较高的分贝/ V的增益线性度:±0.3分贝6、增益控制带宽:25MHz的7、低输出直流误差:<±40mv8、高输出电流:±60毫安9、低电源电流:24.8毫安(最大为-40° C至+85° C温度范围)主要应用领域:光接收器时间增益控制、声纳系统、电压可调主动滤波器、对数放大器、脉冲振幅补偿、带有RSSI的AGC接收机、改善更换为VCA610芯片描述:VCA810是直流耦合,宽带,连续可变电压控制增益放大器。
它提供了差分输入单端输出转换,用来改变高阻抗的增益控制输入超过- 40DB增益至+40 dB的范围内成dB/ V的线性变化。
从±5V电源工作,将调整为VCA810的增益控制电压在0V输入- 40DB增益在-2V输入到+40 dB。
增加地面以上的控制电压将衰减超过80dB的信号路径。
信号带宽和压摆率保持在整个增益的不断调整range.This40分贝/ V的增益控制精确到±1.5分贝(±0.9分贝高档),允许在一个AGC应用的增益控制电压为接收使用信号强度指示器(RSSI)的精度为±1.5分贝。
出色的共模抑制,并在两个高阻抗输入的共模输入范围,允许VCA810提供差分接收器的操作与增整。
以地为参考的输出信号。
零差分输入电压,给出了一个很小的直流偏移误差0V输出。
低输入噪声电压,确保在最高增益设置好输出信噪比。
在实际应用中,脉冲前沿的信息是至关重要的,和正在使用的VCA810,以平衡不同的信道损耗,群延迟变化最小增益设置将保留优秀的脉冲边沿信息。
一种改进的输出阶段提供足够的输出电流来驱动最苛刻的负载。
虽然主要用于驱动模拟到数字转换器(ADC)或第二阶段的放大器,±60毫安输出电流将轻松驱动双端接50Ω线或被动的后过滤超过±1.7V输出电压范围的阶段。
电压放大倍数或电压增益课件

Part
04
电压放大倍数或电压增益的实 现
晶体管放大器实现电压放大倍数或电压增益的原理
晶体管放大器通过控制输入信号的电流变化,改变输出信号的电流大小,从而实现电压放大 倍数或电压增益。
晶体管放大器的基本原理是利用晶体管的电流控制作用,将输入信号的微弱电流变化放大成 较大的输出电流,再通过电阻转换成电压变化,从而实现电压放大倍数或电压增益。
表示输出电压与输入电压的比值,用 于衡量电压放大器的放大能力。
电压增益
表示输出信号电压与输入信号电压的 比值,用于衡量电压放大器的增益效 果。
不同类型电压放大倍数或电压增益的特点与比较
• 晶体管放大器:具有较高的放大倍数和较低的失真度,适用于小信号放 大和音频信号处理。
• 集成运算放大器:具有高放大倍数、低失真度和低噪声等特点,适用于各种信号处理和控制电路。 • 电子管放大器:具有较高的输出功率和动态范围,适用于音频功率放大和广播系统。 • 电压放大倍数与电压增益的比较:两者均用于衡量电压放大器的性能,但电压放大倍数更注重于描述放大能力,而电压
动态性能调整
根据应用需求,调整电路
2
参数,优化放大器的动态
性能,如带宽、增益、相
位等。
噪声抑制与优化
3 采取措施降低电路中的噪
声,如加入滤波器、优化 布线等,以提高信号质量 。
THANKS
感谢您的观看
增益更注重于描述信号的增强效果。在实际应用中,需要根据具体需求选择合适的电压放大器和电压增益类型。
Part
03
电压放大倍数或电压增益的应 用
在模拟电路中的应用
STEP 01
信号放大
STEP 02
跨电阻器传输
电压放大倍数可以将微弱 的输入信号放大到足够的 幅度,以满足后续电路或 设备的需要。
可控增益放大器

摘要随着时代的发展,科技的进步,微电子技术、计算机网络技术和通信技术等等也在不断地更新换代,可控增益放大器被广泛的应用到各个领域当中。
可控增益放大器的核心为可控增益放大电路,人们对其研究也在不断加深,其技术也越来越成熟。
放大器是通信系统和其他电子系统中必不可少的一部分,可控增益放大电路模块在很大程度上决定了系统的整体指标.可控增益放大器是放大器的一个分支,它在通信系统中也有着非常重要的作用,于是人们对它的要求也会越来越高。
在通信和电子设备中,常常采用放大器实现信号的放大,要求其线性好,具有足够的增益来抑制后级电路的噪声对系统的影响,并且增益最好可调,当输入信号大范围变化时,能自动控制增益,输出稳定的信号,另外输出功率也能达到最大。
可控增益放大器,也就是在放大器的基础上加上控制增益部分。
在实际电路中,例如带负反馈的运放电路,其反馈电阻如果设为可调电阻,那么这个放大电路的增益就可以控制了,当然在其中还有许多其他的变化。
采用MSP430单片机实现数据采集及控制放大器的放大倍数,通过键盘输入实现输出状态控制、带宽选择以及增益步进控制,晶显示器显示所设置的状态及参数。
关键词:放大器,增益,单片机ABSTRACTWith the development of The Times,the progress of science and technology,microelectronics technology,computer network technology and communication technology,and so on are also constantly upgrading,controllable gain amplifier is widely applied to various fields。
The core of the controllable gain amplifier for controllable gain amplifier circuit,are also deepening the research,its technology is becoming more and more mature.Amplifier is an indispensable part of communication system and other electronic systems,the controllable gain amplifier circuit module to a great extent,determines the overall index of the system.Controllable gain amplifier is a branch of the amplifier,it also has a very important role in the communication system,so people will more and more high to the requirement of it.In communications and electronics equipment,often signal is realized by using the amplifier amplification,ask its good linear,with sufficient gain to suppress the noise level circuit after the impact on the system,and gain the best adjustable,when a wide range of input signal changes,can automatic gain control,stable output signal,and output power can achieve maximum.Controllable gain amplifier,that is,on the basis of the amplifier with gain control part.In the actual circuit,operational amplifier circuit with negative feedback,for example,if the feedback resistance as the adjustable resistance,then the gain of the amplifier circuit can control,in which there are many other changes,of course.Data acquisition and control is realized by using MSP430 single chip microcomputer,the larger the amplifier amplification by keyboard input output state control,choice of bandwidth and gain step control,crystal display shows and parameters set by the state。
VCA820可控增益放大器原理

VCA820可控增益放大器原理宽带放大器在工业测量与控制领域应用广泛。
在测量与控制电路中,宽带放大器是调理传感器输出信号的重要环节。
传感器输出的电平信号通常不是规则的正弦信号,且输出电压范围往往变化很大,这就需要后级放大器具有较高的频带宽度和灵活的电压增益,因此,这里提出一种以压控增益放大器VCA822为核心的可编程宽带放大器,可实现通频带为100 Hz~15 MHz,放大器增益为10~58 dB,6 dB 步进可调。
该设计可通过矩阵式键盘设置放大器增益,液晶显示器显示输出电压,人机界面友好。
1 放大器设计及工作原理设计一个通过键盘设置增益,且具有AGC功能的宽带放大器。
放大器输入端采用同相放大电路进行阻抗匹配,使输入电阻达到MΩ数量级。
该系统设计分为宽带放大、峰值采样、人机交互等3个模块。
宽带放大模块中电压增益可预置的功能是由VCA822实现。
VCA822一款直流耦合型宽频带压控增益放大器,最大工作频带宽度可达150 MHz。
放大器增益由控制电压和外围电阻阻值共同决定。
控制电压的输出是由单片机运算并控制D/A转换器而输出的,因而能够实现较精确的数控。
另外,放大器后级接入两档信号处理电路,一档增益0 dB,另一档为衰减档,通过一个控制端口,实现信号在这两档位之间选择。
这种方法的优点在于条理清晰,控制方便,易于单片机处理。
针对峰值采样,采用数字检波,即通过高速A/D转换器对输出的正弦信号进行采样,判断一定时间内采集到的数字信号的最大值,该最大值即为该信号的峰值。
而这种通用数字峰值检波电路仅能在低频段效果良好,针对系统设计要求中的高频信号,以及某些特定频率信号,将产生一定误差。
采用双频数字峰检对信号进行采样,这种方案可有效避免产生误差。
在上述两模块的基础上实现AGC的功能。
峰值检波测得的电压值反馈回单片机,单片机对宽带放大电路实现放大精确控制。
通过这种方式可将输出信号的峰值稳定在4.8 V左右。
该系统总体实现框图如图l所示。
常用的增益可调运算放大电路

常用的增益可调运算放大电路常用的增益可调运放大电路是一种电子电路,它可以通过调整电路中的某些元件来改变电路的放大倍数。
这种电路在实际应用中非常常见,可以用于各种信号处理和放大的场合。
在电子电路中,通常需要对信号进行放大处理,以增强信号的强度或改变信号的形态。
增益可调运放大电路的设计就是为了满足这个需求。
通过调整电路中的某些元件的参数,可以实现对信号放大倍数的调节,使得电路适应不同的应用场景。
增益可调运放大电路通常由放大器和调节电路两部分组成。
放大器负责对输入信号进行放大,而调节电路则用于调整放大倍数。
在实际应用中,放大器可以采用各种不同的类型,如运算放大器、差分放大器等。
调节电路则可以根据具体需求选择合适的电路结构。
常见的增益可调运放大电路有两种类型,分别是电压控制增益可调运放大电路和电流控制增益可调运放大电路。
电压控制增益可调运放大电路是利用输入电压的大小对放大倍数进行调节的。
它通过改变电路中的某些元件的电压来改变电路的放大倍数。
例如,可以通过改变电阻的值来改变放大倍数。
当输入电压较大时,电路的放大倍数也较大;当输入电压较小时,电路的放大倍数也较小。
这种电路的特点是调节方便,但对输入信号的要求较高,需要保证输入电压的稳定性和准确性。
电流控制增益可调运放大电路是利用输入电流的大小对放大倍数进行调节的。
它通过改变电路中的某些元件的电流来改变电路的放大倍数。
例如,可以通过改变电流源的电流大小来改变放大倍数。
当输入电流较大时,电路的放大倍数也较大;当输入电流较小时,电路的放大倍数也较小。
这种电路的特点是对输入信号的要求较低,但调节比较困难,需要精确控制电流源的电流大小。
除了以上两种类型的增益可调运放大电路,还有一种常见的设计是利用数字控制来实现放大倍数的调节。
这种电路通常使用数字电子元件,如数字电位器、数字开关等,通过改变数字控制信号的值来改变电路的放大倍数。
这种设计的优点是调节方便,可以实现精确的放大倍数控制,适用于需要频繁调节放大倍数的场合。
高输出电压的宽带程控增益放大系统

节 操 作 方 便 , 良好 的 人机 交 互 界 面 。 有
关键词 : 程控增益; 宽带放大器; 高输出电压; S40 M P3 单片机
第3 4卷 第 1期
21 0 1年 2月
电 子 器 件
C ie eJ un lo lcrn De ie h n s o r a f e t v s E o c
Vo . 4 No. 13 1 Fe 2 1 b. 01
Th sg f Pr g a m a l a n W i e a d Am p i e e De i n o o r m beG i d b n l r i f S se t i h Ou p tVo t g y t m wih H g t u la e
在 0~1 z 频 带 内 电压增 益 6 B可 调 , 级 5MH 通 0d 末
要 利用 放大 电路将 通信接 收端 接收 到 的微 弱 的信号
进 行提 取 、 大 。 同时很 多 设 备 还要 求 具 有 一定 输 放
出功率 , 才能 驱动 后 级 设 备 。然 而 面对 多 种 多样 的
t r u h k y o r n CD 。he 3 dB b n wi t S 1 MHz,h ho g e b ad a d L t a d dh i 5 t e RMS v l e o n mu ipu ot g S 1 au f mi i m n tv la e i mV n ad t e V 。v l e o xmu o t u otg t o tdit rin i 8 V fe d i g t e5 l a T n wit ft e h p au fma i m u p tv la e wih u so t s2 a ra d n h 0 Q o d. heba d d h o h o t s se c n as e c o e r m 5 MHz, y t m a lo b h s n fo 2. 5 MHz, 0 MHz a d 1 1 n 5 MHz t r u h k y o r h o g e b a d. Ke r y wo ds: r g a p o r mma l an; d ba d Amp i e ; ih o p otg MS 43 b e g i wi e n lf r h g ututv la e; P 0 i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压控制增益可变放大器(VGA)设计
摘要
本设计以VCA822芯片为核心,加以其它辅助电路实现对宽带电压放大器的电压放大倍数、输出电压进行精确控制。
放大器的电压放大倍数从0.1倍到10倍变更,通过电压跟随器确保输入阻抗>1012Ω。
选用高增益带宽积的运放保证放大器的带宽大于15MHz。
关键词:宽带直流放大器;控制电压;电压变换;VCA822;
ABSTRACT
This experiment is designed with VCA822 chip as the core, with other auxiliary circuit to realize the voltage gain of the broadband voltage magnification, as well as the accurate control of the output voltage. Amplifier voltage magnification changes from 0.1 times to 0.1 times through the voltage follower to ensure that the input impedance > 1012Ω. At the same time, the selection of high gain bandwidth product of the op-amp is to ensure the bandwidth of the amplifier greater than 15 MHZ.
目录
1.系统方案比较与设计
2.理论分析与计算
3.单元电路设计与计算
3.1一级同相放大电路
3.2二级可控放大电路
3.3三级同相放大电路
3.4四级反向放大电路
3.5甲乙类功率放大电路
4.系统测试
5.结论
6.参考文献
1.系统方案比较与设计
本设计采用手动调节的方法对宽带直流放大器的电压放大倍数进行控制。
由于要实现对该宽带直流放大器的电压增益可调的目的,经过分析,电压增益可控制部分的设计得到如下的三种方案。
方案一:利用场效应管工作在可变电阻区,输出信号取自电阻与场效应管的分压的这个原理。
控制场效应管可以达到很高的频率和很低的噪声,但温度、电源等的漂移都会引起分压比的变化。
用这种方案很难实现增益的精确控制和长时间稳定。
方案二:采用可编程放大器的思想,将输入的交流信号作为高速D/A的基准电压,此时D/A为一个程控衰减器,因此要求D/A的速度够快、精度够高,故难以实现。
而且控制的数字量和最后的增益(dB)不成线性关系而是成指数关系,造成增益调节不均匀,精度下降。
方案三:直接选取可调增益的芯片实现,如VCA822。
由固定增益放大器输出,衰减量是由加在增益控制接口的参考电压决定;而这个参考电压可通过可调电阻分压得来。
此外VCA822能提供由直流到130MHz以上的工作带宽,可得到40dB以上的电压增益,通过后级放大器放大输出。
这种方法的优点是电路集成度高、控制方便。
综合以上考虑,所以选择方案三。
整体方案框图如图1所示。
图1 系统整体方案框图
2.理论分析与计算
因VCA822增益带宽积为150MHz,故采用四级放大电路使系统带宽不低于15MHz。
各级放大电路增益分配如下:第一级用AD818构成同相放大器以满足题目对输入阻抗
的要求,放大倍数设计为两倍,第二级VCA822放大倍数0.1-10倍可调;二级OPA699因其增益带宽积较高,可以承担较大的放大倍数,故设计放大20倍;三级AD811设计放大8倍以满足题目要求的放大倍数。
各级同相放大器之间加接51Ω电阻进行阻抗匹配,防止自激振荡。
由于各级之间阻抗匹配电阻的分压影响,系统整体放大倍数为8-800倍(18-58dB )可调,基本满足题目要求。
3.单元电路设计与计算
3.1 一级放大电路
一级放大电路由AD818构成同相放大器。
同相放大电路的输入阻抗比反向放大器大得多,可以满足题目对输入阻抗的要求。
AD818的130 MHz 增益带宽积满足题目对带宽的要求。
电路原理图如图1。
同相放大器的放大倍数计算公式为1
2
1R R A v +=,两电阻均取1kΩ,实现设计的2倍放大。
图1 一级放大电路原理图
3.2 二级放大电路
使用VCA822构成的增益控制放大器电路,它的一种典型应用电路如图2所示。
VCA822是宽带、电压控制增益可变放大器,最高频率达150 MHz ,工作电压±5V 。
V G 是控制电压的输入端,其控制电压范围为-1~+1V 。
电压放大倍数表达式为:2
12+⨯⨯=G G
F v
V R R A ,在该电
路中设计R F 与R G ,并通过调节电位器的阻值,来改变V G 分得的电压,从而调整该电压放大器的电压放大倍数。
实际电路如图3所示。
选取R F =1k ,R G =200Ω,从而使得最大放大倍
数达到10倍。
图2 VCA822的一种典型应用电路
图3 二级放大电路原理图
3.3 三级放大电路
采用OPA699运放构成同相放大电路。
电路原理如图4所示。
R15和R16呈20倍关系,满足设计的20倍放大。
在反馈回路并联一小电容防止自激振荡。
图4二级放大电路原理图
3.4 四级放大电路
采用AD811运放构成反相放大电路。
电路原理如图5所示。
设计两电阻呈8倍关系以达到8倍放大。
图5 三级放大电路原理图
3.5 功率放大电路
采用甲乙类功率放大电路,甲乙类功放界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。
甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。
实际电路原理图如图5所示。
图5功率放大电路原理图
4.系统测试
功率放大模块:通过函数信号发生器输入20Vpp信号,经功放模块放大后,通过示波器观察输入输出波形,改变信号频率,测量通频带。
5.结论
6.参考文献
[1]康华光. 电子技术基础模拟部分(第五版)[M]. 高等教育出版社,2005
[2]康华光. 电子技术基础数字部分(第五版)[M]. 高等教育出版社,2005
[3]黄争. 德州仪器高性能单片机和模拟器件在高校中的应用和选型指南[M]. 德州仪器半
导体技术(上海)有限公司大学计划部,2012
附录
1.系统操作说明
2.元器件明细表
序号名称数量备注
1 运放
2 二极管
3 NPN
4 PNP
5 电阻
6 电容
3.仪器设备
3.1函数信号发生器;
3.2示波器;
3.3万用表;
3.4直流稳压电源。
4.电原理图。