低噪声电荷灵敏前置放大器

合集下载

电荷灵敏前置放大器

电荷灵敏前置放大器

电荷灵敏前置放大器【实验目的】1.研究电荷灵敏前置放大器的放大特性;2.学习测试变换增益、噪声和噪声斜率的方法;3.了解电荷灵敏前置放大器外壳屏蔽的重要性。

【实验仪器】我们以FH1047型电荷灵敏前置放大器为实验对象,现将其有关问题做一介绍:1.框图、线路图:(1)框图:(2)线路图(供参考)【实验内容】1.测电荷灵敏前置放大器变换增益A 和衰减时间常数。

(1)测试原理:实验线路如下图所示:在前放的检验端输入幅度为V i (带负载情况下的幅度)的负阶跃脉冲,则输入电荷Q i=i C V C 。

输入电流则近似为冲击电流Q i δ(t )。

测出输出幅度V o ,则变换增益为:o o c i c iV VA Q C V == 测量输出信号下降时间常数即为前放输出脉冲衰减时间常数。

本前放pf 1C ,pf 1C ,10R c f 9f ==Ω=,最大输出幅度2V 。

将信号发生器输出幅度调为约为2V (2)理论思考:① 检验内容(测试电容)c C 的作用是什么?其值影响前放的c A 吗?对一定的i V 、o V 受c C 的影响吗?将输入的电压信号转变为电流冲击信号,不影响前放的c A ,有影响例如:若pf 5.0C c =和2pf 时,想V o 接近额定值2V ,V i 各该选多大?pf 5.0C c =,V i =4V ;2pf ,V i =1 V② V i 的极性、幅度、脉宽及周期的上、下限应如何考虑?极性:负极性a. 若V i 如下图,V o 该如何?b.若V i 如下图,V o 又该如何?答:这两个图的差别主要是输出信号是否能在一个水平端完成衰减,因为我们要测量时间常数,所以选择a ,让输出信号有足够的时间稳定下来。

为方便f f f C R =τ= 1ms 的测试,你选上述a 、b 中的哪种V i ?【a 】(思考:对指数衰减信号)(t V o 可用公式表示为:τtM o eV t V -=)(那么经过τ=t 时间,M MtM o V eV eV t V 37.0)(≈==-τ,可否利用此结果来测出τ?答:可以,用示波器的幅度和时间测量可以完成该测量。

电荷灵敏前置放大器A

电荷灵敏前置放大器A

探测器中的噪声
半导体探测器是反向偏置的PN结,其中存在着三种噪声源。 •并联电阻Rp的热噪声,Rp是耗尽层或补偿层的电阻 •串联电阻Rs的热噪声,Rs为探测器非灵敏区的材料体电阻 与引线电阻之和 •探测器漏电流ID的散粒噪声
iD CD Rp
Rs
vo(t)
对于面垒型探测器,Rp约为108-109Ω,在低温下工作的P-I-N 探测器, Rp可达1012Ω或更高。通常Rp比前置放大器或探测器 的偏置电阻大很多,因此, Rp及其热噪声可以忽略。 串联电阻Rs的影响虽然比Rp大,但是对性能良好的探测器来说 Rs也可忽略。
R1
iD(t) R C -高压
探测器和放大器 距离要足够短, 避免震荡
Z0 A
+
vo(t ) iD(t )R1
前置放大器的特点与选择(重点)
前放种类
电压灵敏 前放
特点
VoM=Q/Ci 电压幅度稳定 性较差 VoM=Q/Cf 电压幅度稳定 性较好 V(t)=Ri(t) 电压波形与探 测器电流相同
应用
慢计数系统、 能量分辨要求 较低的能谱测 量系统 能量分辨要求 较高的能谱测 量系统 快计数系统、 时间测量系统
注意事项
电荷灵敏 前放 电流灵敏 前放
系统的时间分辨本领除了与 所用探测器有关外,前放的 噪声也必须加以考虑。一般 情况下,前放上升时间选为 探测器上升时间的0.5-2倍之 间。
在实际应用中,选择前放要根据探测器的种类来 决定前放种类,同时注意前放上升时间应远小于 后面成形电路的成形时间。前放选定后,它和探 测器的连接要尽可能近,连接端要接触良好,电 缆要尽可能短。
输出电压的稳定性
当A0>>1时 则Ci 、A0分别变化时,有

电荷灵敏前置放大器用户手册

电荷灵敏前置放大器用户手册

电荷灵敏前置放大器用户手册中国·四川·成都2012年12月第1版目录1.概述 (1)2.指标性能规格说明 (1)2.1 指标 (1)2.2 输入 (2)2.3 输出 (2)2.4 功耗和机械 (2)3.安装 (2)4.操作指南 (2)5.电路描述 (2)6.联系方式 ................................................................................. 错误!未定义书签。

安全标识和说明为了防止人身伤害和损坏仪器,本手册包含3种安全标识需要告知。

使用本仪器之前,请仔细阅读用户手册确保您完全理解本仪器。

◆危险意味着如果没有遵从安全指示,可能导致死亡或严重的人身伤害◆警告意味着如果没有遵从安全指示,可能导致人身伤害◆谨慎意味着如果没有遵从安全指示,可能导致仪器损坏安全警告和清洁说明清洁说明清洁外壳指示:◆断开仪器电源。

◆用无绒织物除去仪器外壳上的灰尘。

◆用普通的洗涤剂和无绒织物出去外壳上的污渍。

不要使用有腐蚀性的洗涤剂。

◆在仪器通电之前,请确保仪器干燥。

电荷灵敏前置放大器1.概述电荷灵敏前置放大器是用于金硅面垒探测器、3He正比计数器、BF3正比计数器的前置放大器。

可与探测器、线性放大器、多道分析器一起组成脉冲幅度分析测量系统,如图1所示。

图 1 电荷灵敏前置放大器的应用2.指标性能规格说明2.1 指标上升时间< 200ns输出噪声≤140eV积分非线性≤±0.02%温度系数±0.01%/℃输入电容可调100~1000pF增益1~5倍可调2.2 输入低压电源前面板3芯航空插座,下面写有“低压“,接放大器直流电压输出,向前置放大器提供±6V低压电源。

高压电源前面板3kV高压插座,下面写有“高压“,接高压电源输入。

接探测器后面板BNC插座,下面写有““接探测器”,接到探测器。

用于APD激光探测的电荷灵敏前置放大器设计

用于APD激光探测的电荷灵敏前置放大器设计

万方数据万方数据激光与红外No.12011徐伟等用于APD激光探测的电荷灵敏前置放大器设计29对转换后的电压信号进行放大。

与电流灵敏前置放大器不同的是,它无法保留输入电流信号的形状特征。

反馈电阻R,起释放电荷的作用,释放时间满足公式:f=R卢,。

尺,太小会增加噪声,太大无法按时释放电荷。

只要使得释放时间小于激光脉冲周期即可,一般取值几十到几百兆欧姆量级。

整个电荷前置放大器的增益可以表示为:A=g。

尺d・G(4)式中,g。

是JFET的跨导;Rd是漏极电阻;G是运放的开环增益。

图3电荷灵敏前置放大器放大器输出电压可以表示为:一¨i。

=罟(忐)(5)式中,ci包括APD结电容、放大器的输入电容和引线分布电容。

由于放大器的增益A》1+c/cs,所以式(5)可以简化为:p矽wt2玄(6)由式(6)可以看出,输出电压仅仅决定于cz与Q的大小,只要cf值稳定,输出电压与输入的电荷信号成正比关系。

放大器输出电压不受APD结电容,运放输入电容、运放增益等参数的影响,稳定性更高。

激光脉冲持续时间极短,可以近似为冲激响应。

对于单个脉冲,APD在某一时间内产生的电荷量可以表示为:lQ=Ii,d。

,0≤£≤t。

,0≤i。

≤ie(7)b式中,i。

是激光脉冲在时刻t时的电流值;t。

是激光脉冲的持续时问;i。

为激光脉冲的电流峰值。

由式(7)可以看出,电荷量的积累时间,即输出电压的上升时间与激光脉冲的持续时间相一致。

当t=t。

时,Q达到峰值,即输出电压p。

达到峰值。

假设激光脉冲宽度t。

为50ns,反馈电容cf为1pF,对于大小为5nA的暗电流,被积分后对应的误差电压最大值仅为0.25mV。

4实验测试实验中采用重复频率10kHz,脉宽31.25ns,波长905nm的激光束作为探测目标,硅传感器公司AD500—9型号的APD作为探测元件。

整个实验在室温下进行,没有对APD进行低温处理。

图4是电荷前置放大器的输出脉冲波形。

输出信号电压峰值70mV,衰减时间140Ixs。

电荷灵敏前置放大器消除电源噪声的设计_肖海军

电荷灵敏前置放大器消除电源噪声的设计_肖海军

第43卷第2期激光与红外Vol.43,No.2 2013年2月LASER&INFRARED February,2013文章编号:1001-5078(2013)02-0190-05·电子电路·电荷灵敏前置放大器消除电源噪声的设计肖海军,张流强,肖沙里,李先仓,黄振华(重庆大学光电技术及系统教育部重点实验室,重庆400030)摘要:在高灵敏度光电探测领域,常常采用雪崩二极管(APD)等高增益探测器,这些探测器通常需要上百伏的工作电压,因此电源噪声对探测器的性能影响很大。

针对单光子探测的需要,论文提出了一种电荷灵敏前置放大器消除电源噪声的设计,通过采用匹配的差分输入,可以有效抵消电源的共模噪声。

论文首先对APD探测器在不同偏压下的结电容进行测试,然后采用可调电容对APD电容进行匹配,用MultiSim对提出的电路进行了仿真分析,最后制作实验电路进行了测试和验证。

结果表明:差分输入电荷灵敏前置放大器能够有效消除电源噪声(包括低频噪声和高频噪声),实现高灵敏度的光探测。

关键词:电荷灵敏前置放大器;APD;差分放大;Multisim仿真;电源噪声中图分类号:TN29文献标识码:A DOI:10.3969/j.issn.1001-5078.2013.02.016Power supply denoising design for charge-sensitive preamplifierXIAO Hai-jun,ZHANG Liu-qiang,XIAO Sha-li,LI Xian-cang,HUANG Zhen-hua (Key Laboratory of Optoelectronic Technology and Systems attached to Ministry of Education,Chongqing University,Chongqing400030,China)Abstract:High gain photon detectors such as avalanche photo diode(APD)are widely used for high-sensitivity photondetection.However,the high voltage applied to these detectors often makes serious noise.In order to perform high-sen-sitive photon detection,an innovative denoising design for charge-sensitive preamplifier is proposed,which can reducethe power-supply noise by differential amplification.Firstly,the junction capacitance of APD is tested under variousbias voltages.Then capacitance matching is made with an adjustable capacitor and circuit simulation is performed withMultisim software.Finally the fabricated circuit is tested.It is shown that the charge-sensitive pre-amplifier with differ-ential input can significantly reduce the power-supply noise(both low frequency and high frequency)and realize highsensitivity.Key words:sensitive charge preamplifier;APD;differential amplification;Multisim simulation;power-supply noise1引言高灵敏度光探测器在成像、光谱和光通讯领域有着广泛的应用,随着应用需求的发展,高速和高灵敏度光探测器越来也受到业界的重视,其最新发展就是以单光子探测为标志的新型光探测技术。

新型低噪声电荷灵敏前置放大器设计

新型低噪声电荷灵敏前置放大器设计

第40卷第2期 2020年3月核电子学与探测技术Nuclear Electronics Detection TechnologyVol. 40 No. 2Mar. 2020新型低噪声电荷灵敏前置放大器设计熊思,高超嵩%黄光明,孙向明(华中师范大学物理科学与技术学院夸克与轻子物理教育部重点实验室,武汉430079)摘要:为满足T o p m etal-S芯片研制需求,设计了一种低噪声电荷灵敏前置放大器。

该电荷灵敏前置放大器在0. 35 p m商业标准工艺上完成设计,采用单端折叠共源共栅结构,其等效输人电荷噪声约为56.47 e_,电荷转换增益为223.40 m V/fC,上升时间为633.30 n s;开环增益为74.94 dB,线性度在3. 70%以内的输入电荷范围为0~6. 50 fC。

关键词:电荷灵敏前置放大器;低噪声;T opm etal-S;等效电荷噪声中图分类号:T L821 文献标志码:A文章编号:0258 — 0934(2020)2 — 0353 — 06寻找无中微子双卩衰变是近年来核物理与 粒子物理领域的研究热点之一,通过能谱测量 和径迹重建,能够提高对本底事件的抑制能力,进而提高对无中微子双P衰变确认的准确度。

以高压气体为媒介的时间投影室(TPC)配合低 噪声的电荷读出方法是最有潜力同时实现能谱 测量和径迹重建的探测器[1]。

传统的高压气体 T P C采用电致发光技术,能够获得优越的能量分辨率,但在电荷径迹和探测器规模扩展方面存在局限性,替代方案是微网格气体探测器,但 其涉及气体雪崩增益会严重降低探测器的能量 分辨率,因此,理想的方案是无气体雪崩放大的 像素电荷读出方法。

华中师范大学硅像素实验 *收稿日期:2019—12—17基金项目:国家自然科学基金青年项目(11805080)、国 家重点研发计划项目(2016Y FE0100900)资助。

作者简介:熊思(1996—),女,江西九江人,在读硕士生,攻读方向为模拟1C设计研究。

电荷灵敏前置放大器

电荷灵敏前置放大器

【实验目的】1.研究电荷灵敏前置放大器的放大特性;2.学习测试变换增益、噪声和噪声斜率的方法;3.了解电荷灵敏前置放大器外壳屏蔽的重要性。

【实验仪器】我们以FH1047型电荷灵敏前置放大器为实验对象,现将其有关问题做一介绍:1.框图、线路图:(1)框图:(2)线路图(供参考)【实验内容】1.测电荷灵敏前置放大器变换增益A 和衰减时间常数。

(1)测试原理:实验线路如下图所示:在前放的检验端输入幅度为V i (带负载情况下的幅度)的负阶跃脉冲,则输入电荷Q i=i C V C 。

输入电流则近似为冲击电流Q i δ(t )。

测出输出幅度V o ,则变换增益为:o o c i c iV VA Q C V == 测量输出信号下降时间常数即为前放输出脉冲衰减时间常数。

本前放pf 1C ,pf 1C ,10R c f 9f ==Ω=,最大输出幅度2V 。

将信号发生器输出幅度调为约为2V (2)理论思考:① 检验内容(测试电容)c C 的作用是什么?其值影响前放的c A 吗?对一定的i V 、o V 受c C 的影响吗?将输入的电压信号转变为电流冲击信号,不影响前放的c A ,有影响 例如:若pf 5.0C c =和2pf 时,想V o 接近额定值2V ,V i 各该选多大?pf 5.0C c =,V i =4V ;2pf ,V i =1 V② V i 的极性、幅度、脉宽及周期的上、下限应如何考虑? 极性:负极性a. 若V i 如下图,V o 该如何?b.若V i 如下图,V o 又该如何?答:这两个图的差别主要是输出信号是否能在一个水平端完成衰减,因为我们要测量时间常数,所以选择a ,让输出信号有足够的时间稳定下来。

为方便f f f C R =τ= 1ms 的测试,你选上述a 、b 中的哪种V i ?【a 】 (思考:对指数衰减信号)(t V o 可用公式表示为:τtM o eV t V -=)(那么经过τ=t 时间,M MtM o V eV eV t V 37.0)(≈==-τ,可否利用此结果来测出τ? 答:可以,用示波器的幅度和时间测量可以完成该测量。

电压灵敏前置放大器工作原理

电压灵敏前置放大器工作原理

电压灵敏前置放大器工作原理答:电压灵敏前置放大器是一种用于增强微弱电信号的电子设备。

它在许多应用中都扮演着关键的角色,如音频处理,雷达和声纳系统,电子显微镜,以及许多其他需要放大微弱电信号的场合。

下面,我们将详细讨论电压灵敏前置放大器的工作原理,主要包括输入阻抗、增益、带宽、噪声性能和线性度等方面。

1. 输入阻抗输入阻抗是指电压灵敏前置放大器对于输入信号的电阻抗。

理想情况下,该值应尽可能高,以减少对输入信号的衰减。

实际上,输入阻抗通常是由输入级电路的元件决定的,如场效应管或晶体管。

这些元件的选择和设计需要以达到最佳的信号保真度和最小的噪声为准则。

2. 增益增益是电压灵敏前置放大器的另一个重要特性。

它表示放大器输出的信号强度与输入信号强度的比值。

电压灵敏前置放大器的增益通常很高,可以达到20 dB或更高。

此外,增益通常与频率有关,这就是所谓的频率响应。

一些电压灵敏前置放大器在宽频率范围内具有稳定的增益,这对于许多应用来说是非常重要的。

3. 带宽带宽是衡量电压灵敏前置放大器处理信号速度的一个重要指标。

它通常定义为放大器能够处理的最高频率与最低频率之差。

在实际应用中,带宽通常受到多种因素的影响,如电源噪声、热噪声、以及非线性效应等。

为了在高速信号处理中获得最佳性能,电压灵敏前置放大器的带宽需要足够宽。

4. 噪声性能噪声是电压灵敏前置放大器的一个重要限制因素,尤其是在处理微弱信号时。

噪声可以是电阻热噪声、闪烁噪声、或者1/f噪声等。

为了提高信噪比(SNR),电压灵敏前置放大器的设计需要尽量降低内部噪声。

这通常是通过选择低噪声元件和优化电路设计来实现的。

5. 线性度线性度是指电压灵敏前置放大器对输入信号的放大或缩小与其输入成正比的能力。

在大多数应用中,线性度是一个关键参数,因为它可以防止信号失真和产生不希望的结果。

有多种方法可以提高电压灵敏前置放大器的线性度,包括使用适当的反馈网络、优化器件偏置以及采用差分对电路等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档