塑性成形和CAD金属可锻性,金属成形时摩擦和润滑
材料成型工艺基础金属塑性成形

材料成型工艺基础:金属塑性成形1. 引言金属塑性成形是制造业中常见的一种材料成型工艺。
通过对金属材料施加力量,使其在一定的温度和应变条件下发生塑性变形,从而得到所需形状和尺寸的制品。
这种成形工艺广泛应用于汽车、航空航天、机械制造等领域。
本文将介绍金属塑性成形的基本概念、工艺流程以及常见的金属塑性成形方法。
2. 基本概念2.1 金属塑性成形的定义金属塑性成形是指将金属材料通过施加力量,在一定的温度和应变条件下,使其发生塑性变形,从而得到所需形状和尺寸的工艺过程。
2.2 塑性变形的基本概念塑性变形是指材料在一定的应力作用下,在超过其屈服点之后发生的可逆性变形。
在这种变形中,金属材料的原子结构会发生改变,从而改变了材料的形状和尺寸。
3. 工艺流程金属塑性成形的工艺流程主要包括以下几个步骤:3.1 原材料准备在金属塑性成形工艺中,首先需要准备好所需的金属原材料。
原材料的选择需要满足产品的要求,包括材料的强度、韧性、耐蚀性等。
3.2 材料加热在金属塑性成形之前,通常需要将金属材料进行加热。
加热可以使金属材料达到一定的塑性状态,更容易发生塑性变形。
加热的温度和时间需要根据不同的金属材料和成形要求进行调整。
3.3 成型工艺金属塑性成形的成型工艺包括以下几种常见方法:3.3.1 锻造锻造是一种利用压力将金属材料塑性变形成形的方法。
在锻造过程中,金属材料会经过压缩、拉伸、冷却等多个步骤,最终得到所需的形状。
3.3.2 拉伸拉伸是将金属材料放在拉伸机上,通过施加力量使其发生塑性变形的方法。
通过拉伸可以改变金属材料的形状和尺寸。
3.3.3 深冲深冲是将金属材料放在冲压机上,通过模具对材料进行冲压,使其发生塑性变形的方法。
通过调整模具的形状和尺寸,可以得到不同形状和尺寸的制品。
3.4 后处理在金属塑性成形完成之后,通常需要进行一些后处理工艺。
包括去除表面的氧化物、清洗、退火等。
后处理的目的是提高产品的表面质量和性能。
4. 常见的金属塑性成形方法4.1 冷镦成形冷镦成形是一种将金属材料通过冷镦机进行挤压、拉伸、弯曲等操作,使其发生塑性变形的方法。
金属塑性成形中的摩擦

三、边界摩擦 1.边界摩擦:介于干摩擦与流体摩擦之间的摩擦 边界摩擦: 边界摩擦 状态。 状态。 2.机理 机理 当坯料与工、模具间存在润滑物质时, 当坯料与工、模具间存在润滑物质时,随着 接触表面上压力的增加,坯料表面的部分“凸峰” 接触表面上压力的增加,坯料表面的部分“凸峰” 被压平,润滑剂或形成一层薄膜残留在接触面间, 被压平,润滑剂或形成一层薄膜残留在接触面间, 或被挤入附近“凹谷” 或被挤入附近“凹谷”,这时在挤去润滑剂的部 分出现金属间的接触,即发生粘着现象。 分出现金属间的接触,即发生粘着现象。 这时的摩擦力就是剪断表面粘着部分的剪切 抗力与边界膜分子间抗剪力之和。 抗力与边界膜分子间抗剪力之和。 在生产中,这三种摩擦状态不是截然分开的, 在生产中,这三种摩擦状态不是截然分开的,常 常会出现混摩擦状态。 常会出现混摩擦状态。
8.3 摩擦系数及其影响因素 一、摩擦系数 金属塑性成形中的摩擦系数, 金属塑性成形中的摩擦系数,通常是指工具与坯料接 触表面上的平均摩擦系数。 触表面上的平均摩擦系数。 根据库仑定律,摩擦系数可表达如下: 根据库仑定律,摩擦系数可表达如下:
T τ µ= = N σN 式中
或
τ = µσ N
τ − − 接触表面上的剪应力( 摩擦应力) 接触表面上的剪应力( 摩擦应力) σ N − 接触表面上的正压应力
二、流体摩擦 1.流体摩擦:被加工金属与工模具之间被润滑油 流体摩擦: 流体摩擦 膜所隔开时的摩擦。 膜所隔开时的摩擦。 2.机理 机理 润滑油膜将两摩擦面完全隔开, 润滑油膜将两摩擦面完全隔开,使得两摩擦面在 相互运动中不产生直接接触, 相互运动中不产生直接接触,摩擦发生在流体内 部分子之间。摩擦力的大小取决于流体的粘度、 部分子之间。摩擦力的大小取决于流体的粘度、 速度梯度等因素,因而流体摩擦的摩擦系数很小。 速度梯度等因素,因而流体摩擦的摩擦系数很小。
金属塑性成形原理知识点

弹性:材料的可恢复变形的能力。
塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。
塑性变形:材料在一定外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法。
塑性成形:金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法。
塑性成形的特点:组织性能好、材料利用率高、生产效率高、尺寸精度高、设备相对复杂。
冷态塑性变形的机理:晶内变形(滑移和孪生)和晶间变形(滑动和转动)滑移:晶体在力的作用下,晶体的一部分沿一定的晶面(滑移面)和晶向(滑移向)相对于晶体的另一部分发生相对移动或切变。
孪生:晶体在力的作用下,晶体的一部分沿一定的晶面(孪生面)和晶向(孪生向)发生均匀切边滑移面:滑移中,晶体沿着相对滑动的晶面。
滑移方向:滑移中,晶体沿着相对滑动的晶向。
塑性变形的特点:不同时性、不均匀性、相互协调性。
合金:合金是由两种或者两种以上的金属元素或者金属元素与非金属元素组成具有金属特性的物质。
合金分为固溶体(间隙固溶体、置换固溶体)和化合物(正常价、电子价、间隙化合物)固溶强化:以间隙或者置换的方式融入基体的金属所产生的强化。
弥散强化:若第二项是通过粉末冶金的方法加入而引起的强化。
时效强化:若第二项为力是通过对过饱和固溶体的时效处理而沉淀析出并产生强化。
冷态下的塑性变形对组织性能的影响:组织:晶粒形状发生变化,产生纤维组织晶粒内部产生亚晶结构晶粒位向改变:产生丝织构和板织构性能:产生加工硬化(随着塑性变形的程度的增加,金属的塑性韧性降低,强度硬度提高的现象)加工硬化的优点:变形均匀,减小局部变薄,增大成形极限缺点:塑性降低、变形抗力提高、变形困难。
热塑性变形的软化过程:动态回复、动态再结晶、静态回复、静态再结晶、亚动态再结晶金泰回复:从热力学角度,变形引起金属内能增加,而处于稳定的高自用能状态具有向变形前低自由能状态自发恢复的趋势静态再结晶:冷变形金属加热到更高温度后,在原来版型体中金属会重新形成无畸变的等轴晶直至完全取代金属的冷组织的过程。
材料成型工艺基础金属塑性成形

金属塑性成形技术不断创新,提高生产效率和产品质量
金属塑性成形技术与其他制造技术的融合,形成智能化制造体系
金属塑性成形技术应用于新领域,如航空航天、新能源等
金属塑性成形技术未来发展需要关注环保、可持续发展等方面
汇报人:
感谢观看
添加标题
分类:根据传动方式的不同,挤压机可分为液压挤压机和气压挤压机;根据用途的不同,可分为铝型材挤压机、铜材挤压机等
添加标题
应用范围:挤压机广泛应用于有色金属、黑色金属的挤压成型,如铝型材、铜管、钢管等
05
金属塑性成形质量控制
原材料控制
金属原材料的种类和规格
原材料的化学成分和物理性能
原材料的采购、检验和存储要求
太阳能领域:太阳能电池板、太阳能热利用等设备的制造
建筑领域
添加标题
添加标题
添加标题
添加标题
建筑装饰:金属塑性成形也可用于制造建筑装饰,如金属幕墙、金属吊顶和金属栏杆等。
建筑结构:金属塑性成形可用于制造建筑结构,如桥梁、高层建筑和塔式建筑等。
建筑门窗:金属塑性成形可用于制造建筑门窗,如推拉门、平开门和旋转门等。
06
金属塑性成形应用领域
汽车制造
汽车车身:金属塑性成形技术用于生产汽车车身的各个部件,如车门、车顶、车底等。
汽车零部件:金属塑性成形技术也用于生产汽车内部的零部件,如座椅框架、控制面板等。
汽车发动机:金属塑性成形技术可用于生产汽车发动机的各个部件,如气缸、曲轴等。
汽车底盘:金属塑性成形技术可用于生产汽车底盘的各个部件,如悬挂系统、刹车系统等。
质量策划:制定详细的质量计划,包括原材料采购、生产过程控制、产品检验等环节。
质量控制:通过各种检测手段和方法,对生产过程中的关键环节进行监控,确保产品质量稳定。
金属塑性加工的润滑(金属加工之二)

金属塑性加工的润滑(金属加工工艺的润滑-----之二)概述:金属塑性(成型)加工是指利用模具使金属在应力下塑性变形,如轧、拉拔、冲压、挤压等。
通常把金属变形用的润滑剂称为金属加工工艺用液体。
本节只叙述金属加工工艺用液的相关内容,关于金属成型设备,如:轧机、锻锤、压力机及油膜轴承的润滑,详见钢铁冶金机械的润滑。
一、金属成型加工工序的类别及金属塑性加工工艺用润滑剂的分类:1、金属成型加工工序的类别:金属成型过程分为初级成型和二次成型过程的,在成型加工中从熔融金属到成品零件的完成一般的加工工序是:铸模成型、热轧、热压、冷轧、拉拔或冷压。
热加工过程通常用于初级加工或大变形加工过程。
这部分过程通常包括:锻造、轧制、挤压、拉杆、拉丝、制造无缝管。
二次成型过程主要指薄板成型过程(含冲压),涉及一系列的零件形状,该过程可以按许多方式分类,在此不做详细说明。
2、金属成型润滑剂的分类:ISO于1986年通过IS06743/7,按油基、水基将加工液分为MH和MA两大类,又根据每类的化学组成、应用各分为8类和9类,共17类,该标准将目前众多的金属加工液的品种均可包含进去,我国已等效采用了该标准,制定了GB7631.5。
以下的分类是根据溶液介质状态进行分类。
1)、纯油型:包括矿物油、动植物油及其混合物,通常加入含硫、磷、氯的极压抗磨添加剂,具有良好的润滑性,用在负荷大的工序,但冷却性能较差。
从环保的角度,现在惰性极压添加剂(PEP)有取代含磷硫添加剂的趋势。
2)、可溶性油:含80%以上的油,加入乳化剂、添加剂和水,形成不透明的乳化液,胶体颗粒大于1微米,既具有纯油性润滑剂的良好润滑性,也具有水溶液的良好的冷却性,而且能减少着火的危险,使用时需稀释,比例大约是20:1,缺点是容易被细菌污染变质。
同时可用于有色金属的加工,PH值保持在8-9之间。
3)、半合成液:基本上是水溶液,含有少量的油(10-30%),乳化颗粒很少(0.05-1.0微米),半合成液化的冷却性能比可溶性油好但润滑性则不如可溶性油.外观与乳化颗粒大小有关,使用时需要稀释.4)、合成液:不含油的透明水溶液,添加剂加入量可达50%,使用时需要稀释成2-10%水溶液。
4 金属塑性成形中的摩擦

金属塑性成形原理
第三节 计算摩擦力的数ຫໍສະໝຸດ 表达式在计算金属塑性加工时的摩擦力时,常用以下三种条件: 一、 库伦摩擦条件 (滑动摩擦)
不考虑接触面上的粘合,认为摩擦符合库伦定律。 适合正压力不太大、变形量较小的的冷成形工序。不考虑接触表面的粘合 现象,认为单位面积上的摩擦力与接触面上的正应力成正比,即
坦光滑,都有不同程度的微观凸峰和凹坑,当微观粗糙的两表面接触时,一 个表面的凸峰可能会陷入另一表面的凹坑,产生机械咬合, 2. 分子吸附学说
对于非常光滑的接触面,认为摩擦是接触面上分子相互吸引的结果。接触 面越光滑,接触面积就越大,分子吸引力就越强,则摩擦力就越大。该学说 解释了凸凹学说无法解释的表面越光滑,摩擦力不降反升的现象。 3. 粘着理论
,变形也不均匀,产生不同的几个区域,形成鼓形。 而残余应力会使制品的尺寸和形状发生变化,缩短制品的使用寿命。
由于变形体内各部位的不均匀变形受 到变形体整体性限制,各部位不能独立地 改变自己的尺寸而不对相邻部分发生影响 ,这种应力被称为附加应力。
例如,利用凸肚轧辊轧制等厚矩形坯料 时,矩形坯料边缘部分变形程度小,中间部 分的变形程度大。
无论是机械传动、还是金属塑性成形,都存在有相对运动或有运 动趋势的两接触表面的摩擦。
分别称为动摩擦和静摩擦。 机械传动中主要为动摩擦,塑性成形中有动摩擦和静摩擦。 金属塑性成形中又分为内摩擦和外摩擦: 内摩擦是金属内晶界面或晶内滑移面产生的的摩擦; 外摩擦指变形金属与工具间接接触面上产生的摩擦。 这里研究的摩擦是指外摩擦。单位接触面上的摩擦力称为摩擦 切应力,其方向与质点运动方向相反,阻碍金属质点的流动。
金属塑性理论基础-可锻性及其影响因素

金属塑性成形理论基础可锻性及其影响因素1.金属的可锻性。
可锻性是指金属材料受压力加工而产生塑性变形的工艺性能,反映了金属材料获得优质锻件的难易程度。
2.可锻性的衡量塑 性变形抗力金属的可锻性常用金属的塑性和变形抗力来综合衡量。
金属的塑性高,变形抗力小,变形时不易开裂,且变形中所消耗的能量也少。
这样的金属可锻性良好;反之,可锻性差。
2.可锻性的衡量1)塑性及塑性指标:是指固体材料在外力作用下发生永久变形,而不破坏其完整性的能力。
%10000⨯-=L L L k δ%10000⨯-=A A A k ψ伸长率断面收缩率0L k L 0A FF LkA2)变形抗力:是指在一定的加载条件下、一定的变形温度下和一定的变形速度下,引起材料发生塑性变形的单位变形力。
2.可锻性的衡量1)塑性及塑性指标:是指固体材料在外力作用下发生永久变形,而不破坏其完整性的能力。
%10000⨯-=A A A k ψ伸长率断面收缩率%10000⨯-=L L L k δ3 金属可锻性影响因素在三向压应力状态,表现较高的塑性和较大的变形抗力; 在两向压应力和一向拉应状态时,表现出较低的塑性和较小的变形抗力。
(1)单相组织比多相组织塑性好,变形抗力也低。
(2)含有较多碳化物的合金, 可锻性差(3)铸态和粗晶组织可锻性差在一定温度范围内,随着变形温度的提高,可锻性提高。
一般变形速度区中,随着速度的增加,塑性下降,可锻性变差。
在高速变形区,随变形速度的增加,,可锻性反而变好。
5)应力状态的影响1)化学成分的影响2)组织的影响3)变形温度的影响4)变形速度的影响(1)纯金属的可锻性比合金的可锻性好;(2)合金成分越复杂,可锻性越差3 金属可锻性影响因素1)化学成分的影响钢中碳含量越高,塑性越差;纯金属的可锻性比合金的可锻性好;2)组织的影响单相组织比多相组织塑性好,变形抗力也低;含有较多碳化物的合金,可锻性差;铸态和粗晶组织可锻性差。
3)变形温度的影响提高加热温度有利于提高锻件的塑性、降低变形抗力。
金属塑性成形原理习题及答案(精编文档).doc

【最新整理,下载后即可编辑】《金属塑性成形原理》习题(2)答案一、填空题1. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示:,则单元内任一点外的应变可表示为=。
2. 塑性是指:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。
3. 金属单晶体变形的两种主要方式有:滑移和孪生。
4. 等效应力表达式:。
5.一点的代数值最大的__ 主应力__ 的指向称为第一主方向,由第一主方向顺时针转所得滑移线即为线。
6. 平面变形问题中与变形平面垂直方向的应力σ z = 。
7.塑性成形中的三种摩擦状态分别是:干摩擦、边界摩擦、流体摩擦。
8.对数应变的特点是具有真实性、可靠性和可加性。
9.就大多数金属而言,其总的趋势是,随着温度的升高,塑性提高。
10.钢冷挤压前,需要对坯料表面进行磷化皂化润滑处理。
11.为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物质的总称叫添加剂。
12.材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫超塑性。
13.韧性金属材料屈服时,密席斯(Mises)准则较符合实际的。
14.硫元素的存在使得碳钢易于产生热脆。
15.塑性变形时不产生硬化的材料叫做理想塑性材料。
16.应力状态中的压应力,能充分发挥材料的塑性。
17.平面应变时,其平均正应力m 等于中间主应力2。
18.钢材中磷使钢的强度、硬度提高,塑性、韧性降低。
19.材料经过连续两次拉伸变形,第一次的真实应变为1=0.1,第二次的真实应变为2=0.25,则总的真实应变 =0.35 。
20.塑性指标的常用测量方法拉伸试验法与压缩试验法。
21.弹性变形机理原子间距的变化;塑性变形机理位错运动为主。
二、下列各小题均有多个答案,选择最适合的一个填于横线上1.塑性变形时,工具表面的粗糙度对摩擦系数的影响 A 工件表面的粗糙度对摩擦系数的影响。
A、大于;B、等于;C、小于;2.塑性变形时不产生硬化的材料叫做 A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摩擦害处
模具摩损、工件划伤 消耗变形力、变形功 脱模困难、粘模 变形不均匀
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
摩擦优点
飞边 轧制
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
§7-1 摩擦特点
1)高压下的摩擦 2)高温下的摩擦 3)出现新问题: 有的滑动,有的粘着, 出现新表面,机理复杂
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
单向压缩比单向拉伸塑性好 挤压变形比拉拔变形属性好 压应力个数越高,塑性越好 它们的原因:拉应力应力集中
缺陷扩展塑性差;压应力 缺陷难扩展塑性好
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
第七章 金属塑性成形时的摩擦 与润滑
凡有相对运动的都有摩擦 镦粗 拔长 挤压 模锻 轧制
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
§7-2 摩擦分类
1、干摩擦 2、边界摩擦 3、流体摩擦
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
§7-3 摩擦机理
18’库伦 凹凸学说 分子学说
3种假设 1)库伦摩擦 2)最大切应力条件 3)摩擦力不变条件
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
3、应力状态的影响
挤压时为三向受压状态。拉拔时 为两向受压一向受拉的状态。压 应力的数量愈多,则其塑性愈好, 变形抗力增大;拉应力的数量愈 多,则其塑性愈差。
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
ห้องสมุดไป่ตู้五、变形速度
速度越大,摩擦系数越小
如:锤上镦粗(小)
压力机镦粗(大)
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
§7-5 摩擦系数的测定
一、夹钳-轧制法 二、圆环镦粗法
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
§7-6 润滑剂
3、钢中含铬、铝、钨、 钒就下降
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
,
合金组织的影响
1、纯金属、奥氏体可锻性好 2、碳化物较差 3、晶粒细小组织均匀的比铸态 柱状、晶粒粗大的药好
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
加工条件 1、温度 低碳钢 300°C 以上,t越高,塑
,
金属的塑性:3个指标 ψ、δ、α
变形抗力:变形过程中抵抗 工具的作用的力
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
,
影响可锻性因素: 1、化学成分 2、合金组织影响 3、加工条件
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
,
化学成分影响 1、一般纯铁可锻性比合金 2、纯铁比含碳量高的好
§7-4 影响摩擦系数的因素
一、金属化学成分 1)C越高,摩擦系数越小 2)材料越软,摩擦系数越大
二、工具表面状态 粗糙度
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
三、接触面单位压力 摩擦系数随应力增加而增加,但
是又趋于稳定
四、温度 摩擦系数开始随温度增加而增加,
但是到一定温度,又减少。
性越好,变形抗力越小 ===》可锻性越好 过高有缺陷或者报废
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
锻造温度(始锻温度、终锻温度) 由相图决定 始锻温度:固相线-200°C
(1100-1250°C) 终锻温度:800°C
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
2、速度
一方面由于变形速度的增大, 回复和再结晶不能及时克服加工硬 化现象,金属则表现出塑性下降、 变形抗力增大,可锻性变坏。
另一方面,金属在变形过程中, 消耗于塑性变形的能量有一部分转 化为热能,使金属温度升高(称为热 效应现象)。变形速度越大,热效应 现象越明显,使金属的塑性提高、 变形抗力下降(图中a点以后),可锻 性变好。
一、润滑剂要求 二、常用润滑剂 三、润滑剂中的添加剂
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
§7-7 润滑方法改进
1、特种流体润滑(拉拔时加润 滑流体)
2、表面处理(磷化+皂化) 3、表面镀层(镀铜)
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
作业:
1、为什么挤压比拉拔更能使金 属能发挥更大的塑性?
第六章 金属的可锻性
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
金属的可锻性: 衡量材料在压力加工时 获得优质零件难易程度
的工艺性能 好==》适合塑性加工
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
,
指标: 金属的塑性 和 变形抗力
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
2、画出夹钳-轧制法的受力图, 并写出摩擦系数计算公式。
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
复习
1、双向等应力拉伸板的应力和 应变的关系
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑
2、弯曲中的回弹
塑性成形和CAD金属可锻性,金属成形时摩擦和 润滑