大学课程生物化学第19章 糖酵解课件
合集下载
糖酵解ppt课件

你不需要记住任何代谢物的结构式
7
糖酵解第一阶段的反应
第一步反应——葡萄糖的磷酸化
己糖激酶或葡萄糖激酶 引发反应——ATP被消耗,以便后面得到更多
的ATP ATP的消耗是葡萄糖的磷酸化能够自发地进行
8
己糖激酶和葡萄糖激酶
糖酵解的第一步反应;ΔG 是一个大的负值
葡萄糖的磷酸化至少有两个意义:首先葡萄糖因此带上负电 荷,极性猛增,很难再从细胞中“逃逸”出去;其次葡萄糖 由此变得不稳定,有利于它在细胞内的进一步代谢。
4ADP + P 4ATP
0 ATP - 消耗 4 ATP - 产生 2 NADH - 产生
丙酮酸 (2 - 3C) (PYR)
GAP GAP
C-C-C C-C-C
C-C-C C-C-C (PYR) (PYR)
6
糖酵解的全部反应
休要惊慌!
你所要记忆的是总反应、三步 限速步骤、三种特异性抑制剂、 两步底物磷酸化反应和主要的调 控机制。
23
TIM具有独特的防止副反应发生 的机制,在反应中形成了磷酸烯 二醇中间物,这样的中间物如果 离开酶分子,在溶液中很容易释 放出磷酸根生成丙二醛,而能异 构化生成甘油醛-3-磷酸的并不 多。但是,在细胞内形成丙二醛 的可能性几乎为零,这是因为当 烯二醇中间物形成以后,酶的构 象发生变化,其分子上一段由10 个氨基酸残基组成的环像一个盖 子堵住了活性中心,致使烯二醇 中间物无法离开酶分子,只能异 构化成甘油醛-3-磷酸。当甘油 醛-3-磷酸形成以后,上述环消 失,产物得以释放。
☺如何证明第一类醛缩酶生成Schiff氏碱中间物?
18
19
20
反应5: 磷酸丙糖异构酶(TIM )
磷酸二羟丙酮转变成甘油醛-3-磷酸
7
糖酵解第一阶段的反应
第一步反应——葡萄糖的磷酸化
己糖激酶或葡萄糖激酶 引发反应——ATP被消耗,以便后面得到更多
的ATP ATP的消耗是葡萄糖的磷酸化能够自发地进行
8
己糖激酶和葡萄糖激酶
糖酵解的第一步反应;ΔG 是一个大的负值
葡萄糖的磷酸化至少有两个意义:首先葡萄糖因此带上负电 荷,极性猛增,很难再从细胞中“逃逸”出去;其次葡萄糖 由此变得不稳定,有利于它在细胞内的进一步代谢。
4ADP + P 4ATP
0 ATP - 消耗 4 ATP - 产生 2 NADH - 产生
丙酮酸 (2 - 3C) (PYR)
GAP GAP
C-C-C C-C-C
C-C-C C-C-C (PYR) (PYR)
6
糖酵解的全部反应
休要惊慌!
你所要记忆的是总反应、三步 限速步骤、三种特异性抑制剂、 两步底物磷酸化反应和主要的调 控机制。
23
TIM具有独特的防止副反应发生 的机制,在反应中形成了磷酸烯 二醇中间物,这样的中间物如果 离开酶分子,在溶液中很容易释 放出磷酸根生成丙二醛,而能异 构化生成甘油醛-3-磷酸的并不 多。但是,在细胞内形成丙二醛 的可能性几乎为零,这是因为当 烯二醇中间物形成以后,酶的构 象发生变化,其分子上一段由10 个氨基酸残基组成的环像一个盖 子堵住了活性中心,致使烯二醇 中间物无法离开酶分子,只能异 构化成甘油醛-3-磷酸。当甘油 醛-3-磷酸形成以后,上述环消 失,产物得以释放。
☺如何证明第一类醛缩酶生成Schiff氏碱中间物?
18
19
20
反应5: 磷酸丙糖异构酶(TIM )
磷酸二羟丙酮转变成甘油醛-3-磷酸
大学生物化学课件 糖的无氧糖酵解

CH3
乳酸
丙酮酸
目录
丙酮酸的氧化脱羧
丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。
总反应式:
NAD+ , HSCoA CO2 , NADH + H+
丙酮酸
乙酰CoA
丙酮酸脱氢酶复合体
目录
三羧酸循环
在线粒体中,乙酰CoA会进入三羧酸循 环,也称为柠檬酸循环,这是因为循环反应 中的第一个中间产物是一个含三个羧基的柠 檬酸。
净生成ATP数量:从葡萄糖开始 2×2-2= 2ATP
从糖原开始 2×2-1= 3ATP
终产物乳酸的去路
释放入血,进入肝脏再进一步代谢。 分解利用 乳酸循环(糖异生)
目录
乳糖的有氧氧化
目录
乳酸沿逆反應生成丙酮酸
COOH NAD+
NADH + H+ COOH
CHOH
C=O
CH3
乳酸脱氢酶(LDH)
磷酸丙糖异构酶
CHO CH OH
CH2 O P 3-磷酸甘油醛
目录
产能的方式和数量
方式:底物水平磷酸化
– 每分子葡萄糖能生成2分子磷酸丙糖,每分子磷酸丙 – 糖进行2次底物水平磷酸化生成2分子ATP,所以1mol葡萄
能生 – 成4mol ATP,而葡萄糖和6-磷酸果糖磷酸化时消耗2mol ATP。
磷酸丙糖 甘油醛
異構酶
NAD+
Pi
NADH+H+
3-磷酸甘油醛脫氫酶
1,3-二磷酸甘油酸
磷酸甘油酸激酶
ADP 底物水平磷酸化
ATP
3-磷酸甘油酸
磷酸甘油酸 變位酶
糖酵解PPT课件

糖酵解
1
新陈代谢
糖代谢
分解
合成
脂代谢 蛋白质代谢 核酸代谢
糖酵解
无氧
磷酸戊糖途径及其他
有氧
酵解〔乳酸+ATP〕 柠檬酸循环〔H2O+CO2+ATP〕 发酵〔酒精+CO2+ATP〕
2
糖酵解主要内容
• 概念表述〔识记〕
• 将葡萄糖降解为丙酮酸并伴随着ATP生成的一系列反响, 是生物体内普遍存在的葡萄糖降解的途径。该途径也称作 Embden-Meyethof-Parnas 途径,简称EMP途径。
糖原,淀粉
糖蛋白等 甘露糖
半乳糖
水果果糖
肌肉
肝脏
半乳糖-1-磷酸
果糖-1-磷酸
UDP-半乳糖
甘油醛
甘露糖-6-磷酸
UDP-葡萄糖 葡萄糖-1-磷酸
甘油
磷酸二羟丙酮
甘油-3-磷酸
葡萄糖
葡萄糖-6-磷酸
果糖-6-磷酸
甘油醛-3-磷酸
23
生成了具有高能磷酸基团转移势能的化合物
10
第七步反响:甘油酸-1,3-二磷酸的去磷酸化
糖酵解过程开场收获ATP
11
第八步反响: 甘油酸-3-磷酸的异构化
为进一步去磷酸化做准备
12
第九步反响: 甘油酸-2-磷酸的脱水
为进一步去磷酸化做准备
13
第十步反响: 烯醇式丙酮酸的去磷酸化
糖酵解过程最终收获ATP
• 无氧条件:留在细胞质,不彻底分解
• 发酵生成酒精:
酵母等
• C6H12O6 + 2ADP + 2Pi → 2C2H5O + 2CO2 + 2ATP + 2H2O
1
新陈代谢
糖代谢
分解
合成
脂代谢 蛋白质代谢 核酸代谢
糖酵解
无氧
磷酸戊糖途径及其他
有氧
酵解〔乳酸+ATP〕 柠檬酸循环〔H2O+CO2+ATP〕 发酵〔酒精+CO2+ATP〕
2
糖酵解主要内容
• 概念表述〔识记〕
• 将葡萄糖降解为丙酮酸并伴随着ATP生成的一系列反响, 是生物体内普遍存在的葡萄糖降解的途径。该途径也称作 Embden-Meyethof-Parnas 途径,简称EMP途径。
糖原,淀粉
糖蛋白等 甘露糖
半乳糖
水果果糖
肌肉
肝脏
半乳糖-1-磷酸
果糖-1-磷酸
UDP-半乳糖
甘油醛
甘露糖-6-磷酸
UDP-葡萄糖 葡萄糖-1-磷酸
甘油
磷酸二羟丙酮
甘油-3-磷酸
葡萄糖
葡萄糖-6-磷酸
果糖-6-磷酸
甘油醛-3-磷酸
23
生成了具有高能磷酸基团转移势能的化合物
10
第七步反响:甘油酸-1,3-二磷酸的去磷酸化
糖酵解过程开场收获ATP
11
第八步反响: 甘油酸-3-磷酸的异构化
为进一步去磷酸化做准备
12
第九步反响: 甘油酸-2-磷酸的脱水
为进一步去磷酸化做准备
13
第十步反响: 烯醇式丙酮酸的去磷酸化
糖酵解过程最终收获ATP
• 无氧条件:留在细胞质,不彻底分解
• 发酵生成酒精:
酵母等
• C6H12O6 + 2ADP + 2Pi → 2C2H5O + 2CO2 + 2ATP + 2H2O
《糖酵解TCA》PPT课件

己糖激酶特性:
① 需要二价金属离子如Mg2+或Mn2+作为辅助因 子,己糖激酶才有活性;
② 别构酶:G-6-P和ATP是其别构抑制剂; ③ 同工酶:分布很广,动植物及微生物细胞中
均有; ④ 专一性:不强,能催化许多六碳糖,如D-果
糖、D-甘露糖等,但对葡萄糖亲和力较大; ⑤ 糖酵解的第一个调节酶(限速酶)。
其中一部分通过
磷酸化储存在 ATP中。
重点: ①酵解途径。 ②三羧酸循环的途径。 难点: ①计算酵解途径中ATP的量及能量利用效率。 ②计算三羧酸循环中ATP的量及能量利用效率。 ③淀粉及糖原的合成。
一 糖的酶水解 二 葡萄糖的分解代谢 三 糖的合成代谢
一、糖的酶水解(消化)
细胞外的降解是一种水解作用 细胞内的降解则是磷酸解
23-磷酸甘油酸
F-1,6-BP
ATP Ala
22-磷酸甘油酸
+
- 2磷酸烯醇丙酮酸
丙酮酸激酶
2丙酮酸
通过酶的别构效应或共价 修饰实现活性的调节
1)己糖激酶
此酶催化的产物6-磷酸葡萄糖是它的变构抑制剂。
2)磷酸果糖激酶
ATP和柠檬酸是此酶的变构抑制剂。这个酶所催 化的反应需要ATP,但随着糖酵解的进行,ATP 逐渐积累,高浓度的ATP对此酶活性又有抑制作 用
葡萄糖的主要代谢途径
葡萄糖
糖异生
6-磷酸葡萄糖 (有氧或无氧)
(无氧) 丙酮酸
糖酵解
(有氧)
乳酸 乙醇
乙酰 CoA
磷酸戊糖 途径
三羧酸 循环
动物细胞
磷酸戊糖途径 糖酵解 糖异生
胞饮
中心体
丙酮酸氧化 三羧酸循环
细胞膜 细胞质 线粒体 高尔基体
生物化学第19章 糖酵解(共51张PPT)

是如何捕获这能量的?
糖酵解第一阶段反应
2、G-6-P异构成F-6-P
葡萄糖磷酸异构酶
糖酵解第一阶段反应
2、G-6-P异构成F-6-P
葡萄糖磷酸异构酶
催化该反应的PGI具有绝对的底物专一性和立体专一性, 一些C5磷酸代谢途径的中间物如赤藓糖-4-磷酸、景天庚酮
糖-7-磷酸等都是它的竞争性抑制剂。
糖酵解第一阶段反应
2、G-6-P异构成F-6-P
1、果糖
其它六碳糖进入糖酵解途径
2、半乳糖
半乳糖与葡萄糖结构极为相似,它进入糖酵 解途径需要5步反应,最后形成G-6-P而进入。
其它六碳糖进入糖酵解途径
2、半乳糖
其它六碳糖进入糖酵解途径
2、半乳糖血症
这是一种遗传病,不能将半乳糖转变成葡萄 糖。原因是缺乏半乳糖-1-磷酸尿苷酰转移酶, 不能使Gal-1-P转变成UDP-Gal。结果造成血 中Gal升高,进一步造成眼睛晶状体Gal升高, 从而引起晶状体混浊引起白内障。
迅速水解生成3-磷酸甘油酸。砷酸盐的加入使甘油酸-3-磷酸释 放的能量未能与磷酸化作用相偶联而被贮藏。
水解
+ 砷酸
1-砷酸-3-磷酸甘油酸
3-磷酸甘油酸
糖酵解第二阶段反应
7、1,3-二磷酸甘油酸转移高能键形成ATP
其它六Байду номын сангаас糖进入糖酵解途径
它们的活性受到变构效应物及酶共价修饰的调节。
先在己糖激酶下形成甘露糖-6-P,再经磷酸甘露糖异构酶催化形成F-6-P。
糖酵解作用的调节
3、已糖激酶HK和丙酮酸激酶PVK对糖酵解 的调节
不活跃的 磷酸化的丙酮酸激酶
H2O
ADP
减少 葡萄糖浓度
糖酵解第一阶段反应
2、G-6-P异构成F-6-P
葡萄糖磷酸异构酶
糖酵解第一阶段反应
2、G-6-P异构成F-6-P
葡萄糖磷酸异构酶
催化该反应的PGI具有绝对的底物专一性和立体专一性, 一些C5磷酸代谢途径的中间物如赤藓糖-4-磷酸、景天庚酮
糖-7-磷酸等都是它的竞争性抑制剂。
糖酵解第一阶段反应
2、G-6-P异构成F-6-P
1、果糖
其它六碳糖进入糖酵解途径
2、半乳糖
半乳糖与葡萄糖结构极为相似,它进入糖酵 解途径需要5步反应,最后形成G-6-P而进入。
其它六碳糖进入糖酵解途径
2、半乳糖
其它六碳糖进入糖酵解途径
2、半乳糖血症
这是一种遗传病,不能将半乳糖转变成葡萄 糖。原因是缺乏半乳糖-1-磷酸尿苷酰转移酶, 不能使Gal-1-P转变成UDP-Gal。结果造成血 中Gal升高,进一步造成眼睛晶状体Gal升高, 从而引起晶状体混浊引起白内障。
迅速水解生成3-磷酸甘油酸。砷酸盐的加入使甘油酸-3-磷酸释 放的能量未能与磷酸化作用相偶联而被贮藏。
水解
+ 砷酸
1-砷酸-3-磷酸甘油酸
3-磷酸甘油酸
糖酵解第二阶段反应
7、1,3-二磷酸甘油酸转移高能键形成ATP
其它六Байду номын сангаас糖进入糖酵解途径
它们的活性受到变构效应物及酶共价修饰的调节。
先在己糖激酶下形成甘露糖-6-P,再经磷酸甘露糖异构酶催化形成F-6-P。
糖酵解作用的调节
3、已糖激酶HK和丙酮酸激酶PVK对糖酵解 的调节
不活跃的 磷酸化的丙酮酸激酶
H2O
ADP
减少 葡萄糖浓度
生物化学 糖酵解途径 PPT课件

Glycolysis
Gluconeogenesis
1,3-BPG
3-Phosphoglycerate 2-Phosphoglycerate PEP
Pyruvate
线粒体中进行
胞液中进行
非糖物质(甘油、乳酸和某些生糖氨基酸)的异生途径 非糖物质的异生作用在肝脏和肾脏中进行
糖原磷酸化酶的调控机制
激素通过cAMP-蛋白激酶调节代谢示意图
戊糖磷 酸途径 戊糖磷酸 磷酸丙糖
酵解
丙酮酸
糖异生 生糖氨基酸
乙酰辅酶A
乳酸、乙醇
发酵
三羧酸循环
ATP
乙醛酸循环
代谢重点
CO2+H2 O
激素
受体 G蛋白 环化酶
细胞膜
ATP
R
cAMP+PPi
c
ATP
c
蛋白激酶 (无活性) 非磷酸化蛋白激酶
+
ADP
R
cAMP
蛋白激酶(有活性)
磷酸化蛋白激酶
内在蛋白质的磷酸化作用
改变细胞的生理过程
细胞膜
糖代谢总图
甘露糖 葡萄糖 果糖 各种脂类 其他生糖物质
储存性糖类
(糖原、淀粉等)
葡糖-6-磷酸 CO2+H2 O 核糖
7 水化
琥酰琥酸延胡索,苹果落在草丛中。
2b 水化
脱氢
3 氧化脱羧
5 底物水平磷酸化
4 氧化脱羧
糖酵解途径(EMP)
乙酰草酰成柠檬,柠檬易成α-酮; 琥酰琥酸延胡索,苹果落在草丛中。
柠檬酸循环糖
磷
途径的氧化阶段生成 NADPH的和释放CO2;
途径的非氧化阶段中基 团交换和重组的结果生 成磷酸果糖和3-磷酸甘 油醛,后者又可以转变 成磷酸果糖。
生物化学糖酵解PPT讲稿

• 总反应式:
Glc+2Pi+2ADP+2NAD+ 2丙酮酸+2ATP+2NADH+H++2H2O
它是氧化磷酸化和三羧酸循环的前奏。 是动物、植物、微生物细胞中葡萄糖分解产生能量 的共同代谢途径。
二、糖酵解途径的实验依据
• 酵母抽提液的发酵速度比完整酵母慢,且逐渐缓
慢直至停顿
• 如果加入无机磷酸盐,可以恢复发酵速度,但不
6-磷酸果糖1
葡萄糖 果糖
1,6-二磷酸果糖
3-磷酸甘油醛
磷酸二羟丙酮
丙酮酸
3-磷酸甘油酸磷酸
磷酸烯醇式丙酮酸
3-磷酸甘油酸
2-磷酸甘油酸
• 糖酵解可分为两个阶段:
1分子葡萄糖分解为2分子丙酮酸需经10步反应, 前5步反应为准备阶段,1Glc转变为2三碳物:磷 酸二羟丙酮和3-磷酸甘油醛,消耗2ATP。
葡萄糖激酶专一行强,Km值高,在肝脏中,当肝糖浓 度较高时,催化葡萄糖6-磷酸的合成,维持血糖的稳定.
糖酵解过程中的中间产物都带有磷酸基团,它们
的意义在于: 1.磷酸化导致负离子,使分子产生极性,使产物不
致流失到膜外; 2.磷酸基团起一种信号作用,易于被酶识别; 3.磷酸基团最终形成ATP,保存了能量。
2PEP→2Py
+2ATP
净增2ATP
除2分子ATP外,还生成2分子NADH
葡萄糖+2Pi+2ADP+2NAD+ 2丙酮酸+2ATP+2NADH+2H++2H2O
五五、、丙丙酮酮酸酸的的去去路路
无氧或 相对缺氧
乳酸脱氢酶
肌肉中: 丙酮酸
乳酸
乳酸发酵
Glc+2Pi+2ADP+2NAD+ 2丙酮酸+2ATP+2NADH+H++2H2O
它是氧化磷酸化和三羧酸循环的前奏。 是动物、植物、微生物细胞中葡萄糖分解产生能量 的共同代谢途径。
二、糖酵解途径的实验依据
• 酵母抽提液的发酵速度比完整酵母慢,且逐渐缓
慢直至停顿
• 如果加入无机磷酸盐,可以恢复发酵速度,但不
6-磷酸果糖1
葡萄糖 果糖
1,6-二磷酸果糖
3-磷酸甘油醛
磷酸二羟丙酮
丙酮酸
3-磷酸甘油酸磷酸
磷酸烯醇式丙酮酸
3-磷酸甘油酸
2-磷酸甘油酸
• 糖酵解可分为两个阶段:
1分子葡萄糖分解为2分子丙酮酸需经10步反应, 前5步反应为准备阶段,1Glc转变为2三碳物:磷 酸二羟丙酮和3-磷酸甘油醛,消耗2ATP。
葡萄糖激酶专一行强,Km值高,在肝脏中,当肝糖浓 度较高时,催化葡萄糖6-磷酸的合成,维持血糖的稳定.
糖酵解过程中的中间产物都带有磷酸基团,它们
的意义在于: 1.磷酸化导致负离子,使分子产生极性,使产物不
致流失到膜外; 2.磷酸基团起一种信号作用,易于被酶识别; 3.磷酸基团最终形成ATP,保存了能量。
2PEP→2Py
+2ATP
净增2ATP
除2分子ATP外,还生成2分子NADH
葡萄糖+2Pi+2ADP+2NAD+ 2丙酮酸+2ATP+2NADH+2H++2H2O
五五、、丙丙酮酮酸酸的的去去路路
无氧或 相对缺氧
乳酸脱氢酶
肌肉中: 丙酮酸
乳酸
乳酸发酵
大学生物化学课件 糖酵解途径

有氧氧化的反应过程
第一阶段:酵解途径
同糖无氧氧化的第一阶段。
第二阶段:
乳酸
NAD+
NADH+H+
丙酮酸进入线粒体氧化脱羧生成
乙酰CoA。
第三阶段:
乙酰CoA进入柠檬酸循环以及氧化
磷酸化生成ATP。
G(Gn) 胞液
丙酮酸
乙酰CoA
线粒体
TAC循环
[O]
NADH+H+
CO2
H2O
FADH2
由一分子H
1FADH2 1NADH
2.5 2.5
1 1.5 2.5
14或15
ATP
ADP
糖有氧氧化的产能途径
柠檬酸循环中4次脱氢反应产生大量的NADH+H+和FADH2 , 通过电子传递链和氧化磷酸化产生ATP。
线粒体内: 1分子NADH+H+ 的氢传递给氧时,可生成2.5个ATP。 1分子FADH2 的氢被氧化时,可生成1.5个ATP。 底物水平磷酸化,可生成1个ATP。
胞质中进入线粒体两种穿梭机制: ①α-磷酸甘油穿梭机制:α-磷酸甘油接受NADH,进入线粒体把氢
传给FAD生成FADH2 ,可生成1.5个ATP。 ②苹果酸-天冬氨酸穿梭机制:草酰乙酸接受NADH,生成苹果酸
进入线粒体脱氢给NAD+生产NADH和草酰乙酸,可生产2.5个 ATP。
问题2:一分子乳酸经过有氧氧化途径可净产 生多少分子ATP?
无氧氧化的反应过程
糖酵解分两个阶段 第一阶段
由葡萄糖分解成丙酮酸,称之为糖酵解 途径。 第二阶段
由丙酮酸转变成乳酸。
6-磷酸葡萄糖 6-磷酸果糖
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.2.2 糖酵解的化学历程
第一阶段①
① 磷酸化:G→G6P
己糖激酶
EMP途径中第一个限速酶
第一阶段①
激酶:一类从高能供体分子 (如ATP)转移磷酸基团到 特定靶分子(底物)的酶; 这一过程谓之磷酸化。
已糖激酶:催化从ATP转移 磷酸基团至各种六碳糖上去 的酶。
激酶都需要Mg2+作为辅助
因子。
第一阶段①
限速酶
特点
1、催化不可逆反应
2、催化效率低
3、受激素或代谢物的调节
4、常是在整条途径中催化初 始反应的酶
5、活性的改变可影响整个 反应体系的速度和方向
第一阶段①
二. 糖酵解的过程
第一阶段②
② 异构化:G6P → F6P
磷酸葡萄糖异构酶
第一阶段②
磷酸葡萄糖异构酶
第一阶段③ ③ 磷酸化:F6P → FDP
二、葡萄糖降解有多种去路
彻底氧化分解 CO2 + H2O
葡 萄
糖酵解
丙酮酸
糖
反应部位:
细胞质
氧气不足发酵
乳酸(动物) 乙醇(微生物) 其它有机物
• P.210,图8-3 • EMP途径分2个阶
段
第一阶段:耗能过程, 是磷酸丙糖生成过程 G → G3P:4-5步反应
第二阶段:产能过程, 是丙酮酸生成阶段 G3P→Pyr:5步反应
(一)己糖激酶
① 能量调节: 低能荷是激活剂 高能荷是抑制剂
己糖激酶
没有ATP,己糖激酶不能催化反应 但ATP过高,又抑制己糖激酶活性
② 物质调节 底物G是激活剂 产物G6P是抑制剂
(二)磷酸果糖激酶
① 能量调节: 低能荷是别构激活剂 高能荷是别构抑制剂
最关键性酶
② 物质调节 G、果糖是激活剂 柠檬酸、长链脂肪酸、NADH是抑制剂
途 径
乳酸
NAD+
3-磷酸甘油酸
NADH+H+
2-磷酸甘油酸
ATP ADP
丙酮酸
磷酸烯醇式丙酮酸
E3
8.2.3 糖酵解的调控
1. 控制部位 三个不可逆反应处,也叫“三个限速步”,由关键 性酶控制。
E1:己糖激酶
E2: 磷酸果糖激酶
E3: 丙酮酸激酶
2. 调控方式 EMP是分解糖、最终产能的途径,关键酶都是别构 酶,可通过能量和物质作用产生别构效应来调节 酶活性。
1,6-二磷酸果糖
2×3-磷酸甘油醛
第一阶段:耗能过程, 是磷酸丙糖生成过程 G → G3P:4-5步反应
第二阶段:产能过程, 是丙酮酸生成阶段 G3P→Pyr:5步反应
◎上述5步反应完成了糖酵解的准备阶段。
◎包括两个磷酸化步骤,由六碳糖裂解为两分子三碳糖,
最后都转变为3-磷酸甘油醛。
◎在准备阶段中,并没有从中获得任何能量,与此相反,
碘乙酸能抑制糖酵解。
第二阶段⑥
3-磷酸甘油醛脱氢酶
第二阶段⑦
⑦ 转化( 1,3-BPG → 3PG )
EMP中第一次底物水平磷酸化反应
◎底பைடு நூலகம்水平磷酸化:直接利用代谢中间物氧化释放 的能量产生ATP的磷酸化类型。
◎其中ATP的形成直接与一个代谢中间物(1,3-二 磷酸甘油酸)上的磷酸基团的转移相偶联。
◎ 这一步反应是糖酵解过程的第7步反应,也是糖 酵解过程开始收获的阶段。在此过程中产生了第一 个ATP。
第二阶段⑧
⑧ 转化(3PG → 2PG)
Mg2+
第二阶段⑧
⑨ 脱水(2PG → PEP)
氟化物能与Mg2+络 合而抑制此酶活性
Mg2+
这一步其实是分子内的氧化还原,使分子 中的能量重新分布,使能量集中,第二次 产生了高能磷酸键。
却消耗了两个ATP分子。
◎以下的5步反应包括氧化-还原反应、磷酸化反应。这些反
应正是从3-磷酸甘油醛提取能量形成ATP分子。
第二阶段⑥
⑥ 氧化(G3P → 1,3-BPG)
高能 磷酸键
◎EMP第一次产生高能磷酸键; ◎EMP中唯一的脱氢反应,并产生了还原剂NADH。 ◎该酶是巯基酶,所以它可被碘乙酸不可逆地抑制,所以
P
⑥脱氢
P OCH2O CH2O P
HO
OH
4 HHC O 5
HCOH
1,6-二磷 酸果糖
6
H2C O
P
磷酸甘油醛
OP
OH
C O ⑦产能 C O ⑧异构
HCOH
HCOH
OH C O ⑨脱水
HC O P
OH C O ⑩产能
CO P
OH CO CO
H2C O
1,3-二磷酸 甘油酸
P H2C O P
3-磷酸甘油酸
第一阶段③
磷酸果糖激酶
PFK是第二个限速酶,也是EMP途径的关键酶,其 活性大小控制着整个途径的进程。
磷酸果糖激酶是一种别构酶,是糖酵解三 个限速酶中催化效率最低的酶,因此被认为是 糖酵解作用最重要的限速酶。
第一阶段④
④ 裂解(FBP → DHAP + G3P)
醛缩酶
第一阶段⑤
⑤ 异构化(DHAP → G3P)
(三)丙酮酸激酶
① 能量调节: 低能荷是别构激活剂 高能荷是别构抑制剂
② 物质调节 FBP是第一激活剂,PEP是第二激活剂; 柠檬酸、长链脂肪酸、丙酮酸是抑制剂
糖酵解
• 糖酵解的概念 • 糖酵解的化学历程 • 糖酵解途径的调控 • 糖酵解的化学计量 • 糖酵解的生物学意义
• 丙酮酸的去路
一、名称和定义
8.2.1 糖酵解的概念
指葡萄糖通过一系列步骤,降解成丙酮酸 并生成ATP的过程。
糖酵解=Glycolysis=EMP途径
(Embden-Meyerhof Parnas pathway)
③ 调节物调节
2,6-二磷酸果糖(F-2,6-BP)是磷酸果糖激酶的激 活剂
PFK
F-6-P
PFK 2
FBP(F-1,6-BP)
激活
调节物F-2,6-BP
调节物2,6-二磷酸果糖(F-2,6-BP)是FBP的同分异构 体。当F6P↑时,PFK2催化产生调节物,调节物又去 激活PFK产生FBP,促进EMP途径的进行。
H2COOHH
2-磷酸甘油酸
CH2
磷酸烯醇 式丙酮酸
CH3
丙酮酸
E1
Glu
G-6-P
ATP ADP
F-6-P E2 F-1, 6-2P
ATP ADP
糖 酵
E1:己糖激酶
磷酸二羟丙酮 3-磷酸甘油醛
NAD+
解 E2: 磷酸果糖激酶
NADH+H+
的 代
E3: 丙酮酸激酶
1,3-二磷酸甘油酸
ADP
谢
ATP
第二阶段⑩
⑩ 转变(PEP→Pyr)
Mg2+ 或 K+
第三个限速酶 第二次底物水平磷酸化
①活化
G
CH2O P
O
P OCH2O CH2OH
②异构
HO
③活化
葡萄糖 HO
6-磷酸葡萄糖
OH 6-磷酸果糖
6
1
P OCH2O CH2O P
5 HO 2
④裂解
1
H2C O
P
+ 2 C O ⑤异构
4
OH
3
3
磷酸二羟丙酮 H2COH