用配方法把二次函数一般式转化为顶点式

合集下载

二次函数动点问题解答方法技巧含例解答案

二次函数动点问题解答方法技巧含例解答案

函数解题思路方法总结:⑴ 求二次函数的图象及x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大〔小〕值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和一点对称的点坐标,或及x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 及二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,提醒二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考察问题也是特殊图形,所以要把握好一般及特殊的关系;分析过程中,特别要关注图形的特性〔特殊角、特殊图形的性质、图形的特殊位置。

〕 动点问题一直是中考热点,近几年考察探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点5、〔湖北十堰市〕如图①, 抛物线32++=bx ax y 〔a ≠0〕及x 轴交于点A (1,0)和点B (-3,0),及y 轴交于点C .(1) 求抛物线的解析式;(2) 设抛物线的对称轴及x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?假设存在,请直接写出所有符合条件的点P 的坐标;假设不存在,请说明理由.(3) 如图②,假设点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第〔2〕问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM 为半径画弧,及对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,及对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线及对称轴交点即为所求点P。

二次函数的顶点式

二次函数的顶点式

二次函数的顶点式一、教学目标:22h)-=a(xc+bx+通过配方化成顶点式、经历把二次函数的一般式1y=axy+k 的过程,推导出顶点坐标公式,并求其开口方向、对称轴、顶点坐标与最值。

2、在探索过程中,学生经历了知识的产生过程,从而培养勇于探究、积极进取的精神。

二、重难点:重点:将二次函数一般式通过配方化成顶点式,并求其有关性质。

难点:运用配方法把二次函数一般式化成顶点式。

三、教学过程:(一)承上启下,自然导入通过提问的方式进行复习,讲完第3、4题后,引导学生回忆二次函数y=a(x2+kh)的性质,再出示:-(二)提出问题,启发思考2-4x+5化成y=y师:下面,我们思考一个问题:如何把二次函数=xa(x-2+k的形式? h)生:两边加上一次项系数一半的平方。

生:不对,这里只有一边。

生:加上并减去就可以了。

出示:师:看看,解答过程正确吗?12+1,这里是完全平方差公式。

y=(x-2) 学生很快发现了:应该是师:我们总结一下:二次项系数是1的二次函数应该如何配方?生:加上并减去一次项系数一半的平方。

(三)探索——我行师:如果二次项系数不是1呢?出示课件:学生进入了思考、讨论的状态……待学生完成后,出示:2-6x+5?3x师:我们把它这个结果化简一下,看能否得到y=学生马上运算,不一会儿就纷纷表示:不能。

师:错在哪里?生:没有把二次项系数提取出来,配方时二次项系数要先化为1。

师:对!二次项系数要先化为1,这是用配方法的前提条件。

做错的同学请重新做一遍。

接着出示:2-6x+5?y师:这个解答过程正确吗?我们把结果化简一下,看能否得到=3x 学生马上运算,不一会儿就纷纷表示:不能。

师:错在哪里?2。

1 没有乖以-生:运用乘法分配率时,3出示:2师:同学们,自己总结:在配方的时候应注意什么问题。

请做以下一道题:,又应该怎么做?改为-3师:这道题将系数3 学生进入了思考、讨论的状态……待学生完成后,出示:师:同学们,看看,这种做法有多少个错误。

一般式怎么转化为顶点式

一般式怎么转化为顶点式

一般式怎么转化为顶点式
二次函数一般式怎么化成顶点式:y=a(x+b/2a)²+(4ac-b²)/4a。

二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。

变量不同于未知数,不能说二次函数是指未知数的最高次数为二次的多项式函数。

未知数只是一个数(具体值未知,但是只取一个值),变量可在一定范围内任意取值。

在方程中适用未知数的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。

从函数的定义也可看出二者的差别。

二次函数一般式转化为顶点式

二次函数一般式转化为顶点式

二次函数一般式转化为顶点式
二次函数一般式和顶点式是解题时常用的两种方式,二次函数一
般式指的是$y=ax^2+bx+c$,而顶点式指的则是$y=a(x-h)^2+k$。

那么
接下来,我将为大家详细阐述如何将二次函数一般式转化为顶点式。

步骤一:求得抛物线的对称轴
首先,我们需要求出抛物线的对称轴,这可以通过使用$x=-
\frac{b}{2a}$来求得。

其中,$a$为一次项系数,$b$为二次项系数。

这个$x$值的坐标即为抛物线的对称轴。

步骤二:计算顶点坐标
接下来,我们可以使用已求得的对称轴坐标,代入二次函数一般
式所得到的顶点式中,即可得到顶点坐标。

顶点坐标可用$(h,k)$表示,其中$h$表示对称轴的横坐标,$k$表示抛物线的最低或最高点的纵坐标。

而$a$则相当于抛物线的开口方向以及大小。

步骤三:将顶点式写出
当我们求得了顶点坐标后,我们就能够将顶点式写出来了。

顶点
式即为$y=a(x-h)^2+k$,其中$a$、$h$、$k$的含义同上所述。

通过以上步骤,我们可以将二次函数一般式转化为顶点式,这样
有利于我们更好地研究和分析二次函数的图像,例如确定抛物线的开
口方向、最高点或最低点的坐标等信息。

因此,当我们使用二次函数时,掌握这种转化方法是非常必要的。

当然,在实际操作时,我们还需要多多练习、反复推导,才能更
好地掌握这种转化方法。

希望本文能够为大家提供一定的帮助。

二次函数的三种形式-初中数学习题集含答案

二次函数的三种形式-初中数学习题集含答案

二次函数的三种形式(北京习题集)(教师版)一.选择题(共3小题)1.(2018秋•丰台区期末)将二次函数241y x x =-+化成2()y a x h k =-+的形式为( ) A .2(4)1y x =-+B .2(4)3y x =--C .2(2)3y x =--D .2(2)3y x =+-2.(2017秋•房山区期中)将二次函数241y x x =--化为2()y x h k =-+的形式,结果为( ) A .2(2)5y x =++B .2(2)5y x =--C .2(2)5y x =-+D .2(2)5y x =+-3.(2016秋•昌平区期末)将二次函数表达式223y x x =-+用配方法配成顶点式正确的是( ) A .2(1)2y x =-+B .2(1)4y x =++C .2(1)2y x =--D .2(2)2y x =+-二.填空题(共7小题)4.(2019秋•朝阳区校级月考)将二次函数解析式2285y x x =-+配方成2()y a x h k =-+的形式为 . 5.(2017秋•怀柔区期末)将245y x x =-+化成2()y a x h k =-+的形式 .6.(2017秋•平谷区期末)将二次函数223y x x =-+化为2()y x h k =-+的形式,则h = ,k = . 7.(2018秋•朝阳区期中)将抛物线265y x x =-+化成2()y a x h k =--的形式,则hk = . 8.(2017秋•顺义区校级期中)若将二次函数223x x --配方为2()y x h k =-+的形式,则 . 9.(2016秋•通州区期末)把二次函数223y x x =-+化成2()y a x h k =-+的形式为 .10.(2016秋•房山区期中)若把函数265y x x =++化为2()y x m k =-+的形式,其中m 、k 为常数,则k m -= . 三.解答题(共5小题)11.(2019秋•通州区期末)把二次函数表达式24y x x c =-+化为2()y x h k =-+的形式. 12.(2018秋•门头沟区期末)已知二次函数243y x x =-+. (1)用配方法将其化为2()y a x h k =-+的形式; (2)在所给的平面直角坐标系xOy 中,画出它的图象.13.(2019秋•西城区校级期中)将下列各二次函数解析式化为2()y a x h k =-+的形式,并写出顶点坐标. (1)261y x x =-- (2)2246y x x =--- (3)213102y x x =++. 14.(2018秋•房山区期中)已知二次函数223y x x =--. (1)将223y x x =--化成2()y a x h k =-+的形式;(2)与y 轴的交点坐标是 ,与x 轴的交点坐标是 ; (3)在坐标系中利用描点法画出此抛物线.x ⋯⋯ y ⋯⋯(4)不等式2230x x -->的解集是 .15.(2018秋•西城区校级期中)已知二次函数21322y x x =-++(1)将21322y x x =-++成2()y a x h k =-+的形式:(2)在坐标系中利用描点法画出此抛物线x⋯⋯y⋯⋯(3)当33-<<时,观察图象直接写出函数值y的取值的范围.x(4)将该抛物线在x上方的部分(不包含与x的交点)记为G,若直线y x b=+与G只有一个公共点,则b的取值范围是.二次函数的三种形式(北京习题集)(教师版)参考答案与试题解析一.选择题(共3小题)1.(2018秋•丰台区期末)将二次函数241y x x =-+化成2()y a x h k =-+的形式为( ) A .2(4)1y x =-+B .2(4)3y x =--C .2(2)3y x =--D .2(2)3y x =+-【分析】先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式. 【解答】解:241y x x =-+2(44)14x x =-++- 2(2)3x =--.所以把二次函数241y x x =-+化成2()y a x h k =-+的形式为:2(2)3y x =--. 故选:C .【点评】本题考查了二次函数的三种形式.二次函数的解析式有三种形式: (1)一般式:2(0y ax bx c a =++≠,a 、b 、c 为常数); (2)顶点式:2()y a x h k =-+;(3)交点式(与x 轴)12:()()y a x x x x =--.2.(2017秋•房山区期中)将二次函数241y x x =--化为2()y x h k =-+的形式,结果为( ) A .2(2)5y x =++B .2(2)5y x =--C .2(2)5y x =-+D .2(2)5y x =+-【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式. 【解答】解:222414441(2)5y x x x x x =--=-+--=--. 故选:B .【点评】本题主要考查二次函数的三种形式的知识点,二次函数的解析式有三种形式:(1)一般式:2(0y ax bx c a =++≠,a 、b 、c 为常数);(2)顶点式:2()y a x h k =-+;(3)交点式(与x 轴)12:()()y a x x x x =--. 3.(2016秋•昌平区期末)将二次函数表达式223y x x =-+用配方法配成顶点式正确的是( ) A .2(1)2y x =-+B .2(1)4y x =++C .2(1)2y x =--D .2(2)2y x =+-【分析】利用配方法把一般式化为顶点式即可.【解答】解:2223(1)2y x x x =-+=-+. 故选:A .【点评】本题考查了二次函数的三种形式:一般式:2(y ax bx c a =++,b ,c 是常数,0)a ≠,该形式的优势是能直接根据解析式知道抛物线与y 轴的交点坐标是(0,)c ;顶点式:2()(y a x h k a =-+,h ,k 是常数,0)a ≠,其中(,)h k 为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为(,)h k ;交点式:12()()(y a x x x x a =--,b ,c 是常数,0)a ≠,该形式的优势是能直接根据解析式得到抛物线与x 轴的两个交点坐标1(x ,0),2(x ,0). 二.填空题(共7小题)4.(2019秋•朝阳区校级月考)将二次函数解析式2285y x x =-+配方成2()y a x h k =-+的形式为22(2)3y x =-- .【分析】先提出二次项系数,再加上一次项系数一半的平方,即得出顶点式的形式. 【解答】解:提出二次项系数得,22(4)5y x x =-+, 配方得,22(44)58y x x =-++-, 即22(2)3y x =--. 故答案为:22(2)3y x =--.【点评】本题考查了二次函数的三种形式,一般式:2y ax bx c =++,顶点式:2()y a x h k =-+;两根式:12()()y a x x x x =--.5.(2017秋•怀柔区期末)将245y x x =-+化成2()y a x h k =-+的形式 2(2)1y x =-+ .【分析】化为一般式后,利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式. 【解答】解:245y x x =-+,2441y x x ∴=-++, 2(2)1y x ∴=-+. 故答案为2(2)1y x =-+.【点评】本题考查了二次函数的三种形式,二次函数的解析式有三种形式:(1)一般式:2(0y ax bx c a =++≠,a 、b 、c 为常数); (2)顶点式:2()y a x h k =-+;(3)交点式(与x 轴)12:()()y a x x x x =--.6.(2017秋•平谷区期末)将二次函数223y x x =-+化为2()y x h k =-+的形式,则h = 1 ,k = . 【分析】利用配方法把函数解析式写成2(1)2y x =-+,进而可得答案. 【解答】解:22223212(1)2y x x x x x =-+=-++=-+, 则1h =,2k =, 故答案为:1;2;【点评】此题主要考查了二次函数的顶点式,关键是掌握顶点式:2()(y a x h k a =-+,h ,k 是常数,0)a ≠,其中(,)h k 为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为(,)h k .7.(2018秋•朝阳区期中)将抛物线265y x x =-+化成2()y a x h k =--的形式,则hk = 12 . 【分析】利用配方法把一般式化为顶点式,得到h 、k 的值,代入求值即可. 【解答】解:265y x x =-+2694x x =-+-2(3)4x =--, 3h ∴=,4k =, 3412hk ∴=⨯=.故答案是:12.【点评】本题考查的是二次函数的三种形式,灵活运用配方法把一般式化为顶点式是解题的关键.8.(2017秋•顺义区校级期中)若将二次函数223x x --配方为2()y x h k =-+的形式,则 2(1)4y x =-- . 【分析】根据配方法整理即可得解. 【解答】解:223y x x =--,2(21)31x x =-+--, 2(1)4x =--, 所以,2(1)4y x =--. 故答案为:2(1)4y x =--.【点评】本题考查了二次函数的三种形式,熟练掌握配方法是解题的关键.9.(2016秋•通州区期末)把二次函数223y x x =-+化成2()y a x h k =-+的形式为 2(1)2y x =-+ . 【分析】根据配方法的操作整理即可得解. 【解答】解:223y x x =-+, 2212x x =-++,2(1)2x =-+, 所以,2(1)2y x =-+. 故答案为:2(1)2y x =-+.【点评】本题考查了二次函数的三种形式,主要利用了配方法.10.(2016秋•房山区期中)若把函数265y x x =++化为2()y x m k =-+的形式,其中m 、k 为常数,则k m -= 1- . 【分析】用配方法将抛物线的一般式转化为顶点式,比较系数,可知m 、k 的值,再代入k m -,计算即可求解. 【解答】解:265y x x =++2(69)95x x =++-+ 2(3)4x =+-,所以,3m =-,4k =-, 所以,4(3)1k m -=---=-. 故答案为:1-.【点评】本题考查了二次函数的三种形式,熟练掌握配方法的步骤是解题的关键. 三.解答题(共5小题)11.(2019秋•通州区期末)把二次函数表达式24y x x c =-+化为2()y x h k =-+的形式.【分析】本题是将一般式化为顶点式,由于二次项系数是1,只需加上一次项系数的一半的平方来凑成完全平方式. 【解答】解:2224444(2)4y x x c x x c x c =-+=-++-=-+-,即2(2)4y x c =-+-. 【点评】本题考查了二次函数解析式的三种形式: (1)一般式:2(0y ax bx c a =++≠,a 、b 、c 为常数); (2)顶点式:2()y a x h k =-+;(3)交点式(与x 轴)12:()()y a x x x x =--.12.(2018秋•门头沟区期末)已知二次函数243y x x =-+.(1)用配方法将其化为2()y a x h k =-+的形式; (2)在所给的平面直角坐标系xOy 中,画出它的图象.【分析】(1)利用配方法把二次函数解析式化成顶点式即可; (2)利用描点法画出二次函数图象即可. 【解答】解:(1)243y x x =-+22224223(2)1x x x =-+-+=--; (2)2)(2)1y x =--,∴顶点坐标为(2,1)-,对称轴方程为2x =.函数二次函数243y x x =-+的开口向上,顶点坐标为(2,1)-,与x 轴的交点为(3,0),(1,0),∴其图象为:【点评】本题考查了二次函数的配方法,用描点法画二次函数的图象,掌握配方法是解答此题的关键. 13.(2019秋•西城区校级期中)将下列各二次函数解析式化为2()y a x h k =-+的形式,并写出顶点坐标. (1)261y x x =-- (2)2246y x x =---(3)213102y x x =++. 【分析】(1)加上一次项系数6的一半的平方是9,再减去9; (2)提取二次项2-后,再加一次项系数2的一半的平方1,再减去1; (3)提取二次项系数12后,再加上一次项系数6的一半的平方9,再减去9. 【解答】解:(1)222616991(3)10y x x x x x =--=-+--=--,∴顶点( 3,10- );(2)2222462(211)62(1)4y x x x x x =---=-++--=-+-, 顶点(1-,4- ); (3)22211111310(699)10(3)2222y x x x x x =++=++-+=++, 顶点(3-,112). 【点评】本题考查了把二次函数的一般式化为顶点式,解题思路为:化为一般式后,利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式. 14.(2018秋•房山区期中)已知二次函数223y x x =--. (1)将223y x x =--化成2()y a x h k =-+的形式;(2)与y 轴的交点坐标是 (0,3)- ,与x 轴的交点坐标是 ; (3)在坐标系中利用描点法画出此抛物线.x ⋯⋯ y ⋯⋯(4)不等式2230x x -->的解集是 .【分析】(1)利用配方法将一次项和二次项组合,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.(2)将已知方程转化为两点式方程即可得到该抛物线与x 轴的交点坐标;令0x =即可得到该抛物线与y 轴交点的纵坐标;(3)将抛物线223y x x =--上的点的坐标列出,然后在平面直角坐标系中找出这些点,连接起来即可; (4)结合图象可以直接得到答案.【解答】解:(1)222232131(1)4y x x x x x =--=-+--=--,即2(1)4y x =--;(2)令0x =,则3y =-,即该抛物线与y 轴的交点坐标是(0,3)-, 又223(3)(1)y x x x x =--=-+,所以该抛物线与x 轴的交点坐标是(3,0)(1-,0). 故答案是:(0,3)-;(3,0)(1-,0);(3)列表:x⋯ 1-0 1 2 3 ⋯ y⋯3-4-3-⋯图象如图所示:;(4)如图所示,不等式2230x x -->的解集是1x <-或3x >. 故答案是:1x <-或3x >.【点评】本题考查了二次函数的三种形式、二次函数的对称性和由函数图象确定坐标、直线与图象的交点问题,综合体现了数形结合的思想.15.(2018秋•西城区校级期中)已知二次函数21322y x x =-++(1)将21322y x x =-++成2()y a x h k =-+的形式: (2)在坐标系中利用描点法画出此抛物线x ⋯⋯ y⋯ ⋯ (3)当33x -<<时,观察图象直接写出函数值y 的取值的范围 52y -< .(4)将该抛物线在x 上方的部分(不包含与x 的交点)记为G ,若直线y x b =+与G 只有一个公共点,则b 的取值范围是 .【分析】(1)用配方法把二次函数一般式写成顶点式.(2)由顶点式得对称轴为直线1x =,列表描点画图象.(3)观察图象,在31x -<<时,y 随x 的增大而增大,随后y 减小,结合计算可得3x =-时y 的值,即求出y 的范围.(4)利用抛物线方程和直线方程联立求出两函数图象只有一个交点时b 的值.由于抛物线只取x 轴上方的部分,故需求直线经过抛物线与x 轴的交点时b 的值,再根据直线的平移得到相应b 的范围.【解答】解:(1)222221313131131(2)(211)(1)(1)22222222222y x x x x x x x x =-++=--+=--+-+=--++=--+(2)列表得:用描点画图象得:(3)3x =-时,6y =-,3x =时,0y =当31x -<<时,y 随x 的增大而增大,且1x =时,2y =故答案为:52y -<(4)21322y x b y x x =+⎧⎪⎨=-++⎪⎩ 整理得:232x b =- 当方程只有一个解时,即对应的两函数图象只有一个交点320b ∴-=,解得:32b = 把1x =-,0y =代入y x b =+,得1b =把3x =,0y =代入y x b =+,得3b =-3b ∴-时,直线y x b =+与G 没有交点;31b -<时,直线y x b =+与G 有一个交点;312b <<时,直线y x b =+与G 有两个交点;32b =时,直线y x b =+与G 有一个交点,32b >,直线y x b =+与G 无交点. 故答案为:31b -<或32b =【点评】本题考查了二次函数的图象与性质,一次函数与二次函数的交点问题,根据图象利用数形结合是解决此类问题的关键.。

二次函数一般式转化为顶点式公式

二次函数一般式转化为顶点式公式

二次函数一般式转化为顶点式公式
二次函数是一种经常在高中数学课程中出现的函数形式,也被
广泛应用于各个领域中的实际问题。

在解决问题时,有时我们需
要将给定的二次函数从一般式转换为顶点式公式。

本文将介绍如
何将二次函数从一般式转化为顶点式公式。

一般式的二次函数公式可以表示为:y = ax^2 + bx + c,其中a、b、c为常数,且a不为零。

顶点式公式的形式为:y = a(x-h)^2 + k,其中(h, k)表示顶点的
坐标。

要将一般式转化为顶点式,我们需要完成以下步骤:
步骤1:求出顶点的横坐标 h。

公式 h = -b / (2a) 可以用来计算
顶点的横坐标。

通过将一般式中的b和a代入该公式,我们可以
得到顶点的横坐标。

步骤2:将顶点的横坐标h 代入一般式,求出顶点的纵坐标k。

将顶点的横坐标 h 代入一般式中的 x,计算得到顶点的纵坐标 k。

步骤3:用顶点的坐标 (h, k) 和 a 的值代入顶点式公式中,得到相应的顶点式。

通过以上三个步骤,我们可以将一般式的二次函数转化为顶点式公式。

这种转化的好处是,顶点式直观地表示了二次函数的顶点,并且更容易分析函数的整体形状。

希望本文的内容能够帮助你理解如何将二次函数从一般式转化为顶点式公式。

如果有任何问题或需要进一步的解释,请随时告诉我。

二次函数怎么化顶点式

二次函数怎么化顶点式

二次函数怎么化顶点式二次函数是数学中非常重要的一个概念,常常应用于物理、经济等各个领域中。

在解决二次函数问题的过程中,化顶点式是一个非常关键的步骤,通过化顶点式我们可以更好地解决问题。

下面就为大家介绍二次函数怎么化顶点式。

一、二次函数的一般式二次函数的一般式是:$y = ax^2 + bx + c$在这个公式中,a,b,c分别代表二次函数的系数,而x,y分别代表函数中的变量和函数值。

二、二次函数的顶点式二次函数的顶点式表示会更加的简洁,它的公式为:$y = a(x - h)^2 + k$其中,a,h,k都是常数,而且a不能为0,他们的意义如下:1.参数a决定了二次函数的开口方向和大小2.参数(h,k)代表了函数的顶点坐标二次函数的顶点式更加的直观,易于我们使用,接下来我们就一起来看看怎么将一般式转化为顶点式。

三、二次函数如何化顶点式1.先确定二次函数的系数当我们面对一个二次函数问题时,我们需要先确定其系数a,b,c的值,也就是将一般式中的值代进去计算。

2.将一般式的b项移到另一边,通过配方得出顶点式我们可以通过配方来完成顶点式的化简,具体的顺序如下:1. 将公式中的b项移到等式的另一侧$y - c = ax^2 + bx$2. 确定一般式中$x^2$项的系数$y - c = a(x^2 + \frac{b}{a}x)$3.将$x^2$项的系数提取出来,即$a$$y - c = a[(x+\frac{b}{2a})^2 - \frac{b^2}{4a^2}]$4.利用完全平方公式进行拆分$y - c = a(x+\frac{b}{2a})^2 - (\frac{b^2}{4a})$5.将式子进行移项和合并$y = a(x+\frac{b}{2a})^2 + (\frac{4ac-b^2}{4a})$6.整理出顶点式的形式$y = a(x - \frac{-b}{2a})^2 + (\frac{4ac-b^2}{4a})$通过以上步骤,我们就将一般式化简成了顶点式,也就是说,我们已经找到了二次函数的顶点坐标和开口方向,从而更容易地解决问题。

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)函数解题思路方法总结:⑴ 求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax2+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax2+bx+c�va≠0�w本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、抛物线上动点5、(湖北十堰市)如图①,已知抛物线y?ax2?bx?3(a≠0)与x轴交于点A(1,0)和点B (-3,0),与y轴交于点C. (1) 求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 x 12 1 3
2x 12 1
归纳:若a≠1是,先 提公因式,再进行 配方。
四、课堂小结
1、这节课学了哪些内容? ___________________________
2、这节课的易错点有哪些?____________________
3、这节课所学知识,对今后的学习生活有何帮助? _______________
四人小组抽奖 奖品:发言积极;讨论踊跃
1
2
3
4
5
6
7
8
9
Hale Waihona Puke 101112
二次函数y=ax2+bx+c 转化为顶点式
y
x
一、【初学】温故知新
1.填空: (1)、x2 2x 1 (x _1__)2 (2)、 x2 6x 9 (x _3__)2
(3)、x2 4x __4_ (x _2_)2 (4)、x2 3x 4__/_9 (x __2_/_3_)2
结束寄语
• 探索是数学的生命线.
二、【深学】小结归纳
例题1:将二次函数 y x2 2x 2 化为顶点式,并指出顶

点坐标
y x2 2x 2
x2 2x 11 2 配方:加上再减去一项
x 1 2 1 2 整理:前三项化为完全平 方
x 12 1
∴ 顶点坐标为(-1,1)
一、【初学】温故知新
2.填表:
抛物线
开口 顶点 对称轴 草图
y (x 2)2 3 向上 (2,-3) X=2
y (x 1)2 1 向上 (-1,1) X=-1
一、【初学】情境引入
3.思考: 如何把二次函数 y x2 4x 1 转化为顶点式 y a(x h)2 k
归纳:若a=1时,直接 用配方法转化
二、【深学】小结归纳
例题2:采用配方法,将二次函数 y 2x2 4x 3 化为顶点
式 y a(x h)2 k ,并指出其开口方向、顶点坐标、对称轴。
y 2x2 4x 3
2(x2 2x) 3 提取:二次项系数
2 x2 2x 11 3 配方:加上再减去一项
相关文档
最新文档