最新《二次函数顶点式》教学设计汇编

合集下载

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。

《二次函数》教案

《二次函数》教案

《二次函数》教案《二次函数》教案篇一通过学生的讨论,使学生更清楚以下事实:(1)分解因式与整式的乘法是一种互逆关系;(2)分解因式的结果要以积的形式表示;(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;(4)必须分解到每个多项式不能再分解为止。

活动5:应用新知例题学习:P166例1、例2(略)在教师的`引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

活动6:课堂练习1.P167练习;2. 看谁连得准x2-y2 (x+1)29-25 x 2 y(x -y)x 2+2x+1 (3-5 x)(3+5 x)xy-y2 (x+y)(x-y)3.下列哪些变形是因式分解,为什么?(1)(a+3)(a -3)= a 2-9(2)a 2-4=( a +2)( a -2)(3)a 2-b2+1=( a +b)( a -b)+1(4)2πR+2πr=2π(R+r)学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

活动7:课堂小结从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

活动8:课后作业课本P一⑦0习题的第1、4大题。

学生自主完成通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

板书设计(需要一直留在黑板上主板书)壹伍.4.1提公因式法例题1.因式分解的定义2.提公因式法《二次函数》教案篇二教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

二次函数的顶点式

二次函数的顶点式

二次函数的顶点式一、教学目标:22h)-=a(xc+bx+通过配方化成顶点式、经历把二次函数的一般式1y=axy+k 的过程,推导出顶点坐标公式,并求其开口方向、对称轴、顶点坐标与最值。

2、在探索过程中,学生经历了知识的产生过程,从而培养勇于探究、积极进取的精神。

二、重难点:重点:将二次函数一般式通过配方化成顶点式,并求其有关性质。

难点:运用配方法把二次函数一般式化成顶点式。

三、教学过程:(一)承上启下,自然导入通过提问的方式进行复习,讲完第3、4题后,引导学生回忆二次函数y=a(x2+kh)的性质,再出示:-(二)提出问题,启发思考2-4x+5化成y=y师:下面,我们思考一个问题:如何把二次函数=xa(x-2+k的形式? h)生:两边加上一次项系数一半的平方。

生:不对,这里只有一边。

生:加上并减去就可以了。

出示:师:看看,解答过程正确吗?12+1,这里是完全平方差公式。

y=(x-2) 学生很快发现了:应该是师:我们总结一下:二次项系数是1的二次函数应该如何配方?生:加上并减去一次项系数一半的平方。

(三)探索——我行师:如果二次项系数不是1呢?出示课件:学生进入了思考、讨论的状态……待学生完成后,出示:2-6x+5?3x师:我们把它这个结果化简一下,看能否得到y=学生马上运算,不一会儿就纷纷表示:不能。

师:错在哪里?生:没有把二次项系数提取出来,配方时二次项系数要先化为1。

师:对!二次项系数要先化为1,这是用配方法的前提条件。

做错的同学请重新做一遍。

接着出示:2-6x+5?y师:这个解答过程正确吗?我们把结果化简一下,看能否得到=3x 学生马上运算,不一会儿就纷纷表示:不能。

师:错在哪里?2。

1 没有乖以-生:运用乘法分配率时,3出示:2师:同学们,自己总结:在配方的时候应注意什么问题。

请做以下一道题:,又应该怎么做?改为-3师:这道题将系数3 学生进入了思考、讨论的状态……待学生完成后,出示:师:同学们,看看,这种做法有多少个错误。

人教版九年级数学上册第二十二章二次函数大单元教学设计

人教版九年级数学上册第二十二章二次函数大单元教学设计
1.基础知识巩固:
(1)完成课本第22章练习题1、2、3,要求学生熟练掌握二次函数的定义、图像性质、顶点式与标准式的转换。
(2)利用图形计算器或计算机软件,绘制几个典型二次函数的图像,观察并分析开口方向、顶点、对称轴、最值等性质。
2.实际问题应用:
(3)结合生活实际,编写一道关于二次函数的应用题,要求学生将实际问题抽象为二次函数模型,并求解。
人教版九年级数学上册第二十二章二次函数大单元教学设计
一、教学目标
(一)知识与技能
1.让学生掌握二次函数的定义,能够准确地识别和描述二次函数的一般形式,即f(x) = ax^2 + bx + c(a≠0)。
2.使学生理解二次函数图像的基本性质,包括开口方向、对称轴、顶点、最小(大)值等,并能够利用这些性质解决相关问题。
2.教学方法:采用情境导入法,通过生活实例激发学生的兴趣,引导学生从实际问题中发现数学规律。
3.教学步骤:
a.展示生活中抛物线运动的图片或视频,让学生观察并描述其运动轨迹。
b.学生分享观察到的运动轨迹特点,教师引导总结出抛物线的一般形式。
c.提问:“这些运动轨迹都可以用一个数学模型来描述,你们知道是什么吗?”由此引出二次函数的定义。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使他们认识到数学在现实生活中的广泛应用和价值。
2.通过二次函数的学习,让学生感受到数学的对称美和秩序美,培养他们的审美情趣。
3.引导学生树立正确的价值观,认识到数学知识的学习不仅是为了应对考试,更重要的是为了解决实际问题,为我国的社会发展做出贡献。
3.教学步骤:
a.将学生分成若干小组,每组分配一个讨论题目,如二次函数的性质、图像特点等。

华师大版九下《二次函数》精品教案

华师大版九下《二次函数》精品教案

华师大版九下《二次函数》精品教案一、教学内容本节课选自华师大版九年级下册《二次函数》章节,详细内容包括:二次函数的定义、图像及性质,二次函数的顶点式和一般式,二次函数的图像变换,以及二次函数在实际问题中的应用。

二、教学目标1. 理解二次函数的定义,掌握二次函数的图像及性质。

2. 学会使用顶点式和一般式表示二次函数,并能进行图像变换。

3. 能够运用二次函数解决实际问题,提高数学应用能力。

三、教学难点与重点重点:二次函数的定义、图像及性质,二次函数的顶点式和一般式。

难点:二次函数图像的变换,以及在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:直尺、圆规、三角板。

五、教学过程1. 实践情景引入:通过展示一个抛物线的运动轨迹,让学生观察并思考,激发兴趣。

2. 知识讲解:a. 引入二次函数的定义,解释二次项、一次项和常数项。

b. 介绍二次函数的图像及性质,通过示例让学生理解并掌握。

c. 讲解二次函数的顶点式和一般式,并进行图像变换的推导。

3. 例题讲解:讲解典型例题,分析解题思路,强调注意事项。

4. 随堂练习:布置一些典型练习题,让学生巩固所学知识。

5. 小组讨论:针对实际问题,让学生分组讨论,提出解决方案。

六、板书设计1. 二次函数的定义、图像及性质。

2. 二次函数的顶点式和一般式。

3. 图像变换的推导过程。

4. 典型例题及解题思路。

七、作业设计1. 作业题目:a. 求下列二次函数的顶点坐标和对称轴:y = x^2 4x + 3。

b. 将二次函数y = (x 1)^2 + 2向左平移3个单位,求新函数的表达式。

c. 某抛物线的顶点坐标为(2, 3),且过点(0, 6),求抛物线的解析式。

2. 答案:a. 顶点坐标:(2, 1),对称轴:x = 2。

b. 新函数的表达式:y = (x 4)^2 + 2。

c. 抛物线的解析式:y = (x 2)^2 3。

八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入、例题讲解和随堂练习,使学生掌握了二次函数的定义、图像及性质。

数学《二次函数》优秀教案精选

数学《二次函数》优秀教案精选

数学《二次函数》优秀教案精选一、教学内容本节课选自人教版初中数学教材八年级下册第十七章《二次函数》。

具体内容包括:二次函数的定义、图像及性质,以及二次函数在实际问题中的应用。

二、教学目标1. 知识与技能:使学生掌握二次函数的定义,能熟练绘制二次函数的图像,了解二次函数的性质,并能运用二次函数解决实际问题。

2. 过程与方法:通过观察、分析、归纳等过程,培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,增强学生的合作意识和探究精神。

三、教学难点与重点1. 教学难点:二次函数图像的性质及其应用。

2. 教学重点:二次函数的定义、图像及性质。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、铅笔、橡皮。

五、教学过程1. 导入:通过展示生活中抛物线的实例,如拱桥、篮球投篮等,引出本节课的研究对象——二次函数。

2. 新课导入:讲解二次函数的定义,板书定义并解释相关术语。

3. 图像绘制:引导学生通过观察、分析、归纳,掌握二次函数图像的绘制方法。

5. 例题讲解:选取具有代表性的例题,讲解解题思路,强调关键步骤。

6. 随堂练习:布置相关练习题,让学生当堂巩固所学知识,及时解答学生疑问。

7. 实践应用:设计实际问题,让学生运用二次函数知识解决问题,提高学生的应用能力。

六、板书设计1. 二次函数定义2. 二次函数图像绘制方法3. 二次函数图像性质4. 例题及解题步骤5. 随堂练习题七、作业设计1. 作业题目:y = x^2,y = 2x^2,y = x^2某公园的拱桥形状为抛物线,桥的最高点距离水面6米,桥长20米,求桥的最低点距离水面的高度。

2. 答案:(1)略(2)最低点距离水面4米八、课后反思及拓展延伸1. 课后反思:本节课学生掌握了二次函数的定义、图像及性质,但部分学生在绘制图像和解决实际问题时仍存在困难,需要在今后的教学中加强训练。

2. 拓展延伸:引导学生探究二次函数与一次函数、反比例函数的关系,为学习高中阶段的导数知识打下基础。

九年级数学上册《二次函数与一元二次方程》教案、教学设计

九年级数学上册《二次函数与一元二次方程》教案、教学设计
2.教学过程:
(1)教师给出练习题,要求学生在规定时间内完成。
(2)学生独立完成练习题,教师巡回指导,解答学生的疑问。
(3)教师挑选部分学生的作业进行展示、讲解,总结解题方法。
(五)总结归纳
1.教学内容:总结二次函数与一元二次方程的知识点,梳理知识结构。
2.教学过程:
(1)教师引导学生回顾本节课所学内容,总结二次函数与一元二次方程的知识点。
(2)学生分享自己的学习心得,交流学习过程中遇到的困难和解决方法。
(3)教师总结归纳,强调重点,指出易错点,为课后复习提供指导。
五、作业布置
为了巩固学生对二次函数与一元二次方程知识点的掌握,提高学生的实际应用能力,特布置以下作业:
1.请同学们结合课堂所学,完成课后练习题第1、2、3题,加深对二次函数与一元二次方程概念的理解。
二、学情分析
九年级的学生已经具备了一定的数学基础,对一次函数、一元一次方程等知识点有了深入的理解和掌握。在此基础上,学生对二次函数与一元二次方程的学习将更加顺利。然而,由于二次函数与一元二次方程的概念较为抽象,学生在理解上可能会遇到一定的困难。此外,学生在解决实际问题时,可能会对知识点的运用感到困惑。
2.从生活中的实际问题出发,选取一个案例,将其抽象为二次函数与一元二次方程模型,并求解。要求撰写解题过程,明确解题思路和方法。
3.小组合作,共同完成一道拓展题。题目如下:
拓展题:已知抛物线y = ax^2 + bx + c(a≠0)的图象,求该抛物线与x轴的交点坐标。
要求:各小组通过讨论、探究,给出至少两种解题方法,并在课堂上分享解题过程和心得。
4.培养学生面对困难、挑战的精神,鼓励学生勇于尝试、不断探索,树立克服困难的信心。

2024年华师大版九下《二次函数》教案

2024年华师大版九下《二次函数》教案

2024年华师大版九下《二次函数》教案一、教学内容本节课选自2024年华师大版九年级下册《二次函数》章节。

详细内容包括:二次函数的定义与性质,二次函数的图像,二次函数的顶点式及其应用,二次方程与二次不等式的联系,以及二次函数在实际问题中的应用。

二、教学目标1. 理解二次函数的定义,掌握二次函数的性质及其图像特点。

2. 学会使用二次函数顶点式解析二次函数,并能解决相关问题。

3. 能够建立二次方程与二次不等式之间的关系,运用二次函数解决实际问题。

三、教学难点与重点教学难点:二次函数顶点式的应用,二次方程与二次不等式的联系。

教学重点:二次函数的定义,性质,图像及其在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备,投影仪,黑板。

2. 学具:直尺,圆规,铅笔,橡皮,草稿纸。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示二次函数在实际问题中的应用,如抛物线运动,引导学生思考二次函数的基本概念。

2. 基本概念讲解(15分钟)讲解二次函数的定义,性质,图像,让学生掌握二次函数的基本知识。

3. 例题讲解(15分钟)选取典型例题,通过讲解与解析,让学生学会使用二次函数顶点式解决问题。

4. 随堂练习(10分钟)设计相关练习题,让学生及时巩固所学知识。

5. 知识拓展(5分钟)引导学生探讨二次方程与二次不等式之间的关系。

六、板书设计1. 二次函数定义2. 二次函数性质3. 二次函数图像4. 二次函数顶点式5. 二次方程与二次不等式的关系七、作业设计1. 作业题目:(1)求下列二次函数的顶点坐标:y = x^2 4x + 3(2)解下列二次方程:x^2 5x + 6 = 0(3)已知二次函数y = x^2 + 2x + 3,求该函数的最大值。

答案:(1)顶点坐标为(2,1)(2)解为x = 2或x = 3(3)最大值为4八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解二次函数在实际问题中的应用,激发学生的学习兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数y =(x -h)2
+k 的图象
学习目标:
1.会画二次函数的顶点式y =a (x -h)2+k 的图象; 2.掌握二次函数y =a (x -h)2+k 的性质; 3.会应用二次函数y =a (x -h)2+k 的性质解题. 重点:会画二次函数的顶点式y =a (x -h)2+k 的图象.
难点:掌握二次函数a (x -h)2+k 的性质。

一、课前小测
1.函数24(2)y x =-的图象开口向______,顶点是_________,对称轴是_______, 当x =_________时,有最_________值是_________.
2.写出一个顶点坐标为(0,-3),开口向下抛物线解析式__________________. 写出一个顶点坐标为(-3,0),开口向下抛物线解析式__________________.
二、探索新知
1、问题一:提出问题,创设情境
画出函数y =-12 (x +1)2-1的图象,指出它的开口方向、对称轴及顶点、最值
观察图象得:
(1)函数y =-12 (x +1)2-1的图象开口向______,顶点是_________,对称轴
是_______,当x=_________时,有最_________值是_________.
(2)把抛物线y=-1
2x
2向_______平移______个单位,再向_______平移_______
个单位,就得到抛物线y=-1
2(x+1)
2-1.
3、问题二:应用法则探索解题.
例1.顶点坐标为(-2,3),开口方向和大小与抛物线y=1
2x
2相同的解析式为
()
A.y=1
2(x-2)
2+3 B.y=
1
2(x+2)
2-3
C.y=1
2(x+2)
2+3 D.y=-
1
2(x+2)
2+3
三、作业:A组:
1.填表
2
3.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.
B组:
1.抛物线y=-3 (x+4)2+1中,的图象开口向______,顶点是_________,对称轴是_______,当x=_______时,y有最________值是________.
2.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________。

3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示()
A B C D
4.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为___________________________.(任写一个)。

相关文档
最新文档