用顶点式求二次函数解析式

合集下载

初三数学二次函数解析式的求法

初三数学二次函数解析式的求法
单击添加副标题
二次函数解析式的 求法
单击此处添加文本具体内容,简明扼要地阐述你的观点
顶点式ya2xbxc(a0)交点式
ya(xm)2n(a0)顶 点 坐 m,n标 )
ya(xx )(xx )(a0)
1
2
回味
知识点:
条件


抛y物 a一线 .x2二一次般函式b数x解析c式常见
的三种表示形式:
与X轴交于两x点,0( )(x ,0)
(3)将抛物线作怎样的一次 平移,才能使它与坐标轴仅有 两个交点,并写出此时抛物线 的解析式。
A -1 o -2.5D
B 5x
C
讲例:
4、如图,抛物线y=ax2+bx+c与直线y=kx+4相
交于A(1,m),B(4,8)两点,与x轴交于原
点及C点,(1)求直线和抛物线的解析式;(2)
在抛物线上是否存在点D,使S△OCD= 3 S△OCB,若 存在,求出点D;若不存在,请说明理由2 。
点拔: 设一次函数的解析式为y=kx+n
则:
n 1 2k n
5
∴y=3x-1
∵抛物线y=x2+bx+c的顶点坐标为
(b, 4cb2 )
24
4c b2 4
3 b 1 2
4 2b c 5
5 2
试一试:
点拔:(1)
1 已知:抛物线y=ax2+bx+c过点(-5,0)、(0, ) (1,6)三点,直线L的解析式为y=2x-3,(1)求抛物线 的解析式;(2)求证:抛物线与直线无交点;(3)若与直 线L平行的直线与抛物线只有一个交点P,求P点的坐标。
∴y=a(x-3)2+1=ax2-6ax+9a+1

初中数学-二次函数的解析式

初中数学-二次函数的解析式

∴a(2-1)2-2=3,得:a=5,
∴解析式为y=5(x- 1)2-2
注:此题运用了二次函数的顶点式
2.已知抛物线过三点:A(-1,2),B(0,1), C(2,-7),求二次函数的解析式.
解:设二次函数的解析式为: y ax bx 1
2
a b 1 2 由已知得: 4a 2b 1 7
∵抛物线过点C(1,2)
注:此题运用了
二次函数的双根式
解析式为: 1 y ( x 1)(x 3) 2
∴ a (1 1)(1 3) 2
4a 2 1 a 2
3 3.已知抛物线和y轴的交点(0,- 2 )
和x 轴的一个交点(-1,0),对称轴是x =1. (1)求图象是这条抛物线的二次函数的解析式; (2)判断这个二次函数是有最大值还是有最小值, 并求出这个最大值或最小值
2 2
y
A O
B
x
公式:AB | x2 x1 | |a|
b 2 4ac |a| |a|
y ax2 bx c, (a 0)
6.抛物线y=-2x2+4x+1 在 x轴上截得的线段长度

6
.
y
16 8 6 解: AB |a| 2
A O B
当x
b 1 1时 1 2a 2 2
y最小值
4ac b 2 4a
1 3 4 ( ) (1) 2 2 = 2 =-2 1 4 2
b 1 当x 1时函数有最小值 1 2a 2 2 1 2 3 y最小值 1 1 2 2 2
x1, x2 为方程: a(x-x1)(x-x2)=0的两个 根,即抛物线与x的两个交点的横坐标,

用顶点式确定二次函数表达式

用顶点式确定二次函数表达式

(2,5) (0,1)
知识迁移
抛物线 y 2 x bx c(a≠0),经过向左平移 3个单位,向下平移2个单位,得到新的顶点为 (-2,3);求抛物线原解析式。
2
知识迁移
已知抛物线C1的解析式为 y 2 x 4 x 5
2
抛物线C2与抛物线C1关于x轴对称,则抛物线C2的解 析式为:_________________ _; 若抛物线C3关于抛物线C1 y轴对称,则抛2 9 8
知识迁移
1.已知二次函数的对称轴为直线x=2,函数的最小值 是-3,且过(0,1),求二次函数解析式?
知识迁移
2.已知抛物线对称轴是直线x=2,且经过(3,1) 和(0,-5)两点,求二次函数的关系式。
知识迁移
3.抛物线如图所示,请求出抛物线的解析式。
综合应用
要修建一个圆形喷水池,在池中心竖直安 装一根水管.在水管的顶端安装一个喷水 头,使喷出的抛物线形水柱在与池中心的 水平距离为1m处达到最高,高度为3m,水柱 落地处离池中心3m,水管应多长?
解:由题可得, 点(1,3)是图中这段抛 y B(1,3) 物线的顶点.因此可设这段抛物线 3 对应的函数是 A 2 y=a(x-1)2+3 (0≤x≤3) ∵这段抛物线经过点(3,0) 3 1 2 a= - ∴ 0=a(3-1) +3 解得: 4 因此抛物线的解析式为: 2 1 3 O y=-4(x-1)2+3 (0≤x≤3) 当x=0时,y=2.25 答:水管长应为2.25m.
数形结合 双壁辉映
曾鹏志
顶点式确定二次函数
知识回顾
用待定系数法求二次函数的解析式 常见类型
本节重点 运用
1.顶点式:y a( x h) k (a 0)

用顶点式求二次函数解析式

用顶点式求二次函数解析式

一、 用顶点式求二次函数解析式。

例题:已知抛物线的顶点为(1,3)经过点(3,0) 解:设抛物线的解析式为k h x a y +-=2)(把顶点(1,3)代入得:3)1(2+-=x a y把点(3,0)代入得:03)13(2=+-a 解得:43-=a ∴抛物线解析式为:3)1(432+--=x y练习1:已知抛物线的顶点为(-1,4)经过点(2,-5)2.已知抛物线y =ax 2经过点A (1,1).(1)求这个函数的解析式;3.已知二次函数的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.4.抛物线y =ax 2+bx +c 的顶点坐标为(2,4),且过原点,求抛物线的解析式.5.已知二次函数为x =4时有最小值 -3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式.6.抛物线y =ax 2+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.7.把抛物线y =(x -1)2沿y 轴向上或向下平移后所得抛物线经过点Q (3,0),求平移后的抛物线的解析式.8.已知二次函数m x x y +-=62的最小值为1,求m 的值.9.已知抛物线经过A (0,3),B (4,6)两点,对称轴为x=53 ,求这条抛物线的解析式; 10. 若一抛物线与x 轴两个交点间的距离为8,且顶点坐标为(1, 5),则它们的解析式为 。

二、 用三个点求二次函数解析式 例题:二次函数的图象经过(-1,10),(1,4),(2,7) 解:设二次函数的解析式为:c bx ax y ++=2 把点(-1,10),(1,4),(2,7)代入得: ⎪⎩⎪⎨⎧=++=++=+-724410c b a c b a c b a 解得:⎪⎩⎪⎨⎧=-==532c b a ∴抛物线解析式为:5322+-=x x y 练习11:二次函数的图象经过(0,0),(-1,-1),(1,9) 12.已知二次函数y=ax 2+bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式。

二次函数--三种解析式

二次函数--三种解析式
-3 o 1 B 5 x
二次函数y=ax2+bx+c的图象如图所示 三: 二次函数 的图象如图所示 -1 对称轴x=_____ 对称轴 顶点坐标:______ 顶点坐标 (-1,-2) -1 时 有最 有最___值是 值是___ 当x=___时,y有最 小 值是 -2 函数值y<0时,x的取值范围 -3<x<1 的取值范围_______ 函数值y<0时,x的取值范围_______ 或 函数值y>0时,x的取值范围x<-3或x>1 的取值范围_______ 函数值 时 的取值范围 函数值y=0时,x的取值范围 -3或1 的取值范围_______ 函数值 时 的取值范围 或 的增大而增大. 当x_______时,y随x的增大而增大 时 随 的增大而增大 >-1
2
(3)某抛物线 y = ax + bx + c 如图3 如图3示,求此 抛物线的解析式. 抛物线的解析式.
2
y y
y
-1 −2 -2
0
−1
3 图1
3
x
-1 − 1
1 0
1
x
-1
1
−1 0
1 -1
-1
1 −1
2
2
x
图2
图3
6、小结归纳 (1)待定系数法 (2)二次函数解析式的不同形式: 二次函数解析式的不同形式: ①一般式: y = ax2 + bx + c 一般式: ②顶点式: 顶点式: 顶点坐标(-h 顶点坐标(-h,k) (-
解:∵A(1,0),对称轴为 , ,对称轴为x=2 轴另一个交点C应为 ∴抛物线与x轴另一个交点 应为(3,0) 抛物线与 轴另一个交点 应为( , ) ∴设其解析式为y=a(x-1)(x-3) 设其解析式为 ∵B(0,-3) ( , ) ∴-3 = a(0-1)(0-3) ∴a= -1 ∴y= -(x-1)(x-3)

求二次函数解析式

求二次函数解析式

回头看了一眼,朝独自跪在那里的人最后投去悲哀的一瞥。因为挨了四鞭,那人的背还在火辣辣的痛,他的膝盖也跪疼了。不过,这个老人会带着尊严死去,或至少是抱着这样的想法死去。 (节选自《偷书贼》第七章P265~267,略有删改) 致中国读者的信 亲爱的中国读者: ? 谢谢您阅读了这
本《偷书贼》。 ? 我小时候长听故事。我的爸爸妈妈经常在厨房里,把他们小时候的故事告诉我的哥哥、两个姐姐和我,我听了非常着迷,坐在椅子上动都不动。他们提到整个城市被大火笼罩,炸弹掉在他们家附近,还有童年时期建立的坚强友谊,连战火、时间都无法摧毁的坚强友谊。 ? 其中有
个故事,一直留在我心里…… ? 我妈妈小时候住在慕尼黑近郊。她说她六岁的时候,有一天听见大街上传来一阵嘈杂的声音。她跑到外面一看,发现有一群犹太人正被押解到附近的达豪集中营。队伍的最后是一位精疲力竭的老人,他已经快跟不上队伍的脚步了。有个男孩子看到老人的惨状后,飞
奔回家拿了一片面包给这位老人。老人感激地跪下来亲吻这位少年的脚踝。结果有个士兵发现了,走过来抢走了老人手上的面包,并用力鞭打了老人。随后士兵转身追赶那个男孩,把男孩也打了一顿。在同一时刻里,伟大的人性尊贵与残酷的人类暴力并存。我认为这恰好可以阐释人性的本质。 ?
听了这些故事之后,我一直想把它们写成一本小书。结果就是《偷书贼》的诞生。而《偷书贼》这本书对我的意义,远远超过我当初的想象。对我来讲,《偷书贼》就是我生命的全部。不管别人怎么看这本书,不管评价是好是坏,我内心明白,这是我最好的一次创作。身为作者,当然会为自己“最
好的一次创作”深感满意。再次感谢您,并致以诚挚的祝福!? ?马克斯/苏萨克 2007年7月27日 ? 【背景概览】 5.《致中国读者的信》放在《偷书贼》(孙张静/译,代谢联合出版公司2014年版)正文之前。你认为作者写这封信有哪些用意?(3分) 答: 6.阅读《致中国读者的信》,从下列选

求二次函数解析式几种常用方法

求二次函数解析式几种常用方法

求二次函数的解析式的几种方法山东省沂水县高桥镇初级中学 王瑞辉二次函数解析式的求法是二次函数知识的重点,也是中考必考内容。

现在举例,说明求二次函数解析式的常用方法,希望对同学们学习有所帮助。

一、二次函数常见的三种表达式:(1)一般式:y ax bx c a =++≠20();(2)交点式:y a x x x x =--()()12,其中点(,)()x x 1200,,为该二次函数与x 轴的交点;(3)顶点式:()2()0y a x h k a =-+≠,其中点(),h k 为该二次函数的顶点。

二、利用待定系数法求二次函数关系式(1)、已知二次函数图象上任意三个点的坐标,可设一般式求二次函数的关系式。

例1、已知抛物线2y ax bx c =++,经过点(2,1)、(-1,-8)、(0,-3).求这个抛物线的解析式. 解:根据题意得421,8,3,a b c a b c c ++=⎧⎪-+=-⎨⎪=-⎩ 解之得1,4,3,a b c =-⎧⎪=⎨⎪=-⎩所以抛物线为243;y x x =-+-说明:用待定系数法求系数a b c 、、需要有三个独立条件,若给出的条件是任意三个点,可设解析式为2(0)y ax bx c a =++≠,然后将三个点的坐标分别代入,组成一次方程组用加减消元法来求解.(2)、已知抛物线与x 轴的两个交点坐标和图象上另一个点坐标,可设交点式求二次函数的关系式。

若知道二次函数与x 轴有两个交点()()1200x x ,,,,则相当于方程20ax bx c ++=有两个不相等的实数根12x x ,,从而212()()ax bx c a x x x x ++=--,故二次函数可以表示为12()()(0)y a x x x x a =--≠.例2、已知一个二次函数的图象经过点A (-1,0),B (3,0),C (0,-3)三点.求此二次函数的解析式.解:根据题设,设此二次函数的解析式为(1)(3)y a x x =+-.又∵该二次函数又过点(0,-3), ∴(01)(03)3a +-=-. 解得1a =.因此,所求的二次函数解析式为(1)(3)y x x =+-,即223y x x =--.说明:在把函数与x 轴的两个交点坐标代入12()()(0)y a x x x x a =--≠求值时,要注意正确处理两个括号内的符号.(3)、已知抛物线顶点和另外一个点坐标时,设顶点式y =a (x -h )2+k (a ≠0)例3、对称轴与y 轴平行的抛物线顶点是(-2,-1),抛物线又过(1,0),求此抛物线的函数解析式。

求二次函数解析式的五种常见类型

求二次函数解析式的五种常见类型
A B = A N 2 + B N 2 = 4 2 + 4 2 = 42 ,
因此AM+OM的最小值为4 2 .
返回
方法2 利用顶点式求二次函数解析式
4.在平面直角坐标系内,二次函数图象的顶点为A(1,
-4),且过点B(3,0),求该二次函数的解析式.
解:∵二次函数图象的顶点为A(1,-4),
∴设y=a(x-1)2-4.
x2+4x. 解得a=- .
解:把A(-2,-4),O(0,0),B(2,0)三
故y=(x-1)2-4,即y=x2-2x-3.
点的坐标代入y=ax +bx+c, 方法1 利用一般式求二次函数解析式
由函数的基本形式求二次函数解析式)
2
当x=0时,y=-1;
4 a- 2 b+ c= - 4, a = - 1 , 即y=-x2+4x-3.
解法三:∵抛物线的顶点坐标为(-2,4),与x轴的一个交点坐标为(1,0), 解法二:设抛物线对应的函数解析式为y=a(x+2)2+4,将点(1,0)的坐标代入得0=a(1+2)2+4,解得a=- .
设抛物线的解析式为y=a(x-2)2,
OM的最小值. 由函数的基本形式求二次函数解析式)
解法二:设抛物线对应的函数解析式为y=a(x+2)2+4,将点(1,0)的坐标代入得0=a(1+2)2+4,解得a=- .
返回
2.一个二次函数,当自变量x=-1时,函数值y=2; 当x=0时,y=-1;当x=1时,y=-2.那么这个 二次函数的解析式为____y_=__x_2-__2_x_-__1____.
返回
3.如图,在平面直角坐标系中,抛 物线y=ax2+bx+c经过A(-2, -4),O(0,0),B(2,0)三点.
组,得 (2)将抛物线C1向左平移3个单位长度,可使所得的抛物线C2经过坐标原点.如图,所求抛物线C2对应的函数解析式为y=x(x+4),即y=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 用顶点式求二次函数解析式。

例题:已知抛物线的顶点为(1,3)经过点(3,0) 解:设抛物线的解析式为k h x a y +-=2
)( 把顶点(1,3)代入得:3)1(2+-=x a y 把点(3,0)代入得:03)13(2
=+-a
解得:43
-
=a ∴抛物线解析式为:3)1(4
32
+--=x y
练习1:已知抛物线的顶点为(-1,4)经过点(2,-5)
2.已知抛物线y =ax 2
经过点A (1,1).(1)求这个函数的解析式;
3.已知二次函数的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.
4.抛物线y =ax 2
+bx +c 的顶点坐标为(2,4),且过原点,求抛
物线的解析式.
5.已知二次函数为x =4时有最小值 -3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式.
6.抛物线y =ax 2
+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.
7.把抛物线y =(x -1)2
沿y 轴向上或向下平移后所得抛物线经过点Q (3,0),求平移后的抛物线的解析式.
8.已知二次函数m x x y +-=62
的最小值为1,求m 的值.
9.已知抛物线经过A (0,3),B (4,6)两点,对称轴为x=5
3 ,
求这条抛物线的解析式;
10. 若一抛物线与x 轴两个交点间的距离为8,且顶点坐标为(1, 5),则它们的解析式为 。

二、 用三个点求二次函数解析式
例题:二次函数的图象经过(-1,10),(1,4),(2,7) 解:设二次函数的解析式为:c bx ax
y ++=2
把点(-1,10),(1,4),(2,7)代入得:
⎪⎩⎪⎨
⎧=++=++=+-724410c b a c b a c b a 解得:⎪⎩⎪
⎨⎧=-==5
32c b a ∴抛物线解析式为:5322
+-=x x y
练习11:二次函数的图象经过(0,0),(-1,-1),(1,9)
12.已知二次函数y=ax 2
+bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式。

相关文档
最新文档