中考数学总复习课时练习题(41课时)课时3.整式及其运算
中考数学考点总动员系列 专题03 整式及其运算(含解析)-人教版初中九年级全册数学试题

考点三:整式及其运算聚焦考点☆温习理解 一、单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的次数,数字因数叫做单项式的系数.单独的数、字母也是单项式. 二、多项式:由几个单项式组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个多项式的次数,其中不含字母的项叫做常数项. 三.整式:单项式和多项式统称为整式. 四.同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项. 五.幂的运算法则(1)同底数幂相乘:a m ·a n=am +n (m ,n 都是整数,a ≠0)(2)幂的乘方:(a m )n =a mn(m ,n 都是整数,a ≠0) (3)积的乘方:(ab)n =a n ·b n(n 是整数,a ≠0,b ≠0) (4)同底数幂相除:a m ÷a n=a m -n (m ,n 都是整数,a ≠0)六.整式乘法单项式与单项式相乘,把系数、同底数幂分别相乘作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式. 单项式乘多项式:m (a +b )=ma+mb ;多项式乘多项式:(a +b )(c +d )=ac+ad+bc+bd 七.乘法公式(1)平方差公式:(a+b)(a-b)=a 2-b 2(2)完全平方公式:(a ±b)2=a 2±2ab+b 2. 八.整式除法单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加. 名师点睛☆典例分类考点典例一、整式的加减运算【例1】(2017某某某某第3题)下面各式运算正确的是( ) A .2(a ﹣1)=2a ﹣1 B .a 2b ﹣ab 2=0 C .2a 3﹣3a 3=a 3D .a 2+a 2=2a 2【答案】D .考点:整式的加减.【点睛】整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果. 【举一反三】1.(2017某某六盘水第3题)下列式子正确的是( ) A.7887m n m n B.7815m n mn C.7887m n n mD.7856m n mn【答案】C.试题分析:选项C 、利用加法的交换律,此选项正确;故选C. 考点:整式的加减.2. (2017某某某某第5题)若a ﹣b=2,b ﹣c=﹣3,则a ﹣c 等于( )A .1B .﹣1C .5D .﹣5【答案】B 【解析】试题解析:∵a ﹣b=2,b ﹣c=﹣3, ∴a ﹣c=(a ﹣b )+(b ﹣c )=2﹣3=﹣1, 故选B考点:整式的加减.考点典例二、同类项的概念及合并同类项【例2】(2017某某省某某一中汝州实验中学期中模拟)已知单项式a-1y 3与3xy 4+b是同类项,那么a,b 的值分别是( )A. 2,1;B. 2,-1 ;C. -2,-1 ;D. -2,1; 【答案】B. 【解析】试题分析:解:单项式xa ﹣1y 3与3xy 4+b 是同类项,得:11{43a b -=+=,解得:2{ 1a b ==-,故选B .考点:同类项.【点睛】(1)判断同类项时,看字母和相应字母的指数,与系数无关,也与字母的相关位置无关,两个只含数字的单项式也是同类项;(2)只有同类项才可以合并. 【举一反三】1.(2017某某某某第3题)下列运算正确的是() A .2325a a a += B .333a b ab +=C .2222a bc a bc a bc -=D .523a a a -=【答案】C考点:合并同类项.2. (2017某某省某某市期中联考)下列运算正确的是( ) A.B.C.D.【答案】C .考点:合并同类项. 考点典例三、幂的运算【例3】(2017某某某某第5题)下列运算正确的是( )A .22(a )m ma = B .33(2a )2a = C .3515a a a --= D .352a a a --÷=【答案】A 【解析】试题分析: B .3333(2a )2=8a a = C .352a a a --= D .353(5)8a a a a ---÷==故选A【点睛】(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理. 【举一反三】1.(2017某某某某第2题)下列计算正确的是( ) A.235a a aB.224aa C.235a a a D.325a a【答案】C. 【解析】试题解析:A.235a a a ,故该选项错误;B.2224aa , 故该选项错误;C.235a a a , 故该选项正确;D.326a a , 故该选项错误.故选C.考点:1.合并同类项;2.积的乘方与幂的乘方;3.同度数幂的乘法. 2.(2017某某贵港第5题)下列运算正确的是( ) A .2333a a a += B .()32522a a a -= C. 623422a a a += D .()22238a a a --=【答案】D考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方. 考点典例四、整式的乘除法.【例4】(2017某某某某第19(2)题)计算:(a+b )(a ﹣b )﹣a (a ﹣b ) 【答案】ab ﹣b 2【解析】试题分析:根据平方差公式以及单项式乘以多项式法则即可求出答案. 试题解析:原式=a 2﹣b 2﹣a 2+ab=ab ﹣b 2考点:1.平方差公式;2.单项式乘多项式.【点睛】此题考查了平方差公式、单项式乘多项式及整式的加减运算,熟练掌握运算法则是解本题的关键. 【举一反三】1.(2017某某省海中市初中模拟)下列计算,正确的是( )A. a 2·a 3=a 6B. 3a 2-a 2=2C. a 8÷a 2=a 4D. (-2a )3=-8a 3【答案】C. 【解析】试题分析:A. ∵a 2·a 3=a 5,故不正确; B. ∵ 3a 2-a 2=2 a 2 ,故不正确; C. ∵a 8÷a 2=a 6,故不正确; D. ∵(-2a )3=-8a 3,故正确; 故选D.考点:整式的乘除法.2. (2017某某某某第17(2)题)化简:(2)(2)33mm m m +--⨯. 【答案】-4. 【解析】试题分析:首先利用平方差公式和单项式的乘法法则计算,最后合并同类项即可. 试题解析:原式=m 2-4-m 2=-4.考点:1.平方差公式;2.单项式乘单项式. 考点典例五、整式的混合运算及求值【例5】(2017某某某某第19题)先化简,再求值:2215x x x x ,其中32x. 【答案】5. 【解析】试题分析:利用平方差公式和多项式乘以多项式进行化简,然后把x=32代入化简结果中即可求解. 试题解析:2215x x x x=4-x 2+x 2+4x-5 =4x-1当x=32时,原式=4×32-1=5.考点:1.平方差公式;3.多项式乘以多项式;3.代数式求值.【点睛】注意多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.【举一反三】1.(2017某某某某第21题)先化简,再求值:2a a a a a,其中21212112a.【答案】4.考点:整式的混合运算—化简求值.2.(2017某某省某某市中堂星晨学校中考模拟)先化简,再求值:,其中.【答案】,1.【解析】试题分析:本题主要考查整式的化简和代数式的值,原式去括号合并得到最简结果,将与的值代入计算即可求出值。
湖南省2021年中考数学总复习第一单元数与式课时训练03整式运算与因式分解练习

整式运算与因式分解03 整式运算与因式分解限时:30分钟夯实根底1.[2021·荆州] 以下代数式中,整式为()A.x+1B.1x+1C.√x2+1D.x+1x2.[2021·永州] 以下运算正确的选项是 ()A.m2+2m3=3m5B.m2·m3=m6C.(-m)3=-m3D.(mn)3=mn33.[2021·安徽] 以下分解因式正确的选项是 ()A.-x2+4x=-x(x+4)B.x2+xy+x=x(x+y)C.x(x-y)+y(y-x)=(x-y)2D.x2-4x+4=(x+2)(x-2)4.[2021·武汉] 计算(a-2)(a+3)的结果是()A.a2-6B.a2+a-6C.a2+6D.a2-a+65.[2021·威海] 5x=3,5y=2,那么52x-3y等于()A .34B .1C .23D .986.[2021·河北] 假设a ,b 互为相反数,那么a 2-b 2= .7.[2021·威海] 分解因式:-12a 2+2a-2= .8.[2021·雅安] 有一列数:12,1,54,75,…,依照此规律,那么第n 个数表示为 . 9.[2021·衡阳] 先化简,再求值:(x+2)(x-2)+x (1-x ),其中x=-1.能力提升10.[2021·齐齐哈尔] 我们知道,用字母表示的代数式是具有一般意义的.请仔细分析以下赋予3a 实际意义的例子中,不正确的选项是 ( )A .假设葡萄的价格是3元/千克,那么3a 表示买a 千克葡萄的金额B .假设a 表示一个等边三角形的边长,那么3a 表示这个等边三角形的周长C .将一个小木块放在水平桌面上,假设3表示小木块与桌面的接触面积,a 表示桌面受到的压强,那么3a 表示小木块对桌面的压力D .假设3和a 分别表示一个两位数中的十位数字和个位数字,那么3a 表示这个两位数11.[2021·眉山] 以下计算正确的选项是( )A .(x+y )2=x 2+y 2B .-12xy 23=-16x 3y 6 C .x 6÷x 3=x 2D .√(-2)2=2 12.[2021·枣庄] 如图K3-1,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.假设拿掉边长为2b 的小正方形后,再将剩下的三块拼成一块矩形,那么这块矩形较长的边长为 ( )图K3-1 A.3a+2b B.3a+4bC.6a+2bD.6a+4b13.[2021·黄冈] 假设a-1x =√6,那么a2+1x2的值为.14.[2021·娄底] 设a1,a2,a3,…,a n是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n 是正整数).a1=1,4a n=(a n+1-1)2-(a n-1)2,那么a2021= .15.[2021·吉林] 某同学化简a(a+2b)-(a+b)(a-b)出现了错误,解答过程如下:原式=a2+2ab-(a2-b2)(第一步)=a2+2ab-a2-b2(第二步)=2ab-b2.(第三步)(1)该同学解答过程从第步开场出错,错误原因是;(2)写出此题正确的解答过程.16.[2021·衢州] 有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图K3-2所示的三种方案.小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2.对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2.请你根据方案二、方案三写出公式的验证过程.图K3-217.[2021·河北] 如图K3-3,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少;(2)求第5个台阶上的数x是多少.应用求从下到上前31个台阶上的数的和.发现试用含k(k为正整数)的式子表示出数“1〞所在的台阶数.图K3-3拓展练习18.[2021·重庆A卷] 对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,那么称n为“极数〞.(1)请任意写出三个“极数〞,并猜测任意一个“极数〞是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,那么称正整数a是完全平方数.假设四位数m为“极数〞,记D(m)=x,33求满足D(m)是完全平方数的所有m.参考答案1.A2.C3.C[解析] A.-x2+4x=-x(x-4),故此选项错误;B.x2+xy+x=x(x+y+1),故此选项错误;C.x(x-y)+y(y-x)=(x-y)2,故此选项正确;D.x2-4x+4=(x-2)2,故此选项错误.应选C.4.B5.D6.07.-12(a-2)28.2x-1x+1[解析] 这列数可以写为12,33,54,75,…,因此,分母为从2开场的连续正整数,分子为从1开场的连续奇数,故第n个数为2x-1x+1.9.解:原式=x2-4+x-x2=x-4.当x=-1时,原式=-1-4=-5.10.D11.D12.A[解析] 如图,将下面的矩形移至原图形的左上方,拼成如下图的矩形,此时矩形的长为3a+2b,宽为3a-2b,应选A.13.8[解析] 原式=a2+1x2-2·a·1x+2·a·1x=a-1x2+2=(√6)2+2=8.14.4035[解析] 由4a n=(a n+1-1)2-(a n-1)2,得(a n+1-1)2=(a n+1)2.因为a n为正整数,所以a n+1-1=a n+1,即a n+1=a n+2.所以a2021=a2021+2=a2021+2×2=…=a1+2021×2=4035.15.解:(1)二去括号时没有变号(2)原式=a2+2ab-(a2-b2)=a2+2ab-a2+b2=2ab+b2.16.解:方案二:a2+ab+b(a+b)=a2+ab+ab+b2=a2+2ab+b2=(a+b)2;方案三:a2+12b(a+a+b)×2=a2+2ab+b2=(a+b)2.17.解:尝试(1)-5-2+1+9=3.(2)根据题意,得-2+1+9+x=3,解得x=-5.应用由题意知台阶上的数每4个一循环,因为31÷4=7……3,∴前31个数的和为7×3+(-5-2+1)=15.发现∵“1〞出现在每组4个数的第3个,也就是第3,第7,第11等,且3=4×1-1,7=4×2-1,11=4×3-1,…,∴“1〞所在的台阶数为4k-1.18.解:(1)答案不唯一,如5346,1782,9405等.任意一个“极数〞都是99的倍数,理由如下:设n的千位数字为s,百位数字为t(1≤s≤9,0≤t≤9且s,t均为整数),那么n=1000s+100t+10(9-s)+9-t=990s+99t+99=99(10s+t+1).而10s+t+1是整数,故n是99的倍数.(2)由(1)设m=1000s+100t+10(9-s)+9-t=990s+99t+99=99(10s+t+1),其中1≤s≤9,0≤t≤9,且s,t均为整数,从而=3(10s+t+1).而D(m)是完全平方数,故3(10s+t+1)是完全平方数.D(m)=x33∵11≤10s+t+1≤100,∴10s+t+1=3×22,3×32,3×42,3×52.∴(s,t)=(1,1),(2,6),(4,7),(7,4).∴m=1188,2673,4752,7425.。
中考数学模拟题《整式及其运算》专项测试卷(附答案)

中考数学模拟题《整式及其运算》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.(2023·宁夏·统考中考真题)下列计算正确的是( )A .532a a -=B .632a a a ÷=C .()222a b a b -=-D .()3263a b a b = 2.(2023·四川德阳·统考中考真题)已知3x y =,则13x +=( )A .yB .1y +C .3y +D .3y3.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作:第1次操作后得到整式串m n n m -第2次操作后得到整式串m n n m - m -第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( )A .m n +B .mC .n m -D .2n4.(2023·四川雅安·统考中考真题)若2210m m +-=.则2243m m +-的值是( )A .1-B .5-C .5D .3-5.(2023·四川雅安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .()325a a =C .248a a a ⋅=D .32a a a ÷=6.(2023·湖南·统考中考真题)下列计算正确的是( )A .235x x xB .()336x x =C .()211x x x +=+D .()222141a a -=- 7.(2023·山东泰安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .222()a b a b -=-C .()3235ab a b =D .()3253412a a a ⋅-=-8.(2023·吉林长春·统考中考真题)下列运算正确的是( )A .32a a a -=B .23a a a ⋅=C .()325a a = D .623a a a ÷= 9.(2023·湖北武汉·统考中考真题)计算()322a 的结果是( )A .52αB .56aC .58aD .68a10.(2023·黑龙江绥化·统考中考真题)下列计算中 结果正确的是( )A .333()pq p q -=B .3228x x x x x ⋅+⋅=C 5=±D .()326a a = 11.(2023·山东日照·统考中考真题)已知直角三角形的三边,,a b c 满足c a b >> 分别以,,a b c 为边作三个正方形 把两个较小的正方形放置在最大正方形内 如图 设三个正方形无重叠部分的面积为1S 均重叠部分的面积为2S ,则( )A .12S S >B .12S S <C .12S SD .12,S S 大小无法确定12.(2023·江苏徐州·统考中考真题)下列运算正确的是( )A .236a a a ⋅=B .422a a a ÷=C .()235a a =D .224235a a a +=13.(2023·辽宁·统考中考真题)下列运算正确的是( )A .2323a a a +=B .743a a a ÷=C .()2224a a -=-D .()2236b b = 14.(2023·湖北鄂州·统考中考真题)下列运算正确的是( )A .235a a a +=B .235a a a ⋅=C .235a a a ÷=D .()325a a = 15.(2023·山东·统考中考真题)下列运算正确的是( )A .2242a a a +=B .()32639a a -=-C .23544a a a ⋅=D .623a a a ÷=16.(2023·湖北十堰·统考中考真题)下列计算正确的是( )A =B .33(2)8a a -=-C .842a a a ÷=D .22(1)1a a -=-17.(2023·山东日照·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .()32628m m -=-C .222()x y x y +=+D .232235ab a b a b +=18.(2023·江苏无锡·统考中考真题)下列运算正确的是( )A .236a a a ⨯=B .235a a a +=C .22(2)4a a -=-D .642a a a ÷=19.(2023·河北·统考中考真题)代数式7x -的意义可以是( )A .7-与x 的和B .7-与x 的差C .7-与x 的积D .7-与x 的商20.(2023·辽宁营口·统考中考真题)下列计算结果正确的是( )A .3332a a a ⋅=B .222853a a aC .824a a a ÷=D .()32639a a -=- 21.(2023·山东东营·统考中考真题)下列运算结果正确的是( )A .339x x x ⋅=B .336235x x x +=C .()32626x x =D .()()2232349x x x +-=- 22.(2023·四川巴中·统考中考真题)我国南宋时期数学家杨辉于1261年写下的《详解九章算法》 书中记载的图表给出了()n a b +展开式的系数规律.1 0()1a b +=1 1 1()a b a b +=+1 2 1 222()2a b a ab b +=++1 3 3 1 +=+++33223()33a b a a b ab b当代数式432125410881x x x x -+-+的值为1时,则x 的值为( )A .2B .4-C .2或4D .2或4-23.(2023·四川巴中·统考中考真题)若x 满足2350x x +-=,则代数式2263x x +-的值为( )A .5B .7C .10D .13-24.(2023·河北·统考中考真题)光年是天文学上的一种距离单位 一光年是指光在一年内走过的路程 约等于129.4610km ⨯.下列正确的是( )A .12119.4610109.4610⨯-=⨯B .12129.46100.46910⨯-=⨯C .129.4610⨯是一个12位数D .129.4610⨯是一个13位数25.(2023·湖北宜昌·统考中考真题)在日历上 某些数满足一定的规律.如图是某年8月份的日历 任意选择其中所示的含4个数字的方框部分 设右上角的数字为a ,则下列叙述中正确的是( ).A .左上角的数字为1a +B .左下角的数字为7a +C .右下角的数字为8a +D .方框中4个位置的数相加 结果是4的倍数26.(2023·湖北恩施·统考中考真题)下列运算正确的是( )A .()2211m m -=-B .()3326m m =C .734m m m ÷=D .257m m m += 27.(2023·黑龙江牡丹江·统考中考真题)下列计算正确的是( )A .248a a a ⋅=B .3332a a a -=C .()3236ab a b =D .()222a b a b +=+ 28.(2023·黑龙江牡丹江·统考中考真题)观察下面两行数:15111929⋯,,,,,1361015⋯,,,,,取每行数的第7个数 计算这两个数的和是( )A .92B .87C .83D .78二 填空题29.(2023·四川雅安·统考中考真题)若2a b += 1a b -=,则22a b -的值为 .30.(2023·四川德阳·统考中考真题)在初中数学文化节游园活动中 被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛 活动规则是:在九宫格中 除了已经填写的三个数之外的每一个方格中 填入一个数 使每一横行 每一竖列以及两条对角线上的3个数之和分别相等 且均为m .王小明抽取到的题目如图所示 他运用初中所学的数学知识 很快就完成了这个游戏,则m = .167 4 31.(2023·四川广安·统考中考真题)定义一种新运算:对于两个非零实数a b 、 x y a b a b=+※.若()221-=※,则()33-※的值是 . 32.(2023·四川凉山·统考中考真题)已知2210x x --=,则3231052027x x x -++的值等于 .三 解答题33.(2023·甘肃兰州·统考中考真题)计算:()()()2234x y x y y y +---.34.(2023·河北·统考中考真题)现有甲 乙 丙三种矩形卡片各若干张 卡片的边长如图1所示(1)a .某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙) 如图2和图3 其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S 当2a =时 求12S S +的值(2)比较1S 与2S 的大小 并说明理由.35.(2023·浙江金华·统考中考真题)已知13x = 求()()()212134x x x x +-+-的值.36.(2023·湖南·统考中考真题)先化简 再求值:()()()222233a a a a a -+-++ 其中13a =-.37.(2023·浙江嘉兴·统考中考真题)观察下面的等式:222222223181,5382,7583,9784,-=⨯-=⨯-=⨯-=⨯(1)写出221917-的结果.(2)按上面的规律归纳出一个一般的结论(用含n 的等式表示 n 为正整数)(3)请运用有关知识 推理说明这个结论是正确的.参考答案一 单选题1.(2023·宁夏·统考中考真题)下列计算正确的是( )A .532a a -=B .632a a a ÷=C .()222a b a b -=-D .()3263a b a b = 【答案】D【分析】根据合并同类项 同底数幂的除法 完全平方公式 积的乘方 逐一计算判断即可.【详解】解:A 532a a a -= 故选项A 错误B 633a a a ÷= 故选项B 错误C ()2222a b a ab b -=-+ 故选项C 错误D ()3263a b a b = 故选项D 正确故选D .【点睛】本题考查整式的运算.熟练掌握合并同类项 同底数幂的除法 完全平方公式 积的乘方法则 是解题的关键.2.(2023·四川德阳·统考中考真题)已知3x y =,则13x +=( )A .yB .1y +C .3y +D .3y 【答案】D【分析】利用同底数幂的乘法的逆运算可得1333x x +=⨯ 再代入计算即可.【详解】解:∵3x y =∵13333x x y +=⨯=故选D【点睛】本题考查的是同底数幂的乘法运算的逆运算 熟记“m n m n a a a +=”是解本题的关键.3.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作:第1次操作后得到整式串m n n m -第2次操作后得到整式串m n n m - m -第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( )A .m n +B .mC .n m -D .2n 【答案】C【分析】先逐步分析前面5次操作 可得整式串每四次一循环 再求解第四次操作后所有的整式之和为:0m n n m m n n m ++----+= 结合202345053÷=⋅⋅⋅ 从而可得答案.【详解】解:第1次操作后得到整式串m n n m -第2次操作后得到整式串m n n m - m -第3次操作后得到整式串m n n m - m - n -第4次操作后得到整式串m n n m - m - n -n m -+ 第5次操作后得到整式串m n n m - m - n - n m -+ m⋅⋅⋅⋅⋅⋅归纳可得:以上整式串每四次一循环第四次操作后所有的整式之和为:0m n n m m n n m ++----+=∵202345053÷=⋅⋅⋅∵第2023次操作后得到的整式中各项之和与第3次操作后得到整式串之和相等∵这个和为m n n m m n n m ++---=-故选C【点睛】本题考查的是整式的加减运算 代数式的规律探究 掌握探究的方法 并总结概括规律并灵活运用是解本题的关键.4.(2023·四川雅安·统考中考真题)若2210m m +-=.则2243m m +-的值是( )A .1-B .5-C .5D .3-【答案】A【分析】把所求代数式2243m m +-变形为22(2)3m m +- 然后把条件整体代入求值即可.【详解】解:∵2210m m +-=∵221m m +=∵2243m m +-22(2)3m m =+- 213=⨯-1=-.故选:A .【点睛】此题主要考查了代数式求值以及“整体代入”思想 解题的关键是把代数式2243m m +-变形为22(2)3m m +-.5.(2023·四川雅安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .()325a a =C .248a a a ⋅=D .32a a a ÷=【答案】D【分析】根据整式的加减 幂的乘方 同底数幂的乘除法逐项判断即可.【详解】A 2a 与3b 不是同类项 不可合并 此项运算错误B ()23236a a a ⨯== 此项运算错误 C 24246a a a a +⋅== 此项运算错误D 31312a a a a -÷== 此项运算正确故选:D .【点睛】本题考查了整式的加减 幂的乘方 同底数幂的乘除法 熟记各运算法则是解题关键. 6.(2023·湖南·统考中考真题)下列计算正确的是( )A .235x x xB .()336x x =C .()211x x x +=+D .()222141a a -=- 【答案】A【分析】根据同底数幂的乘法与幂的乘方 完全平方公式 整式的乘法对每个式子一一判断即可.【详解】解:A 235x x x 本选项符合题意B ()339x x = 本选项不符合题意 C ()21x x x x +=+ 本选项不符合题意D ()2221441a a a -=-+ 本选项不符合题意故选:A .【点睛】此题主要考查了整式的混合运算 正确掌握相关运算法则是解题关键.7.(2023·山东泰安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .222()a b a b -=-C .()3235ab a b =D .()3253412a a a ⋅-=-【答案】D【分析】A 不能合并 本选项错误 B 利用完全平方公式展开得到结果 即可作出判断 C 和D 利用积的乘方及幂的乘方运算法则计算得到结果 即可作出判断.【详解】解:2a 和3b 不是同类项 不能合并 故A 选项错误 不符合题意222()2a b a ab b -=-+ 故B 选项错误 不符合题意()3236ab a b = 故C 选项错误 不符合题意 ()3253412a a a ⋅-=- 故D 选项正确 符合题意故选:D .【点睛】此题考查了完全平方公式 合并同类项 同底数幂的除法 积的乘方与幂的乘方 熟练掌握完全平方公式是解本题的关键.8.(2023·吉林长春·统考中考真题)下列运算正确的是( )A .32a a a -=B .23a a a ⋅=C .()325a a =D .623a a a ÷=【答案】B【分析】根据同底数幂的乘法 同底数幂的除法 幂的乘方 合并同类项 逐项分析判断即可求解.【详解】A. 3a 与2a 不能合并 故该选项不正确 不符合题意B. 23a a a ⋅= 故该选项正确 符合题意C. ()326a a = 故该选项不正确 不符合题意D. 624a a a ÷= 故该选项不正确 不符合题意故选:B .【点睛】本题考查了同底数幂的乘法 同底数幂的除法 幂的乘方 合并同类项 熟练掌握以上运算法则是解题的关键.9.(2023·湖北武汉·统考中考真题)计算()322a 的结果是( ) A .52αB .56aC .58aD .68a【答案】D 【分析】根据积的乘方与幂的乘方法则计算即可.【详解】解:()()332326228a a a == 故选:D .【点睛】本题考查积的乘方与幂的乘方 熟练掌握积的乘方与幂的乘方运算法则是解题的关键. 10.(2023·黑龙江绥化·统考中考真题)下列计算中 结果正确的是( )A .333()pq p q -=B .3228x x x x x ⋅+⋅=C 5=±D .()326a a = 【答案】D【分析】根据积的乘方与幂的乘方运算 同底数幂的乘法 合并同类项 算术平方根 进行计算即可求解.【详解】解:A. 333()pq p q =-- 故该选项不正确 不符合题意B. 43222x x x x x ⋅+⋅= 故该选项不正确 不符合题意C. 5= 故该选项不正确 不符合题意D. ()326a a = 故该选项正确 符合题意故选:D .【点睛】本题考查了积的乘方与幂的乘方运算 同底数幂的乘法 合并同类项 算术平方根 熟练掌握以上运算法则是解题的关键.11.(2023·山东日照·统考中考真题)已知直角三角形的三边,,a b c 满足c a b >> 分别以,,a b c 为边作三个正方形 把两个较小的正方形放置在最大正方形内 如图 设三个正方形无重叠部分的面积为1S 均重叠部分的面积为2S ,则( )A .12S S >B .12S S <C .12S SD .12,S S 大小无法确定 【答案】C【分析】根据题意 由勾股定理可得222+=a b c 易得222c a b -= 然后用,,a b c 分别表示1S 和2S 即可获得答案.【详解】解:如下图∵,,a b c 为直角三角形的三边 且c a b >>。
初三中考数学复习 整式及其运算 专项复习训练 含答案

初三中考数学复习整式及其运算专项复习训练含答案2019 初三中考数学复习 整式及其运算专项复习训练1.已知x +y =3,xy =2,则x 2+y 2的值为( C )A .3B .4C .5D .62. 下列计算正确的是( B ) A .x 2+x 2=x 4 B .2x 3-x 3=x 3 C .x 2·x 3=x 6 D .(x 2)3=x 53.若x =-13,y =4,则代数式3x +y -3的值为( B ) A .-6 B .0 C .2 D .64.下列各式的变形中,正确的是( A )A .(-x -y)(-x +y)=x 2-y 2B.1x -x =1-x x C .x 2-4x +3=(x -2)2+1 D .x ÷(x 2+x)=1x +1 5.由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m 元/千克,则( D )A .m =24(1-a%-b%)B .m =24(1-a%)b%C .m =24-a%-b%D .m =24(1-a%)(1-b%)6. 若单项式6x 2y a +b 与-12x a -b y 4是同类项,则a ,b 的值分别为( A ) A .a =3,b =1 B .a =-3,b =1C .a =3,b =-1D .a =3,b =-17.正整数x ,y 满足(2x -5)(2y -5)=25,则x +y 等于( A )A .18或10B .18C .10D .268. 定义运算:a ⊗b =a(1-b).下面给出了关于这种运算的几种结论:①2⊗(-(4)3a(a2+2a+1)-2(a+1)2.解:原式=3a3+6a2+3a-2a2-4a-2=3a3+4a2-a-2.17.先化简,再求值:4x·x+(2x-1)(1-2x),其中x=1 40;解:4x·x+(2x-1)(1-2x)=4x2+(2x-4x2-1+2x)=4x2+4x-4x2-1=4x-1,当x=140时,原式=4×140-1=-910.18. 先化简,再求值:(a+b)(a-b)+(a+b)2,其中a=-1,b=12 .解:原式=2a2+2ab,当a=-1,b=12时,原式=1.19.已知非零实数a,b满足a+b=3,1a+1b=32,求代数式a2b+ab2的值.解:∵1a+1b=a+bab=32,a+b=3,∴ab=2.∴a2b+ab2=ab(a+b)=2×3=6.20.发现任意五个连续整数的平方和是5的倍数.验证(1)(-1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.解:验证(1)(-1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(-1)2+02+12+22+32的结果是5的3倍.(2)设五个连续整数的中间一个为n,则其余4个整数分别是n-2,n-1,n+1,n+2,它们的平方和为(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2=n2-4n+4+n2-2n+1+n2+n2+2n+1+n2+4n+4=5n2+10.∵5n2+10=5(n2+2),又n是整数,∴n2+2是整数.∴五个连续整数的平方和是5的倍数.延伸设三个连续整数的中间一个为n,则其余的两个整数是n-1,n+1,它们的平方和为(n-1)2+n2+(n+1)2=n2-2n+1+n2+n2+2n+1=3n2+2.∵n 是整数,∴n2是整数.∴任意三个连续整数的平方和被3除的余数是2.。
中考数学复习《整式及其运算》练习题含答案

中考数学复习 整式及其运算一、选择题1.计算a·a 2的结果是( D )A .aB .a 2C .2a 2D .a 32.下列计算正确的是( C )A .3a 2+2a 3=5a 5B .a +2a =2a 2C .2a ·3a 2=6a 3D .(mn 2)3=mn 63.下列计算正确的是( D )A .(a +2)(a -2)=a 2-2B .(a +1)(a -2)=a 2+a -2C .(a +b )2=a 2+b 2D .(a -b )2=a 2-2ab +b 24.由于受禽流感H7N9的影响,我市某城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,则( D )A .m =24(1-a %-b %)B .m =24(1-a %)b %C .m =24-a %-b %D .m =24(1-a %)(1-b %)【解析】可得2月份鸡的价格为24(1-a %),再由3月份比2月份下降b %,即可得三月份鸡的价格为24(1-a %)(1-b %).故选D.5.按如图所示的程序计算,若开始输入n 的值为1,则最后输出的结果是( C )A .3B .15C .42D .63【解析】将n =1代入得:n (n +1)=2<15,将n =2代入得:2(2+1)=6<15.将n =6代入得:6×(6+1)=42>15,即输出42,故选C.6.已知M =29a -1,N =a 2-79a (a 为任意实数),则M ,N 的大小关系为( A )A.M<N B.M=NC.M>N D.不能确定【解析】将M与N代入N-M中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.N-M=a2-a+1=(a-12+34>0,∴N>M,即M2)<N.故选A.二、填空题7.分解因式:mx2-4m=__m(x+2)(x-2)__.8.已知a2+a=1,则代数式3-a-a2的值为__2__.【解析】∵a2+a=1,∴原式=3-(a+a2)=3-1=2.9.在一次大型考试中,某考点设有60个考场,考场号设为01~60号,相应的有60个监考组,组数序号记为1~60号,每场考前在监考组号1~60中随机抽取一个,被抽到的号对应的监考组就到01号考场监考,其他监考组就依次按序号往后类推,例如:某次抽取到的号码为8号,则第8监考组到01号考场监考,第9监考组到02号考场监考,…,依次按序类推.现抽得的号码为22号,试问第a(1≤a≤21)监考组应到__(a+39)__号考场监考.(用含a的代数式表示)【解析】由于22号监考1考场;23号监考2考场,依此类推……序号1......a......212223 (60)考场1考场2考场……39考场所以60号监考39考场,1号监考40考场,……依此类推a号监考(a+39)考场.10.已知x-y=7,xy=2,则x2+y2的值为__53__.【解析】x2+y2=(x-y)2+2xy=49+4=53.11.一个大正方形和四个全等的小正方形按图①②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__ab__.(用含a,b的代数式表示)【解析】设小正方形边长为x,则a-b=4x,大正方形边长为a-2x,②中阴影面积S =(a-2x)2-4x2=a2-4ax=a(a-4x)=ab.三、解答题12.化简:(a +2b )(a -2b )-12b (a -8b ). 解:原式=a 2-4b 2-12ab +4b 2=a 2-12ab13.已知x 2+x -5=0,求代数式(x -1)2-x (x -3)+(x +2)(x -2)的值.解:原式=x 2-2x +1-x 2+3x +x 2-4=x 2+x -3,因为x 2+x -5=0,所以x 2+x =5,所以原式=5-3=214.已知4x =3y ,求代数式(x -2y)2-(x -y)(x +y)-2y 2的值.解:(x -2y )2-(x -y )(x +y )-2y 2=x 2-4xy +4y 2-(x 2-y 2)-2y 2=-4xy +3y 2=-y (4x -3y ).∵4x =3y ,∴原式=015.给出三个整式a 2,b 2和2ab .(1)当a =3,b =4时,求a 2+b 2+2ab 的值;(2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写出你所选的式子及因式分解的过程.解:(1)当a =3,b =4时,a 2+b 2+2ab =(a +b )2=49(2)答案不唯一,例如:若选a 2,b 2,则a 2-b 2=(a +b )(a -b );若选a 2,2ab ,则a 2±2ab =a (a±2b )16.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6.(1)计算:F (243),F (617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =F (s )F (t ),当F (s )+F (t )=18时,求k 的最大值. 解:(1)F (243)=(423+342+234)÷111=9;F (617)=(167+716+671)÷111=14 (2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6.∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴⎩⎪⎨⎪⎧x =1,y =6或⎩⎪⎨⎪⎧x =2,y =5或⎩⎪⎨⎪⎧x =3,y =4或⎩⎪⎨⎪⎧x =4,y =3或⎩⎪⎨⎪⎧x =5,y =2或⎩⎪⎨⎪⎧x =6,y =1.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴⎩⎪⎨⎪⎧x =1,y =6或⎩⎪⎨⎪⎧x =4,y =3或⎩⎪⎨⎪⎧x =5,y =2,∴⎩⎪⎨⎪⎧F (s )=6,F (t )=12或⎩⎪⎨⎪⎧F (s )=9,F (t )=9或⎩⎪⎨⎪⎧F (s )=10,F (t )=8,∴k =F (s )F (t )=12或k =F (s )F (t )=1或k =F (s )F (t )=54,∴k 的最大值为54.。
(全国)2021版中考数学复习课时训练(二)整式及因式分解试题

课时训练(二) 整式及因式分解(限时:30分钟)|夯实根底|1.[2021·成都] 以下计算正确的选项是 ()A.x2+x2=x4B.(x-y)2=x2-y2C.(x2y)3=x6yD.(-x)2·x3=x52.[2021·荆州] 以下代数式中,整式为()A.x+1B.C. D.3.[2021·包头] 如果2x a+1y与x2y b-1是同类项,那么的值是()A. B. C.1 D.34.[2021·济宁] 多项式4a-a3分解因式的结果是()A.a(4-a2)B.a(2-a)(2+a)C.a(a-2)(a+2)D.a(2-a)25.[2021·柳州] 苹果原价是每斤a元,现在按8折出售,假设现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元6.[2021·威海] 5x=3,5y=2,那么52x-3y=()A. B.1 C. D.7.[2021·河北] 将9.52变形正确的选项是()A.9.52=92+0.52B.9.52=(10+0.5)(10-0.5)C.9.52=102-2×10×0.5+0.52D.9.52=92+9×0.5+0.528.[2021·乐山] 实数a,b满足a+b=2,ab=,那么a-b= ()A.1B.-C.±1D.±9.[2021·宁夏] 如图K2-1,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影局部沿虚线剪开,拼成右边的矩形,根据图形的变化过程写出的一个正确的等式是 ()图K2-1A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.(a-b)2=a2-b2D.a2-b2=(a+b)(a-b)10.[2021·西宁] x2y是次单项式.11.[2021·岳阳] a2+2a=1,那么3(a2+2a)+2的值为.12.分解因式:(1)[2021·杭州] (a-b)2-(b-a)= ;(2)[2021·绵阳] x2y-4y3= ;(3)[2021·德阳] 2xy2+4xy+2x= .13.[2021·成都] x+y=0.2,x+3y=1,那么代数式x2+4xy+4y2的值为.14.[2021·临沂] m+n=mn,那么(m-1)(n-1)= .15.[2021·安顺] 假设代数式x2+kx+25是一个完全平方式,那么k= .16.[2021·黑龙江] 将一些圆按照如图K2-2方式摆放,从上向下有无数行,其中第一行有2个圆,第二行有4个圆,第三行有6个圆……,按此规律排列下去,前50行共有圆个.图K2-217.[2021·扬州] 化简:(2x+3)2-(2x+3)(2x-3).18.[2021·邵阳] 先化简,再求值:(a-2b)(a+2b)-(a-2b)2+8b2,其中a=-2,b=.19.[2021·吉林] 某同学化简a(a+2b)-(a+b)(a-b)出现了错误,解答过程如下:原式=a2+2ab-(a2-b2)(第一步)=a2+2ab-a2-b2(第二步)=2ab-b2.(第三步)(1)该同学解答过程从第步开场出错,错误原因是;(2)写出此题正确的解答过程.|拓展提升|20.[2021·德州] 我国南宋数学家杨辉所著的?详解九章算术?一书中,用图K2-3的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角〞.(a+b)0 (1)(a+b)1……………1 1(a+b)2…………1 2 1(a+b)3………1 3 3 1(a+b)4……1 4 6 4 1(a+b)5…1510 10 5 1…图K2-3根据“杨辉三角〞,请计算(a+b)8的展开式中从左起第四项的系数为 ()A.84B.56C.35D.2821.[2021·衢州] 有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图K2-4所示的三种方案.小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2.对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2.请你根据方案二、方案三写出公式的验证过程.图K2-422.[2021·贵阳] 如图K2-5,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.图K2-523.[2021·河北] 发现任意五个连续整数的平方和是5的倍数.验证(1)(-1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.参考答案1.D[解析] 因为x2+x2=2x2,故A错误;(x-y)2=x2-2xy+y2,故B错误;(x2y)3=x6y3,故C错误;(-x)2·x3=x5,D正确.应选择D.2.A3.A[解析] 根据同类项的定义可得解得∴=.应选择A.4.B[解析] 先提公因式再用平方差公式分解因式.即:4a-a3=a(4-a2)=a(2-a)(2+a),因此,此题应该选B.5.A[解析] 根据“质量×单价=支付费用〞可知需要付费1·a×0.8=0.8a(元).6.D[解析] 逆用幂的乘方、同底数幂的除法法那么,得52x-3y=52x÷53y=(5x)2÷(5y)3=32÷23=.应选D.7.C8.C[解析] ∵a+b=2,∴(a+b)2=4,即a2+2ab+b2=4,又∵a b=,∴(a-b)2=(a+b)2-4ab=4-4×=1,∴a-b=±1,故答案为C.9.D[解析] 用两种不同的方式表示阴影局部的面积,从题中左图看,是边长为a的大正方形面积减去边长为b的小正方形的面积,阴影局部面积是(a2-b2);从题中右图看,是一个长为(a+b),宽为(a-b)的长方形,面积是(a+b)(a-b),所以a2-b2=(a+b)(a-b).10.311.5[解析] ∵a2+2a=1,∴3(a2+2a)+2=3+2=5.故答案为5.12.(1)(a-b)(a-b+1)[解析] (a-b)2-(b-a)=(a-b)2+(a-b)=(a-b)(a-b+1).(2)y(x-2y)(x+2y)[解析] x2y-4y3=y(x2-4y2)=y(x-2y)(x+2y).(3)2x(y+1)2[解析] 2xy2+4xy+2x=2x(y2+2y+1)=2x(y+1)2.13.0.36[解析] ∵x+y=0.2①,x+3y=1②,①+②得:2x+4y=1.2,∴x+2y=0.6,∴x2+4xy+4y2=(x+2y)2=0.36.14.1[解析] ∵m+n=mn,∴(m-1)(n-1)=mn-m-n+1=mn-(m+n)+1=1.15.±10[解析] ∵代数式x2+kx+25是一个完全平方式,∴k=±10.16.2550[解析] ∵第一行有2个圆,第二行有4个圆,第三行有6个圆,∴第n(n为正整数)行有2n个圆,∴前50行共有圆的个数为:2+4+6+…+100==51×50=2550.故答案为2550.17.解:原式=4x2+9+12x-4x2+9=12x+18.18.解:原式=a2-4b2-(a2-4ab+4b2)+8b2=a2-4b2-a2+4ab-4b2+8b2=4ab.当a=-2,b=时,原式=4×(-2)×=-4.19.解:(1)二去括号时没有变号(2)原式=a2+2ab-(a2-b2)=a2+2ab-a2+b2=2ab+b2.20.B[解析] 按照规律,继续往下写,写到(a+b)8.应选B.(a+b)0 (1)(a+b)1……………………1 1(a+b)2…………………12 1(a+b)3………………133 1(a+b)4……………1464 1(a+b)5…………1510105 1(a+b)6………161520156 1(a+b)7……17213535217 1(a+b)8…1828567056288 121.解:方案二:a2+ab+b(a+b)=a2+ab+ab+b2=a2+2ab+b2=(a+b)2;方案三:a2+b(a+a+b)×2=a2+2ab+b2=(a+b)2.22.解:(1)拼成新矩形的长为m+n,宽为m-n,其周长为:2[(m+n)+(m-n)]=2(m+n+m-n)=4m.(2)拼成新矩形的面积为(m+n)(m-n)=m2-n2.当m=7,n=4时,原式=72-42=49-16=33.23.解:验证(1)(-1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(-1)2+02+12+22+32的结果是5的3倍.(2)(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2=n2-4n+4+n2-2n+1+n2+n2+2n+1+n2+4n+4=5n2+10, ∵5n2+10=5(n2+2),n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数.延伸余数是2.理由:设三个连续整数的中间一个为n,那么其余的两个整数是n-1,n+1, 它们的平方和为:(n-1)2+n2+(n+1)2=n2-2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.。
2023年中考数学《整式》专题考点回顾及练习题(含答案解析)

2023年中考数学《整式》专题考点回顾及练习题(含答案解析) 考点一:整式之代数式1. 代数式的定义:由数与字母通过“+,-,×,÷”以及乘方、开方等运算符号连接的式子叫做代数式。
2. 列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式。
3. 代数式求值:①单个字母带入求代数式的值。
②整体代入法求代数式的值。
(找已知式子与所求式子的倍数关系)1.(2022•长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100﹣x )元C .8(100﹣x )元D .(100﹣8x )元【分析】直接利用乙的单价×乙的本数=乙的费用,进而得出答案.【解答】解:设购买甲种读本x 本,则购买乙种读本的费用为:8(100﹣x )元.故选:C .2.(2022•杭州)某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( )A .y x 1910=320B .xy 1910=320 C .|10x ﹣19y |=320 D .|19x ﹣10y |=320【分析】直接利用10张A 票的总价与19张B 票的总价相差320元,得出等式求出答案.【解答】解:由题意可得:|10x ﹣19y |=320.故选:C .3.(2022•吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要 元.(用含m 的代数式表示)【分析】根据题意直接列出代数式即可.【解答】解:篮球队要买10个篮球,每个篮球m 元,一共需要10m 元,故答案为:10m .4.(2022•梧州)若x =1,则3x ﹣2= .【分析】把x =1代入3x ﹣2中,计算即可得出答案.【解答】解:把x =1代入3x ﹣2中,原式=3×1﹣2=1.故答案为:1.5.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a ﹣b =2,求代数式6a ﹣2b ﹣1的值.”可以这样解:6a ﹣2b ﹣1=2(3a ﹣b )﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x =2是关于x 的一元一次方程ax +b =3的解,则代数式4a 2+4ab +b 2+4a +2b ﹣1的值是 .【分析】根据x =2是关于x 的一元一次方程ax +b =3的解,可得:b =3﹣2a ,直接代入所求式即可解答.【解答】解:原式=(2a +b )2+2(2a +b )﹣1=32+2×3﹣1=14,故答案为:14.6.(2022•邵阳)已知x 2﹣3x +1=0,则3x 2﹣9x +5= .【分析】原式前两项提取3变形后,把已知等式变形代入计算即可求出值.【解答】解:∵x 2﹣3x +1=0,∴x 2﹣3x =﹣1,则原式=3(x 2﹣3x )+5=﹣3+5 =2.故答案为:2.7.(2022•郴州)若32=−b b a ,则b a = . 【分析】对已知式子分析可知,原式可根据比例的基本性质可直接得出比例式的值.【解答】解:根据=得3a =5b ,则=.故答案为:. 考点二:整式之单项式1. 单项式的定义:由数与字母的乘积组成的式子叫做单项式。
中考数学总复习《整式与因式分解》专题训练-附答案

中考数学总复习《整式与因式分解》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式. (1)代数式求值:用数值代替代数式里的未知数,按照代数式的运算关系计算得出结果.(2)代数推理:通过数学证明,等式变换等方式将复杂的问题简单化,形成一般性的公式,最终达到想要的结果.【练习】1-1.用代数式表示“x 的13与y 的12的差”为 . 【练习】1-2.某种弹簧秤能称不超过10kg 的物体,不挂物体时弹簧的长为8cm ,每挂重1kg 物体,弹簧伸长2cm ,在弹性限度内,当挂重xkg 的物体时,弹簧长度是 cm .(用含x 的代数式表示)【练习】1-3.若4a ﹣3b =3,则7﹣12a +9b = .【练习】1-4.观察一列数:12,24,38,416…根据规律,请你写出第n 个数是 .2. 整式的相关概念:(1)单项式:由数或字母的积组成的式子叫做单项式.单独的一个数或一个字母也是单项式.(2)多项式:几个单项式的和叫做多项式. 多项式中,_____________的项的次数,叫做这个多项式的次数.(3)整式:单项式与多项式统称为整式.(4)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.【练习】2-1.单项式3πx 4y 7的系数是 ,次数是 . 【练习】2-2.多项式12a 2bc −3ab +8是 次 项式.【练习】2-3.若单项式﹣2x m y 4与12x 3y m+n 的和仍是单项式,则m ﹣n = . 3. 整式的运算:知识梳理(1)整式的加减法:①合并同类项:把同类项的_____________相加,字母和字母的__________不变.②去括号法则:括号前为“+”,去括号后原括号里的每一项都不变号;括号前为“-”,去括号后原括号里的每一项都要变号.如a+(b+c)=________________,a-(b-c)=_______________.(2)幂的运算法则:①同底数幂相乘:a m·a n=_____________(m,n均为正整数).②同底数幂相除:a m÷a n=_____________(a≠0,m,n均为正整数,并且m>n).③幂的乘方:(a m)n=_____________(m,n均为正整数).④积的乘方:(a b)n=_____________(n为正整数).⑤负整数指数幂:a-n=____________(a≠0,n为正整数).⑥零指数幂:a0=_____________(a≠0).(3)整式的乘法:①单项式乘单项式:把它们的系数、同底数幂分别_____________,对于只在一个单项式里含有的字母,则连同它的_____________作为积的一个因式.②单项式乘多项式:m(a+b)=_________________.③多项式乘多项式:(a+b)(c+d)=__________________________.④乘法公式:平方差公式:(a+b)(a-b)=_____________.完全平方公式:(a±b)2=____________________.常用的公式变形:a2+b2=(a+b)2-2ab; a2+b2=(a-b)2+2ab;(a+b)2=(a-b)2+4ab; (a-b)2=(a+b)2-4ab.(4)整式的除法:①单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【练习】3-1.计算:(a3)2•2a=.【练习】3-2.计算:2x2•3xy的结果是.【练习】3-3.计算(2x)2(﹣3xy2)=.【练习】3-4.计算:(1)3xy•5x3=;(2)6m2÷3m=.【练习】3-5.计算:28x4y2÷7x3y2=.【练习】3-6.计算:(2x﹣1)(3x+2)=.【练习】3-7.计算:(6x3y2−2x2y3)÷13x2y2=.【练习】3-8.计算:(2x+y)(2x﹣y)=.【练习】3-9.已知(x﹣3)2=x2+2mx+9,则m的值是.4. 因式分解:把一个多项式化成几个整式的积的形式.(1)提公因式法:ma+mb+mc=m(a+b+c).(2)公式法:①平方差公式:a2-b2=___________________________.②完全平方公式:a2±2ab+b2=________________.(3)(拓展)十字相乘法:x2+(a+b)x+ab=(x+a)(x+b).【练习】4-1.因式分解:3a2b﹣9ab=.【练习】4-2.分解因式:m2﹣36=.【练习】4-3.分解因式:a2+8a+16=.【练习】4-4.因式分解:am+an﹣bm﹣bn=.【练习】4-5.分解因式:2ax2﹣4ax+2a=.【练习】4-6.因式分解:x2﹣8x+12=.【练习】4-7.分解因式:m2﹣4m﹣5=.参考答案1-1.【答案】13x−12y.1-2.【答案】(8+2x).1-3.【答案】﹣2.1-4.【答案】n2n2-1.【答案】3π75.2-2.【答案】四;三.2-3.【答案】2.3-1.【答案】2a7.3-2.【答案】6x3y.3-3.【答案】﹣12x3y2.3-4.【答案】(1)15x4y;(2)2m.3-5.【答案】18x-6y.3-6.【答案】6x2+x-23-7.【答案】18x﹣6y.3-8.【答案】4x2-y2.3-9.【答案】﹣3.4-1.【答案】3ab(a﹣3).4-2.【答案】(m﹣6)(m+6).4-3.【答案】(a+4)2.4-4.【答案】(m+n)(a﹣b).4-5.【答案】2a(x﹣1)2.4-6.【答案】(x﹣2)(x﹣6).4-7.【答案】(m﹣5)(m+1).考点一:整式的相关概念1.单项式﹣2x2y的系数是;多项式x4y2﹣x2y+23y4的次数是.2.如果单项式﹣a n﹣2b n﹣1与12ab m+3的和仍是单项式,那么m n=.考点突破考点二:整式的运算3.下列计算正确的是()A.a3•a3=2a3B.(ab2)3=ab6C.2ab2•(﹣3ab)=﹣6ab3D.10ab3÷(﹣5ab)=﹣2b24.已知x m=2,x n=3,则x m+n的值是()A.5B.6C.8D.95.观察图,用等式表示图中图形面积的运算为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.a(a+b)=a2+ab D.(a+b)2=a2+2ab+b26.下列计算正确的是()A.(x+2y)(x﹣2y)=x2﹣2y2B.(﹣x+y)(x﹣y)=x2﹣y2C.(2x﹣y)(x+2y)=2x2﹣2y2D.(﹣x﹣2y)(﹣x+2y)=x2﹣4y27.下列计算正确的是()A.2a2•3a2=6a2B.(3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a2考点三:代数式求值8.若x2﹣2x+1的值为10,则代数式﹣2x2+4x+3的值为.9.已知a2+3a﹣2023=0,则2a2+6a﹣1的值为.10.图是一数值转换机的示意图,若输入的x值为18,则输出的结果为.11.已知m=2,n=−12求代数式m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)的值.12.已知(a+b)2+(a﹣b)2=20.(1)求a2+b2的值;(2)若ab=3,求(a+1)(b+1)的值;(3)若2a﹣3b=m,3a﹣2b=n求mn的最大值.考点四:因式分解13.分解因式:(1)m2﹣1=;(2)a2+5a=;(3)x2﹣4x+4=.14.若x2﹣mx+25可以用完全平方式来分解因式,则m的值为.15.如果关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,那么整数k等于.考点五:规律探究16.已知S1=10 S2=11−S1S3=11−S2S4=11−S3…按此规律,则S2024=.17.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察右图中的数字排列规律,求a+b﹣c的值为.18.一组按规律排列的单项式a、2a2、3a3、4a4,…,依这个规律用含字母n(n为正整数,且n≥1)的式子表示第n个单项式为.19.如图,把每个正方形等分为4格,在每格中填入数字,在各正方形中的四个数之间都有相同的规律,根据此规律,x=.(用a,b表示)20.一列数:13,26,311,418,527,638…它们按一定的规律排列,则第n个数(n为正整数)为.参考答案与试题解1.【答案】﹣2,7.【解答】解:单项式﹣2x2y的系数是﹣2,多项式x4y2﹣x2y+23y4的次数是7.故答案为:﹣2,7.2.【答案】﹣1.【解答】解:由题意,n﹣2=1,n﹣1=m+3∴m=﹣1,n=3∴m n=(﹣1)3=﹣1.故答案为:﹣1.3.【答案】D【解答】解:A、a3•a3=a6本选项错误,不符合题意;B、(ab2)3=a3b6本选项错误,不符合题意;C、2ab2•(﹣3ab)=﹣6a2b3本选项错误,不符合题意;D、10ab3÷(﹣5ab)=﹣2b2本选项正确,符合题意;故选:D.4.【答案】B【解答】解:∵x m=2,x n=3∴x m+n=x m×x n=2×3=6.故选:B.5.【答案】B【解答】解:由题意得:图1的面积=(a+b)(a﹣b)图2的面积=a2﹣b2∴(a+b)(a﹣b)=a2﹣b2故选:B.6.【答案】D【解答】解:A、(x+2y)(x﹣2y)=x2﹣4y2,本选项错误,不符合题意;B、(﹣x+y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,本选项错误,不符合题意;C、(2x﹣y)(x+2y)=2x2+3xy﹣2y2,本选项错误,不符合题意;D、(﹣x﹣2y)(﹣x+2y)=(﹣x)2﹣(2y)2=x2﹣4y2,必须执行正确,符合题意.故选:D.7.【答案】D【解答】解:A、2a2•3a2=6a4,故A不符合题意;B、(3a2b)2=9a4b2,故B不符合题意;C、(a﹣b)2=a2﹣2ab+b2,故C不符合题意;D、﹣a2+2a2=a2,故D符合题意;故选:D.8.【答案】﹣15.【解答】解:∵x2﹣2x+1=10∴x2﹣2x=9∴﹣2x2+4x+3=﹣2(x2﹣2x)+3=﹣2×9+3=﹣15.故答案为:﹣15.9.【答案】4045.【解答】解:∵a2+3a﹣2023=0∴a2+3a=2023∴2a2+6a﹣1=2(a2+3a)﹣1=2×2023﹣1=4045故答案为:4045.10.【答案】见试题解答内容【解答】解:若输入的数为18,代入得:3(18﹣10)=24<100;此时输入的数为24,代入得:3(24﹣10)=42<100;此时输入的数为42,代入得:3(42﹣10)=96<100此时输入的数为96,代入得:3(96﹣10)=258>100则输出的结果为258.故答案为:258.11.【答案】﹣2mn,原式=2.【解答】解:m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)=m3n﹣2n3m2﹣4mn+2m2n3+2mn﹣m3n =﹣2mn当m=2,n=−12时,原式=﹣2×2×(−12)=2.12.【答案】(1)10;(2)8或0;(3)125.【解答】解:(1)∵(a+b)2+(a﹣b)2=20∴a2+2ab+b2+a2﹣2ab+b2=202a2+2b2=20∴a2+b2=10;(2)∵ab=3∴2ab=6∵a2+b2=10∴a2+2ab+b2=10+6=16(a+b)2=16a+b=±4∴当a+b=4时(a+1)(b+1)=ab+a+b+1=3+4+1=8当a+b=﹣4时(a+1)(b+1)=ab+a+b+1=3+(﹣4)+1=0∴(a+1)(b+1)的值为8或0;(3)由(1)可知:a2+b2=10∵(a+b)2≥0∴a2+b2+2ab≥010+2ab≥02ab≥﹣10ab≥﹣5∵(a﹣b)2≥0∴a2+b2﹣2ab≥010﹣2ab≥0﹣2ab≥﹣10ab≤5∴﹣5≤ab≤5∴ab的最小值为﹣5∵2a﹣3b=m,3a﹣2b=n∴mn=(2a﹣3b)(3a﹣2b)=6a2﹣4ab﹣9ab+6b2=6a2+6b2﹣13ab=6(a2+b2)﹣13ab=6×10﹣13ab=60﹣13ab∴mn的最大值为:60﹣13×(﹣5)=60+65=125.13.【答案】(1)(m+1)(m﹣1);(2)a(a+5);(3)(x﹣2)2.【解答】解:(1)m2﹣1=(m+1)(m﹣1)故答案为:(m+1)(m﹣1);(2)a2+5a=a(a+5)故答案为:a(a+5);(3)x2﹣4x+4=(x﹣2)2故答案为:(x﹣2)2.14.【答案】±10.【解答】解:∵x2﹣mx+25可以用完全平方式来分解因式∴m=±10.故答案为:±10.15.【答案】±6.【解答】解:∵关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,5=1×5或5=(﹣1)×(﹣5)∴k=1+5=6或k=(﹣1)+(﹣5)=﹣6故答案为:±6.16.【答案】−1 9.【解答】解:由题知因为S1=10所以S2=11−S1=11−10=−19;S3=11−S2=11−(−19)=910;S4=11−S3=11−910=10;…由此可见,这列数按10,−19,910循环出现又因为2024÷3=674余2所以S2024=−1 9.故答案为:−1 9.17.【答案】1.【解答】解:根据杨辉三角形的特点确定a=1+5=6b=5+10=15c=10+10=20a+b﹣c=6+15﹣20=1.故答案为:1.18.【答案】n•a n.【解答】解:第n个单项式是n•a n.故答案为:n•a n.19.【答案】a+18b(答案不唯一).【解答】解:由所给表格可知9=2×4+1;20=3×6+2;35=4×8+3;…所以表格中的左下角与右上角的数字之积加上左上角的数字等于右下角的数字; 则x =a +18b .故答案为:a +18b (答案不唯一).20.【答案】nn 2+2.【解答】解:∵一列数:13,26,311,418,527,638…其的分子与序号相同,分母为分子的平分加2∴第n 个数(n 为正整数)为:nn 2+2.故答案为:nn 2+2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 代数式 课时3.整式及其运算
【课前热身】
1. 3
1
-x 2y 的系数是 ,次数是 . 2.计算:2(2)a a -÷= . 3.下列计算正确的是( )
A .5510x x x +=
B .5510·
x x x = C .5510()x x = D .20210x x x ÷= 4.计算23()x x -所得的结果是( )
A .5x
B .5x -
C .6x
D .6x -
5. a ,b 两数的平方和用代数式表示为( )
A.22a b +
B.2()a b +
C.2a b +
D.2a b +
6.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )
A.)1(+a ·5%万元
B. 5%a 万元
C.(1+5%) a 万元
D.(1+5%)2a
【:用运算符号(加、减、乘、除、乘方、开方)把 或
. 按照代数式里的运算关系,
. (单独一个数单项式中的 叫做这个单项式的系数;.
.在多项式中,每个单项式叫 其中次数最高的项的 叫做这个多项式的次数.: 与 统称整式.
4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别
相等的项叫做同类项. 合并同类项的法则是 ___.
5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n = .
6. 乘法公式:
(1) =++))((d c b a ; (2)(a +b )(a -b)= ; (3) (a +b)2= ;(4)(a -b)2= .
7. 整式的除法
⑴ 单项式除以单项式的法则:把 、 分别相除后,作
为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式.
⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除
以 ,再把所得的商 .
【典例精析】
例1若0a >且2x a =,3y a =,则x y a -的值为( )
例2
例3 先化简,再求值:
(1) x (x +2)-(x +1)(x -1),其中x =-21
;
(2) 22(3)(2)(2)2x x x x +++--,其中1
3
x =-.
【中考演练】
1. 计算(-3a 3)2÷a 2的结果是( )
A. -9a 4
B. 6a 4
C. 9a 2
D. 9a 4
2. 下列运算中,结果正确的是( )
A.633·
x x x = B.422523x x x =+ C.532)(x x = D .222()x y x y +=+
﹡3.已知代数式2346x x -+的值为9,则24
63
x x -+的值为( )
A .18
B .12
C .9
D .7
4. 若3223m n x y x y -与 是同类项,则m + n =____________.
5.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 . 6. 先化简,再求值:
⑴ 3(2)(2)()a b a b ab ab -++÷-
,其中
⑵ )(2)(2y x y y x -+- ,其中,1=y x
﹡7.大家一定熟知杨辉三角(Ⅰ)
根据前面各式规律,则5()a b += .
1
1 1 1
2 1 1
3 3 1 1
4 6 4 1 .......................................
Ⅰ
Ⅱ
1222332234432234
()()2()33()464a b a b
a b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++。