2019-2020年中考数学总复习 第2讲 整式及其运算
2020中考数学总复习,整式及其运算+二次函数+直线与圆+平移与旋转

基础诊断
梳理自测,理解记忆
考点突破
分类讲练,以例求法
易错防范
辨析错因,提升考能
基础诊断
返回
1
知识梳理
1.整式:单项式和多项式统称为整式 (1)单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式.
所有字母指数的和叫做单项式的次数,数字因数叫做单项式的系数. (2)多项式:由几个单项式相加组成的代数式叫做多项式.多项式里次
错误答案展示 ①x3·x5=x3×5=x15;②x4·x4=2x4;③(am+1)2=a2m+1;
D.a5÷a2=a3
分析 根据合并同类项,可判断A错误; 根据同底数幂的乘法底数不变指数相加,可判断B错误; 根据幂的乘方底数不变指数相乘,可判断C错误; 根据同底数幂的除法底数不变指数相减,可判断D正确.
分析
答案
规律方法
规律方法
本题考查了同底数幂的运算法则,熟记法则并根据法则计算是解题关键.
练习1
(2016·苏州)下列运算结果正确的是( D )
A.a+2b=3ab
B.3a2-2a2=1
C.a2·a4=a8
D.(-a2b)3÷(a3b)2=-b
分析 利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方 运算法则分别计算得出答案. a+2b无法计算;3a2-2a2=a2;a2·a4=a6;(-a2b)3÷(a3b)2=-b.
练习4
(2016·邵阳)先化简,再求值:(m-n)2-m(m-2n),其中m= 3 , n= 2 . 解 原式=m2-2mn+n2-m2+2mn=n2, 当n=时,原式=2.
分析
答案
返回
易错防范
返回
易错警示系列 2 幂运算易出现的错误
2019-2020学年(陕西)中考数学总复习 第2讲 整式及其运算教学案.doc

2019-2020学年(陕西)中考数学总复习第2讲整式及其运算教学同类项的概念及合并同类项【例1】若-4x a y+x2y b=-3x2y,则a+b=__3__.【点评】(1)判断同类项时,看字母和相应字母的指数,与系数无关,也与字母的相关位置无关,两个只含数字的单项式也是同类项;(2)只有同类项才可以合并.1.(1)(2012·毕节)已知12x n -2m y 4与-x 3y 2n 是同类项,则(mn)2010的值为( C ) A .2010 B .-2010 C .1 D .-1(2)(2014·济宁)化简-5ab +4ab 的结果是( D )A .-1B .aC .bD .-ab整式的混合运算及求值【例2】 (2014·绍兴)先化简,再求值:a(a -3b)+(a +b)2-a(a -b),其中a =1,b =-12. 解:原式=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2=1+14=54【点评】 注意多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.2.(2012·杭州)化简2[(m -1)m +m(m +1)][(m -1)m -m(m +1)],若m 是任意整数,请观察化简后的结果,你发现原式表示一个什么数?解:2[(m -1)m +m(m +1)][(m -1)m -m(m +1)]=2(m 2-m +m 2+m)(m 2-m -m 2-m)=-8m 3.原式=(-2m)3,表示3个-2m 相乘,或者说是一个立方数,8的倍数等乘法公式【例3】 (2013·义乌)如图①,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图②的等腰梯形.(1)设图①中阴影部分面积为S 1,图②中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1和S 2;(2)请写出上述过程所揭示的乘法公式.解:(1)S 1=a 2-b 2;S 2=12(2b +2a)(a -b)=(a +b)(a -b) (2)(a +b)(a -b)=a 2-b 2【点评】 (1)在利用完全平方公式求值时,通常用到以下几种变形:①a 2+b 2=(a +b)2-2ab ;②a 2+b 2=(a -b)2+2ab ;③(a+b)2=(a-b)2+4ab;④(a-b)2=(a+b)2-4ab.注意公式的变式及整体代入的思想.(2)算式中的局部直接使用乘法公式、简化运算,任何时候都要遵循先化简,再求值的原则.3.(1)整式A与m2-2mn+n2的和是(m+n)2,则A=__4mn__.(2)(2014·广州)已知多项式A=(x+2)2+(1-x)(2+x)-3.①化简多项式A;②若(x+1)2=6,求A的值.解:①A=(x+2)2+(1-x)(2+x)-3=x2+4x+4+2-2x+x-x2-3=3x+3②(x+1)2=6,则x+1=±6,∴A=3x+3=3(x+1)=±3 6试题计算①x3·x5;②x4·x4;③(a m+1)2;④(-2a2·b)2;⑤(m-n)6÷(n-m)3.错解①x3·x5=x3×5=x15;②x4·x4=2x4;③(a m+1)2=a2m+1;④(-2a2·b)2=-22a4b2;⑤(m-n)6÷(n-m)3=(m-n)6-3=(m-n)3.剖析幂的四种运算(同底数幂相乘、幂的乘方、积的乘方、同底数幂相除)是学习整式乘除的基础,对幂运算的性质理解不深刻,记忆不牢固,往往会出现这样或那样的错误.针对具体问题要分清问题所对应的基本形式,以便合理运用法则,对符号的处理,应特别引起重视.正解①x3·x5=x3+5=x8;②x4·x4=x4+4=x8;③(a m+1)2=a(m+1)×2=a2m+2;④(-2a2·b)2=(-2)2a4b2=4a4b2;⑤(m-n)6÷(n-m)3=(n-m)6÷(n-m)3=(n-m)3.。
2019年中考数学专题复习 第二讲整式、因式分解 (共68张PPT)精品物理

答案:1
(3)由题意可知:m=-1,n=0,c=1, ∴原式=(-1)2015+2016×0+12017=0. 答案:0
【答题关键指导】 整体代入法求代数式值的三种方法 (1)直接整体代入求值:如果已知的代数式与要求的代 数式之间都含有相同的式子,只要把已知式子的值直 接代入到要求的式子中,即可得出结果.
(3)(2017·济宁中考)分解因式: ma2+2mab+mb2=____________.
【思路点拨】(1)先提取公因式,再利用平方差公式进 行分解. (2)通过两次提取公因式,来进行因式分解. (3)先提取公因式,再利用完全平方公式进行分解.
【自主解答】 (1)x3-x=x(x2-1)=x(x+1)(x-1). (2)原式=x(x-2)+(x-2)=(x+1)(x-2). (3)原式=m(a2+2ab+b2)=m(a+b)2.
【答题关键指导】 幂的运算的应用 (1)同底数幂的乘除法应用的前提是底数必须相同,若 底数互为相反数时,要应用积的乘方处理好符号问题, 转化成同底数,再应用法则.
(2)同底数幂的乘法、幂的乘方、积的乘方混合运算 的时候要注意三个方面:一是运算顺序,二是正确选择 法则,三是运算符号.
【变式训练】
2.(2017·潍坊中考)下列计算正确的是 ( )
A.a3×a2=a6
B.a3÷a=a3
C.a2+a2=a4
D.(a2)2=a4
【解析】选D.选项A是同底数幂的乘法,结果为a5,故选 项A错误;选项B是同底数幂的除法,结果为a2,故选项B 错误;选项C是合并同类项,结果为2a2,故选项C错误;选 项D是幂的乘方,底数不变,指数相乘,故选项D正确.
中考数学专题复习:第2课 整式及其运算优质课件PPT

【答案】 2
【类题演练 4】 (2018·扬州)计算:(2x+3)2-(2x+3)(2x -3).
【解析】 原式=4x2+12x+9-(4x2-9)=12x+18.
1.整式的加减实质就是合并同类项,整式的乘除实质就 是幂的运算.
2.本课主要用到以下三种数学思想方法: (1)数形结合思想: 在列代数式时,常常会遇到一种题型:题中提供一 定的图形,要求通过对图形的观察、探索,提取图 形中反馈的信息,并根据相关的知识列出相应的代 数式,也能用图形来验证整式的乘法和乘法公式.
A.34
B.1
C.23
D.98
【答案】 D
()
题型一 幂的运算
熟记法则,依照法则进行计算.
【典例 1】 有下列运算:①a2·a3=a6;②(a3)2=a6;③a5
÷a5=a;④(ab)3=a3b3.其中结果正确的个数为 ( )
A.1
B.2
C.3
D.4
【解析】 ①a2·a3=a5,故本项错误;②(a3)2=a6,故本 项正确;③a5÷a5=1,故本项错误;④(ab)3=a3b3,故本 项正确.故选 B.
注意公式的变形及整体思想的应用.
【典例 3】 (2018·河北)将 9.52 变形正确的是 ( ) A.9.52=92+0.52 B.9.52=(10+0.5)(10-0.5) C.9.52=102-2×10×0.5+0.52 D.9.52=92+9×0.5+0.52
【解析】 9.52=(10-0.5)2=102-2×10×0.5+0.52.
【答案】 C
【类题演练 3】 (2018·乐山)已知实数 a,b 满足 a+b=2,
ab=34,则 a-b=
()
A.1
中考数学专题训练第2讲整式(知识点梳理)

整式知识点梳理考点01 代数式1.代数式的概念:用运算符号把数和字母连接而成的式子叫作代数式。
单独一个数或一个字母也是代数式.运算符号是指加、减、乘、除、乘方等。
2.代数式的书写规则:(1)含有乘法运算的代数式的书写规则:字母与字母相乘,乘号一般可以省略不写,字母的排列顺序不变.数字与字母相乘,乘号一般也可以省略,但数字一定要写在字母的前面,且当数字是带分数时,必须写成假分数的形式.数字与数字相乘,乘号不能省略.带括号的式子与字母的地位相同。
(2)含有除法运算的代数式的书写规则:当代数式中含有除法运算时,一般不用“÷”,而改用分数线.因为分数线具有括号的作用,所以分数线又称括线。
(3)含有单位名称的代数式的书写规则:若代数式是和或差的形式,如需注明单位,则必须用括号把整个式子括起来后再写单位.若代数式是积或商的形式,则无需加括号,直接在代数式后面写出单位即可。
3.代数式的值(1)代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中指明的运算计算出的结果,叫作代数式的值。
(2)求代数式的值的步骤:第1步:代入,用具体数值代替代数式里的字母.第2步:计算,按照代数式里指明的运算,计算出结果。
(3)求代数式的值时要注意:一个代数式中的同一个字母,只能用同一个数值去代替.如果代数式里省略了乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号.代入数值时,不能改变原式中的运算符号及数字。
(4)运算时,要注意运算顺序。
(先算乘方,再算乘除,最后算加减,有括号的要求先算括号里面的)考点02 单项式和多项式一、单项式1.单项式的概念:如3、a 、xy 、ab 31-等这些代数式都是数字、字母、数字与字母的积、字母与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式。
2.单项式中不能含有加减法运算,但可以含有除法运算。
3.单项式的系数:单项式中的数字因数叫作这个单项式的系数,确定单项式的系数的注意事项:(1)确定单项式的系数时,最好现将单项式写成数与字母的乘积的形式,在确定系数.(2)圆周率π是常数,单项式中出现π时,应看作系数.(3)当一个单项式的系数是1或-1时,1通常省略不写,负数做系数应包括前面的符号.(4)单项式的系数是带分数时,通常写成假分数。
2024年中考数学总复习专题02整式复习划重点 学霸炼技法

3.x 个单价为 a 元的商品与 y 个单价为 b 元的商品总价为
(_a_x_+__b_y_)_元.
第11页
返回目录
专题二 整式
中考·数学
考点 2 整式的相关概念 1.单项式: (1)定义:表示数与字母的___积_____的式子叫做单项式,单 独的一个数或一个字母也是单项式. (2)性质:单项式中的____数__字__因__数__叫做这个单项式的系数;
[教材复习] 考点 1 代数式及其求值 1.代数式 用运算符号连接数和字母组成的式子,单独一个数或一个表
示数的字母也叫代数式.
第7页
返回目录
专题二 整式
中考·数学
2.列代数式 把问题中与数量有关的词语,用含有数字、字母和运算符号
的式子表示出来.关键是找出问题中的数量关系及公式,如:
“路程=速度×时间”“售价=标价×折扣”等;其次要抓
第4页
返回目录
专题二 整式
中考·数学
◎能推导乘法公式:(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab +b2,了解公式的几何背景,并能利用公式进行简单计 算; ◎能用提公因式法、公式法(直接利用公式不超过二次)进行 因式分解(指数是正整数).
Hale Waihona Puke 第5页返回目录专题二 整式
中考·数学
[对接教材]
第16页
返回目录
专题二 整式
中考·数学
考点 3 整式的运算
1.整式的加减
(1)合并同类项:①字母和字母的指数不变;②系数相加减
作为新的系数,如:3x2y+4x2y=7x2y.
(2)去括号法则:括号前是“+”号,去括号时,括号内各项
不变号:a+(b+c)=a____+____b___+_____c;
第02讲 代数式、整式与因式分解-2020年中考数学总复习专项讲解(人教版)

【试题精选】 12.(2018 年辽宁大连)因式分解:x2-x=________________. 答案:x(x-1) 13.(2019 年湖北天门)分解因式:x4-4x2=_____________. 答案:x2(x+2)(x-2) 14.(2018 年四川自贡)分解因式:ax2+2axy+ay2_________. 答案:a(x+y)2 15.(2017 年湖南长沙)分解因式:2a2+4a+2=___________. 答案:2(a+1)2
B.2(a-2)2 C.2(a+2)(a-2) D.2(a+2)2
答案:C
4.计算 x·(-x)5÷x2 的结果是__________.
答案:-x4
5.(2018 年浙江嘉兴)分解因式:m2-3m=_____________.
答案:m(m-3)
代数式
1.(2019 年海南)当 m=-1 时,代数式 2m+3 的值是( )
③a5÷a5=a;④(ab)3=a3b3,其中结果正确的个数为( )
A.1 个
B.2 个
C.3 个 D.4 个
答案:B
整式运算
6.(2018 年四川成都)下列计算正确的是( )
A.x2+x2=x4
B.(x-y)2=x2-y2
C.(x2y)3=x6y
D.(-x)2·x3=x5
答案:D
7.(2017 年江苏徐州)下列各式运算正确的是( )
A.b6÷b3=b2
B.b3·b3=b9
C.a2+a2=2a2
D.(a3)3=a6
答案:C
4.(2017 年广东)下列运算正确的是( )
A.a+2a=3a2
B.a3·a2=a5
C.(a4)2=a6
D.a8÷a2=a4
人教版九年级下册数学中考综合复习:第2讲《整式及其运算》

第2讲《整式及其运算》要点梳理知识点1:代数式及其求值:1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子叫做代数式,代数式不含等号.单独的一个数或一个字母_____(填“是”或“不是”)代数式.2.列代数式:把问题中与数量有关的词语,用含有字母和运算符号的式子表示出来.3.代数式求值:用数值代替代数式里的______,按照代数式中的运算关系计算得出结果. 知识点2:整式3.整式: 统称为整式。
4.同类项:多项式中所含 相同,并且 也相同的项。
如32b a -与32b a 21-;22xy 与2xy 31-同类项。
5.幂的运算法则(m,n 都是整数,a ≠0,b ≠0) 同底数幂相乘幂的乘方 积的乘方 同底数幂相除 am ·an =________(am)n =________ (ab)n =________ am ÷an =________1.单项式 概念 表示 或 的 的式子叫做单项式(单独的一个数字或字母也是单项式).如2xm,a ,5,0都是单项式。
系数单项式中的 叫做这个单项式的系数。
次数一个单项式中,所有字母的 叫做这个单项式的次数。
2.多项式 概念 几个单项式的 叫做多项式。
项 多项式中的 叫做多项式的项,不含字母的项叫做 ,如多项式x 3-2y+5的项数是 ,故称为 项式,其中x 3叫做 ,-2y 叫做 ,5叫做 。
次数 一个多项式中, 的项的次数叫做这个多项式的次数,如多项式x3y2+x2y-2y+3的最高次项 的次数是 ,故多项式的次数是 ,此多项式是 。
6.整式乘法7.乘法公式(1)平方差公式:____________________;(2)完全平方公式:__________________.8.整式除法1.法则公式的逆向运用法则公式既可正向运用,也可逆向运用.当直接计算有较大困难时,考虑逆向运用,可起到化难为易的功效.2.整式运算中的整体思想在进行整式运算或求代数式值时,若将注意力和着眼点放在问题的整体结构上,把一些紧密联系的代数式作为一个整体来处理.借助“整体思想”,可以拓宽解题思路,收到事半功倍之效.整体思想最典型的是应用于乘法公式中,公式中的字母a 和b 不仅可以表示单项式,也可以表示多项式,如(x -2y +z)(x +2y -z)=[x -(2y -z)][x +(2y -z)]=x 2-(2y -z)2=x 2-4y 2+4yz -z 2.3.乘法公式的常用变形:(1)a 2+b 2= ; (2)a 2+b 2= ;(3)(a+b)2= ; (4)(a-b)2= ;(5)a 2+b 2= ; (6)2ab= ; (7)4ab= . 单项式乘以单项式 把系数、同底数幂分别 作为积的 ,只在一个单项式里含有的 ,连同它的 一起作为积的一个 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考数学总复习第2讲整式及其运算一、选择题(每小题6分,共18分)1.(2014·舟山)下列运算正确的是( B)A.2a2+a=3a3B.(-a)2÷a=aC.(-a)3·a2=-a6D.(2a2)3=6a62.(2012·安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为( A)A.2a2B.3a2C.4a2D.5a2解析:四个等腰直角三角形拼在一起成为边长为a的正方形,加上中间一块正方形,所以阴影部分面积为2a23.(2014·毕节)若-2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是( D)A.2 B.0 C.-1 D.1二、填空题(每小题6分,共30分)4.(2014·连云港)计算(2x+1)(x-3)2.5.(2014·凉山)已知x1=3+2,x212+x22=__10__.6.(2012·长沙)若实数a,b满足|3a-a b的值为__1__.7.(2012·黔东南州)二次三项式x2-kx+9是一个完全平方式,则k的值是__±6__.解析:∵x2-kx+9=x2-kx+32,∴-kx=±2×x×3,解得k=±68.(2014·扬州)设a1,a2,…,a2014是从1,0,-1这三个数中取值的一列数,若a1+a2+…+a2014=69,(a1+1)2+(a2+1)2+…+(a2014+1)2=4001,则a1,a2,…,a2014中为0的个数__165__.三、解答题(共52分)9.(10分)计算:(1)(2012·乐山)3(2x2-y2)-2(3y2-2x2);原式=6x2-3y2-6y2+4x2=10x2-9y2(2)(2014·无锡)(x+1)(x-1)-(x-2)2.原式=x2-1-x2+4x-4=4x-510.(12分)先化简,再求值:(1)(2012·泉州)(x+3)2+(2+x)(2-x),其中x=-2;原式=x2+6x+9+4-x2=6x+13,当x=-2时,原式=6×(-2)+13=1(2)(2014·衡阳)(a+b)(a-b)+b(a+2b)-b2,其中a=1,b=-2.原式=a2-b2+ab+2b2-b2=a2+ab;当a=1,b=-2时,原式=12+1×(-2)=1-2=-111.(10分)观察下列算式:①1×3-22=3-4=-1,②2×4-32=8-9=-1,③3×5-42=15-16=-1,④________________________,……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.解:(1)4×6-52=24-25=-1(2)答案不唯一.如n(n+2)-(n+1)2=-1(3)n(n+2)-(n+1)2=n2+2n-(n2+2n+1)=n2+2n-n2-2n-1=-1.所以一定成立12.(10分)(2012·珠海)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×____=____×25;②____×396=693×____.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a,b),并证明.解:(1)①∵5+2=7,∴左边的三位数是275.右边的三位数是572,∴52×275=572×25;②∵左边的三位数是396,∴左边的两位数是63,右边的两位数是36,∴63×396=693×36;故答案为:①275,572;②63,36(2)∵左边两位数的十位数字为a,个位数字为b,∴左边的两位数是10a+b,三位数是100b+10(a+b)+a,右边的两位数是10b+a,三位数是100a+10(a+b)+b,∴一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a)证明:左边=(10a+b)×[100b+10(a+b)+a]=(10a+b)(100b+10a+10b+a)=(10a+b)(110b+11a)=11(10a+b)(10b+a),右边=[100a+10(a+b)+b]×(10b+a)=(100a +10a +10b +b )(10b +a )=(110a +11b )(10b +a )=11(10a +b )(10b +a ),∴左边=右边,故“数字对称等式”一般规律的式子为:(10a +b )×[100b +10(a +b )+a ]=[100a +10(a +b )+b ]×(10b +a )13.(10分)试确定a 和b ,使x 4+ax 2-bx +2能被x 2+3x +2整除.解:由于x 2+3x +2=(x +1)(x +2).因此,设x 4+ax 2-bx +2=(x +1)(x +2)·M.当x =-1时,即1+a +b +2=0,当x =-2时,即16+4a +2b +2=0,∴a =-6,b =32015年名师预测1.下列运算正确的是( C )A .54·12=326B .(a 3)2=a 3C .(1a +1b )2÷(1a 2-1b 2)=b +ab -aD .(-a)9÷a 3=(-a)62.已知(m -n)2=8,(m +n)2=2,则m 2+n 2=( C ) A .10 B .6 C .5 D .32019-2020年中考数学总复习 第30讲 图形的平移一、选择题(每小题6分,共24分)1.(2014·呼和浩特)已知线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D 的坐标为( A )A .(1,2)B .(2,9)C .(5,3)D .(-9,-4)2.(2014·滨州)如图,如果把△ABC 的顶点A 先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B 与线段AC 的关系是( D )A .垂直B .相等C .平分D .平分且垂直3.(2014·邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( D )A .甲种方案所用铁丝最长B .乙种方案所用铁丝最长C .丙种方案所用铁丝最长D .三种方案所用铁丝一样长4.(2013·滨州)如图,等边△ABC 沿射线BC 向右平移到△DCE 的位置,连接AD ,BD ,则下列结论:①AD=BC ;②BD,AC 互相平分;③四边形ACED 是菱形.其中正确的个数有( D )A .0个B .1个C .2个D .3个 二、填空题(每小题7分,共28分) 5.(2014·宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点C 的坐标是__(2,-2)__.6.(2012·无锡)如图,△ABC 中,∠ACB =90°,AB =8 cm ,D 是AB 的中点.现将△BCD 沿BA 方向平移1 cm ,得到△EFG,FG 交AC 于点H ,则GH 的长等于__3__ cm .解析:∵△ABC 中,∠ACB =90°,AB =8 cm ,D 是AB 的中点,∴AD =BD =CD =12AB =4cm ;又∵△EFG 由△BCD 沿BA 方向平移1 cm 得到的,∴GH ∥CD ,GD =1 cm ,∴GH DC =AGAD,即GH 4=4-14,解得GH =3(cm ) 7.如图①,两个等边△ABD,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A′B′D′的位置得到图②,则阴影部分的周长为__2__.解析:∵两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A′B′D′的位置,∴A ′M =A ′N =MN ,MO =DM =DO ,OD ′=D′E =OE ,EG =EC =GC ,B ′G =RG =RB′,∴OE +OM +MN +NR +GR +EG =A′D′+BC =1+1=28.(2012·广安)如图,把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A(-6,0)和原点O(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q ,则图中阴影部分的面积为__272__.解析:过点P 作PM⊥y 轴于点M ,设抛物线m 的对称轴交x 轴于点N.∵抛物线平移后经过原点O 和点A (-6,0),∴平移后的抛物线对称轴为x =-3,得出二次函数解析式为y =12(x +3)2+h ,将(-6,0)代入得出0=12(-6+3)2+h ,解得h =-92,∴点P 的坐标是(3,-92),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴S =3×|-92|=272三、解答题(共48分)9.(12分)(2013·云南)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形;(2)写出A,B,C三点平移后的对应点A′,B′,C′的坐标.解:(1)如图所示:(2)结合坐标系可得A′(5,2),B′(0,6),C′(1,0)10.(12分)(2014·湘潭)在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为__(-3,2)__;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为__(-2,3)__.解:(2)△A1O1B1如图所示:11.(12分)(2014·珠海)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB 为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得到△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt △ABC 与△DEF 重叠(阴影)部分的面积.解:(1)连接OG ,如图,∵∠BAC =90°,AB =4,AC =3,∴BC =AB 2+AC 2=5,∵Rt △ABC 沿射线AB 方向平移,使斜边与半圆O 相切于点G ,得△DEF ,∴AD =BE ,DF =AC =3,EF =BC =5,∠EDF =∠BAC =90°,∵EF 与半圆O 相切于点G ,∴OG ⊥EF ,∵AB =4,线段AB 为半圆O 的直径,∴OB =OG =2,∵∠GEO =∠DEF ,∴Rt △EOG ∽Rt △EFD ,∴OE EF =OG DF ,即OE 5=23,解得OE =103,∴BE =OE-OB =103-2=43(2)BD =DE -BE =4-43=83.∵DF∥AC ,∴DH AC =BD AB ,即DH 3=834,解得DH =2.∴S 阴影=S △BDH=12BD·DH =12×83×2=83,即Rt △ABC 与△DEF 重叠(阴影)部分的面积为8312.(12分)(2013·绍兴)如图,矩形ABCD 中,AB =6,第1次平移将矩形ABCD 沿AB 的方向向右平移5个单位,得到矩形A 1B 1C 1D 1,第2次平移将矩形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位,得到矩形A 2B 2C 2D 2,…,第n 次平移将矩形A n -1B n -1C n -1D n -1沿A n -1B n -1的方向平移5个单位,得到矩形A n B n C n D n (n >2).(1)求AB 1和AB 2的长; (2)若AB n 的长为56,求n.解:(1)∵AB =6,第1次平移将矩形ABCD 沿AB 的方向向右平移5个单位,得到矩形A 1B 1C 1D 1,第2次平移将矩形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位,得到矩形A 2B 2C 2D 2…∴AA 1=5,A 1A 2=5,A 2B 1=A 1B 1-A 1A 2=6-5=1,∴AB 1=AA 1+A 1A 2+A 2B 1=5+5+1=11,∴AB 2的长为5+5+6=16(2)∵AB 1=2×5+1=11,AB 2=3×5+1=16,∴AB n =(n +1)×5+1=56,解得n =10 2015年名师预测1.如图,将△ABC 沿BC 方向平移2 cm 得到△DEF,若△ABC 的周长为16 cm ,则四边形ABFD 的周长为( C )A .16 cmB .18 cmC .20 cmD .22 cm,第1题图),第2题图)2.如图,将等腰直角△ABC 沿BC 方向平移得到△A 1B 1C 1.若BC =32,△ABC 与△A 1B 1C 1重叠部分的面积为2,则BB 1=.解析:设B 1C =2x B 1C边上的高为x ,∴12×x×2x =2,解得x =2(舍去负值),∴B 1C =22,∴BB 1=BC -B 1C =2。