高三数学复习知识点归纳总结三篇
高三数学知识点总结(3篇)

高三数学知识点总结第一章:集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集:N-或N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实即:①任何一个集合是它本身的子集。
AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三、集合的运算运算类型交集并集补集第二章:基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈-.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
高三数学复习模块的知识点总结(3篇)

高三数学复习模块的知识点总结任一____A,____B,记做ABAB,BAA=BCard(AB)=card(A)+card(B)-card(AB)(1)命题原命题若p则q逆命题若q则p否命题若p则q逆否命题若q,则p(2)AB,A是B成立的充分条件BA,A是B成立的必要条件AB,A是B成立的充要条件1.集合元素具有①确定性;②互异性;③无序性2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法(3)集合的运算①A∩(B∪C)=(A∩B)∪(A∩C)②Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB(4)集合的性质n元集合的字集数:2n真子集数:2n-1;非空真子集数:2n-2高三数学复习模块的知识点总结(二)不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
不等式的判定:①常见的不等号有“>”“<”“≤”“≥”及“≠”。
分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;②在不等式“a>b”或“a③不等号的开口所对的数较大,不等号的尖头所对的数较小;④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。
不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(____,y,……,z)≤G(____,y,……,z)(其中不等号也可以为<,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
高中数学知识点全总结(优秀9篇)

高中数学知识点全总结(优秀9篇)高中复习数学方法篇一1.多动脑思考2.强化自己学习训练要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。
如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的定式训练是必要的。
尽管复习时间紧张,但我们仍然要注意回归课本。
要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。
3.养成良好的学习习惯学习高三数学必须养成良好的审解题解题习惯,如仔细阅读题目,看清数字,规范解题格式,做到审题要慢解题要快,注重过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。
这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。
其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。
可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。
必要时作些记录,也就是错题本,每位学生必备的,以便以后查询。
高中数学知识点归纳总结篇二数学是一们基础学科,我们从小就开始接触到它。
现在我们已经步入高中,由于高中数学对知识的难度、深度、广度要求更高,有一部分同学由于不适应这种变化,数学成绩总是不如人意。
甚至产生这样的困惑:“我在初中时数学成绩很好,可现在怎么了?”其实,学习是一个不断接收新知识的过程。
正是由于你在进入高中后学习方法或学习态度的影响,才会造成学得累死而成绩不好的后果。
那么,究竟该如何学好高中数学呢?以下我谈谈我的高中数学学习心得。
一、认清学习的能力状态。
1、心理素质。
我们在高中学习环境下取决于我们是否具有面对挫折、冷静分析问题的办法。
最新高考高三数学知识点总结5篇

最新高考高三数学知识点总结5篇第一篇:高三数学知识点总结-函数函数是高中数学的基础,高三数学中也是重中之重。
重要的函数知识点有:函数的定义、函数的分类、函数的性质、函数的图像和函数的应用等。
1. 函数的定义函数是数学中一个非常基本和重要的概念,它是一种对应关系,将一个自变量对应一个因变量。
一个函数通常写作f(x) = y,其中x为自变量,y为因变量,f(x)表示函数名称。
函数的定义域是指所有能够被输入到函数中的自变量的值,而值域则是函数所有可能的因变量的值。
2. 函数的分类函数可以按照其输入和输出的类型分类为以下几种:一次函数、二次函数、指数函数、对数函数、三角函数以及复合函数等。
3. 函数的图像函数的图像就是在平面直角坐标系内把对应关系中的自变量和因变量的值画出来的结果。
通过画出函数的图像,我们可以更容易地理解函数的性质。
例子:考虑函数f(x) = x²,其图像可以描述为一个抛物线,开口朝上,顶点坐标为(0, 0)。
第二篇:高三数学知识点总结-三角函数三角函数是高中数学中另一个重要的知识点。
三角函数包括正弦、余弦、正切、余切、正割和余割等。
1. 正弦、余弦和正切函数正弦、余弦和正切函数是最基本的三角函数。
它们可以用三角形中各条边的比例去定义。
正弦函数f(x) = sin(x)定义为对边(x)除以斜边(h),余弦函数f(x)=cos(x)定义为邻边(a)除以斜边(h),正切函数f(x)=tan(x)定义为对边(x)除以邻边(a)。
2. 逆三角函数可以通过三角函数的函数关系,如sin²(x)+cos²(x)=1,推出三角函数的逆函数。
这些逆三角函数的命名包括反正弦、反余弦、反正切和反余切函数等。
用记号arcsin(x)、arccos(x)、arctan(x)和arcctan(x)等表示。
例子:cos(π/4) = sin(π/4) = 1/√2,因为90度的等腰直角三角形斜边长和两边之一的长度是相等的。
高三数学知识点总结(15篇)

高三数学知识点总结(15篇)高三数学知识点总结1考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。
重点考查集合间关系的理解和认识。
近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。
在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。
简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。
导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量一般是2道小题,1道综合解答题。
小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。
大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。
向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型、考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。
对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查、在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目、考点五:立体几何与空间向量一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
高三必背数学复习知识点整理5篇分享

高三必背数学复习知识点整理5篇分享高三数学复习知识点1等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分.不等式基本性质有:(1)a bb(2)a b,b ca c(传递性)(3)a ba+c b+c(c∈R)(4)c 0时,a bac bcc 0时,a bac运算性质有:(1)a b,c da+c b+d.(2)a b 0,c d 0ac bd.(3)a b 0an bn(n∈N,n 1).(4)a b 0 (n∈N,n 1).应注意,上述性质中,条件与结论的逻辑关系有两种:〝〞和〝〞即推出关系和等价关系.一般地,证明不等式就是从条件出发施行一系列的推出变换.解不等式就是施行一系列的等价变换.因此,要正确理解和应用不等式性质.②关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立.(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小.(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系. 高三数学复习知识点21.对于函数f(_),如果对于定义域内任意一个_,都有f(-_)=-f(_),那么f(_)为奇函数;2.对于函数f(_),如果对于定义域内任意一个_,都有f(-_)=f(_),那么f(_)为偶函数;3.一般地,对于函数y=f(_),定义域内每一个自变量_,都有f(a+_)=2b-f(a-_),则y=f(_)的图象关于点(a,b)成中心对称;4.一般地,对于函数y=f(_),定义域内每一个自变量_都有f(a+_)=f(a-_),则它的图象关于_=a成轴对称.5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个_,则-_也一定是定义域内的一个自变量(即定义域关于原点对称). 高三数学复习知识点31向考生强调:确保简单题全拿分,中档题少失分>中要求〝高考数学考查中学的基础知识.基本技能的掌握程度〞,在〝考查基础知识的同时,注重考查能力〞.〝试题设计力求情境熟.入口宽.方法多.有层次.〞高考试题很大部分是简单题与中档题,所以,学生如果基础知识不掌握,那么还谈什么能力呢?因此建议:老师们一定要引导考生在最后一个学期,加强基础知识.基本方法的巩固,保证简单题全拿分.中档题少失分.对于难题,则要鼓励考生切不可放弃,第一小题要拿下,最后小题多角度地思考努力寻找恰当方法,尽可能多拿分,平时一定要养成不会做的难题拿步骤分的习惯.2引导考生学会反思归纳,学会反思命题者出题意图>指出,试题要〝注重通性通法〞.〝常规方法〞.根据此,老师们要做的是:首先,引导考生反思归纳,寻找〝通性通法〞〝常规方法〞.数学需要一定的训练量,几天不练就会感觉手生,但题海战术并不可取,因为题海战术会挤占反思的时间.因此平时在做练习模拟卷时,做完题目,除了订正,还应该反思.>中关于空间想象能力是这样叙述的:〝能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解.组合;会运用图形与图表等手段形象地揭示问题的本质.〞其次,引导考生反思命题人为什么出这个题,想考查什么?比如立体几何解答题为什么是这样出题的?显而易见,要考查空间想象能力.因此做完立体几何解答题后,要再审视一下,这个几何体是怎样构成的,几何元素间有哪些关系.再比如,对于很多考生而言,解析几何难于计算,为什么难?因为不会〝寻找与设计合理.简捷的运算途径〞!解析几何解答题没有过关的学生,引导他们反思下自己的运算求解能力,平时遇到计算时,不可畏难退却,认认真真地做透几个解析几何解答题,体会其中的基本技巧,运算求解能力也就培养起来了.3用考试说明,引导考生查漏补缺,提高复习效率用>引导学生查漏补缺,看看有哪些知识点考生已经达到了考试要求,有哪些还没有达到.比如〝会求一些简单的函数的值域〞,考生不仅要能够说出求值域的常用方法——观察法.配方法.换元法.图象法.单调性法等,还应该说得出与方法对应的经典例题.对于没有达到考试要求的知识点,就需要重点加强.专项突破. 对于不知道的〝数学概念.性质.法则.公式.公理.定理〞,需要认真地看教材,补上短板.比如〝理解函数的(小)值及其几何意义,并能求出函数的值〞,如果说不出最值的几何意义,就应该再看一遍教材上关于(小)的定义.通过研读考试说明,把考试说明先读厚再读薄,对基础知识.基本技能进行网络化的加工整理,发现知识内在的联系与规律,形成脉络清晰.主线突出的知识体系,从而有利于快速提取知识解决问题.比如关于〝恒成立问题〞的知识网络构建,应该知道有四种常见的解法,一是变量分离,二是转化为最值问题,三是图象法,四是转换主元法,应该知道四种解法内在的联系与区别是什么,除此之外,还应该知道〝恒成立问题〞与〝存在性问题〞的区别.建议考生画出这张知识网络,在考试中遇到〝恒成立问题〞,就可以根据这张网络快速探索合适的解题方法.数学对于文科生来说是个大难题,有些同学甚至〝谈数学色变〞.其实只要掌握恰当的学习方法,文科生一样可以学好数学并在高考中取得满意的分数.■杜绝负面的自我暗示首先对数学学习不要抱有放弃的想法.有些同学认为数学差一点没关系,只要在其他三门文科上多用功就可以把总分补回来,这种想法是非常错误的.我高三时的班主任曾经说过一个〝木桶原理〞:一只木桶盛水量的多少取决于它最短的一块木板.高考也是如此,只有各科全面发展才能取得好成绩.其次是要杜绝负面的自我暗示.高三一年会有许许多多的考试,不可能每一次都取得自己理想的成绩.在失败的时候不要有〝我肯定没希望了〞.〝我是学不好了〞这样的暗示,相反的,要对自己始终充满信心,最终成功会到你的身边.■抄笔记别丢了〝西瓜〞高考数学试卷中大部分的题目都是基础题,只要把这些基础题做好,分数便不会低了.要想做好基础题,平时上课时的听课效率便显得格外重要.一般教高三的都是有着丰富经验的老师,他们上课时的内容可谓是精华,认真听讲45分钟要比自己在家复习2个小时还要有效.听课时可以适当地做些笔记,但前提是不影响听课的效果.有些同学光顾着抄笔记却忽略了老师解题的思路,这样就是〝捡了芝麻丢了西瓜〞,反而有些得不偿失.■题目做两遍要想学好数学,平时的练习必不可少,但这并不意味着要进行题海战术,做练习也要讲究科学性.在选择参考书方面可以听一下老师的意见,一般来说老师会根据自己的教学方式和进度给出一定的建议,数量基本在1—2本左右,不要太多.在选好参考书以后要认真完整地做,每一本好的参考书都存在着一个知识体系,有些同学这本书做一点,那本书做一点,到最后做了许多本书但都没有做完,无法形成一个完整的知识体系,效果反而不好.做题的时候要多做简单题,并且要定好时间,这样可以提高解题速度.在高考前的冲刺阶段要保证1—2天做一套试卷来保持状态.最重要的是要通过做题发现并解决自己已有的问题,总结出各类题目的解题方法并且熟练掌握.在这里有两个小建议:一是在做填空选择题时可以在旁边的空白处写一些解题过程以方便以后复习;二是题目做两遍以上,可以加深印象.■应考时要舍得放弃对于大部分数学基础不是很扎实的同学来说,放弃最后两题应该是一个比较明智的选择.高考数学试卷的最后两题对于能力的要求较高,数学较弱的同学不要花太多的时间在上面,而应把精力放在前面的基础题上,这样成绩反而会有所提高.高考的大题目都是按过程给分的,所以万一遇到不会的题也不要空着,应根据题意尽量多写一些步骤.在对待粗心这个常见问题上,我有两个建议:一是少打草稿,把步骤都写在试卷上;二是规范草稿,让草稿一目了然,这样便不太会出现看错或抄错的现象了.考试中有时可以用代数字.特殊情况和计算器等方法来提高解题速度解决难题,但在考试过后一定要把题目正规的解题思路了解清楚.每一次考试的试卷和高考前各区的模拟卷都是珍贵的复习资料,一定要妥善保存.高三数学复习知识点4立体几何初步(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体.分类:以底面多边形的边数作为分类的标准分为三棱柱.四棱柱.五棱柱等.表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面.对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥.四棱锥.五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面.对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态.四棱台.五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.高三数学复习知识点5①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高.斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高.侧棱.侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(_)(各个侧面的等腰三角形不知是否全等)ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.简证:AB⊥CD,AC⊥BDBC⊥AD.令得,已知则.iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.简证:取AC中点,则平面90°易知EFGH为平行四边形EFGH为长方形.若对角线等,则为正方形._高三必背数学复习知识点整理5篇分享。
高三数学必修三知识点总结归纳

高三数学必修三知识点总结归纳【导语】数学是研究数量、结构、变化、空间以及信息等概念的一门学科。
高考数学在高考中占据着重要的地位,需要我们认真学习。
以下是《高三数学必修三知识点总结归纳》,希望能够帮助到大家。
1.高三数学必修三知识点总结归纳篇一圆与圆的位置关系:外离、相切(内切和外切)、相交、内含。
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。
圆与圆的位置关系的判断方法一、设两个圆的半径为R和r,圆心距为d。
1、d>R+r两圆外离;两圆的圆心距离之和大于两圆的半径之和。
2、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。
3、d=R-r两圆内切;两圆的圆心距离之和等于两圆的半径之差。
二、圆和圆的位置关系,还可用有无公共点来判断:1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。
2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
3、有两个公共点的叫相交。
两圆圆心之间的距离叫做圆心距。
2.高三数学必修三知识点总结归纳篇二1、直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°2、直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
3.高三数学必修三知识点总结归纳篇三第一章:三角函数。
考试必考题。
诱导公式和基本三角函数图像的一些性质只要记住会画图就行,难度在于三角函数形函数的振幅、频率、周期、相位、初相,及根据最值计算A、B的值和周期,及恒等变化时图像及性质的变化,这一知识点内容较多,需要多花时间,首先要记忆,其次要多做题强化练习,只要能踏踏实实去做,也不难掌握,毕竟不存在理解上的难度。
高三数学必考知识点总结【五篇】

高三数学必考知识点总结【五篇】学习任何一门科目都离不开对知识点的总结,尤其是同学们在学习数学时,更要总结各个方程式知识点,这样也方便同学们日后的复习。
高三数学知识点11、直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α180°2、直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
3、直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
高三数学知识点2a(1)=a,a(n)为公差为r的等差数列通项公式:a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.可用归纳法证明。
n=1时,a(1)=a+(1-1)r=a。
成立。
假设n=k时,等差数列的通项公式成立。
a(k)=a+(k-1)r则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.通项公式也成立。
因此,由归纳法知,等差数列的通项公式是正确的。
求和公式:S(n)=a(1)+a(2)+...+a(n)=a+(a+r)+...+[a+(n-1)r]=na+r[1+2+...+(n-1)]=na+n(n-1)r/2n-1)]r不等于1时,S(n)=a[1-r]/[1-r]r=1时,S(n)=na.同样,可用归纳法证明求和公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学复习知识点归纳总结三篇
同学们,你们在复习高三数学的时候会不会毫无头绪,不知从何处开始?今天我为大家准备了高三数学复习知识点总结,帮助同学们找到复习的方向,下面就是我给大家带来的高三数学复习知识点总结,希望能帮助到大家!
高三数学复习知识点总结(一)
1.数列的定义、分类与通项公式
(1)数列的定义:
①数列:按照一定顺序排列的一列数.
②数列的项:数列中的每一个数.
(2)数列的分类:
分类标准类型满足条件
项数有穷数列项数有限
无穷数列项数无限
项与项间的大小关系递增数列an+1>an其中n∈N_
递减数列an+1
常数列an+1=an
(3)数列的通项公式:
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.
2.数列的递推公式
如果已知数列{an}的首项(或前几项),且任一项an与它的前一项
an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.
3.对数列概念的理解
(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.
(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别.
4.数列的函数特征
数列是一个定义域为正整数集N_(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n∈N_).
高三数学复习知识点总结(二)
(1)先看“充分条件和必要条件”
当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。
这里由p=>q,得出p为q的充分条件是容易理解的。
但为什么说q是p的必要条件呢?
事实上,与“p=>q”等价的逆否命题是“非q=>非p”。
它的意思是:若q 不成立,则p一定不成立。
这就是说,q对于p是必不可少的,因而是必要的。
(2)再看“充要条件”
若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。
简称为p 是q的充要条件。
记作p<=>q
回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题
B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。
“充要条件”的含义,实际上与“等价于”的含义完全相同。
也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。
(3)定义与充要条件
数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。
如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。
显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。
“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。
“仅当”表示“必要”。
(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。
高三数学复习知识点总结(三)
(1)先看“充分条件和必要条件”
当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。
这里由p=>q,得出p为q的充分条件是容易理解的。
但为什么说q是p的必要条件呢?
事实上,与“p=>q”等价的逆否命题是“非q=>非p”。
它的意思是:若q 不成立,则p一定不成立。
这就是说,q对于p是必不可少的,因而是必要的。
(2)再看“充要条件”
若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。
简称为p 是q的充要条件。
记作p<=>q
回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。
“充要条件”的含义,实际上与“等价于”的含义完全相同。
也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。
(3)定义与充要条件
数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。
如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。
显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。
“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。
“仅当”表示“必要”。
(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。