第四节有理函数的积分
4(4)有理函数及三角函数有理式的积分(1)

原式=
5u + 2 (u2 + 1)2
du
5 2
d(u2 + 1)
(u2 + 1)2 + 2
du (u2 + 1)2
51
u
- 2 u2 + 1 + u2 + 1 + arctanu + C
递推公式
回代
2x -7 2( x2 - 2x + 2) + arctan( x - 1) + C
书上无
Q( x)
部分分式的和, 如果分母多项式Q( x)在实数域
上的质因式分解式为:
Q( x) b0( x - a) ( x2 + px + q) ,( p2 - 4q 0)
, 为正整数, 则 P( x) 可唯一的分解为:
Q( x)
4
有理函数的积分
Q( x) b0( x - a) ( x2 + px + q) ,( p2 - 4q 0)
+ arctan x + C
说明:当被积函数是假分式时,应把它分为 一个多项式和一个真分式,分别积分.
9
有理函数的积分
例2 求
x+3 x2 - 5x + 6 dx
解
x2
x+3 -5x + 6
(x
x+3 - 2)( x - 3)
A+ x-2
B x-3
因式分解 x + 3 A(x - 3) + B(x - 2)
Ap
At + (B - )
2
高等数学 第四节 有理函数的积分

有理函数的积分
P 210 −
初等函数 f ( x ) 在它的定义域上是连续 的 , 它的不定积
分 I = ∫ f ( x ) dx 一定存在 , 但是却不一定能把 I 用初等函数
表示出来 , 例如 sin x , x
1 , ln x
e
− x2
,
sin x2 .
我们称这些函数 "积不出来" , "积不出来" 不能说明它 的原函数不存在 .
⌠ x+ p d 2 In = n 2 p p2 x + 2 + q − 4 ⌡
1 u + I1 + c , I2 = 2 2 2a u + a 2
In =
1 u + ( 2n − 3) I n −1 + c . n 2a 2 ( n − 1) ( u 2 + a 2 ) −1
B D − 1 Bp ⋅ I = n 2 n −1 + 2 2 (1 − n) ( x + px + q )
4
⌠ I n = 2 du 2 n , ⌡ (u + a )
p p2 u= x+ , a = q− . 2 4
我们已经知道 : I1 = 1 arctan u + c , a a
2
⇒
1− u , 2u sin x = , cos x = 2 1+ u2 1+ u
1+ u2
x
2u
1− u2
x = 2arctanu ,
dx = 2 du . 1+ u2
高数讲义第四节有理函数的积分全

例9
求积分
1
x
1 xdx x
解 令 1 x t 1 x t2,
x
x
x
t
1 2
, 1
dx
2tdt t2 1
2,
例9
求积分
1
x
1 xdx x
解
令 1 x t x
x
xt2211a12,dxdx
1
2a
ln
x2tdat tx2 a1
2
C,
1 x
1
x
xdx
t
2
1t
t
2
2t
12
dt
2
x
2)
1
A 2x
Bx 1
C x2
解:令:
x
1 (1
x)
2
A x
B 1 x
C (1 x)
2
1 A(1 x)2 B x(1 x) C x
取 x1, 得 C 1; 取 x0, 得 A1;
再取 x 2 , 得 1 (1 2)2 B2(1 2) 2 , B 1 ;
1 x (1 x) 2
t
3
1 t 1
1dt
6
(t
2
t
1
t
1
)dt 1
2t 3 3t 2 6t 6 ln | t 1 | C
2 x 1 33 x 1 36 x 1 6 ln(6 x 1 1) C.
说明 无理函数去根号时, 取根指数的最小公倍数.
例11 求积分
x 3x 1
dx. 2x 1
解 先对分母进行有理化
f (x) 为真分式 , 当 m n 时
f (x) 为假分式
有理函数的不定积分

例5. 求
( x 2 x 2) (2 x 2) d x 解: 原式 2 2 ( x 2 x 2)
dx d( x 2 x 2) 2 2 2 ( x 1) 1 ( x 2 x 2)
2
2
1 C arctan(x 1) 2 x 2x 2
2
2
例11. 求 解: 为去掉被积函数分母中的根式, 取根指数 2, 3 的最小公倍数 6, 令 x t , 则有 5 1 2 6 t d t 原式 3 2 6 ( t t 1 ) dt 1 t t t
6
6
2 1t 3 1 ln 1 t t t 3 2
2
例3. 求 解: 原式
x 2x 3 2 d( x 1) 1 d( x 2 x 3) 3 2 2 x 2x 3 ( x 1) 2 ( 2 ) 2 3 x 1 1 2 arctan C ln x 2 x 3 2 2 2
1 ( 2 x 2) 3 2
例2. 求 解: 已知 1 1 4 2x 1 2 2 (1 2 x)(1 x ) 5 1 2 x 1 x 1 x 2
2 d(1 2 x) 1 d(1 x ) 1 dx 原式 2 2 5 5 1 2x 5 1 x 1 x 2 1 1 2 ln 1 2 x ln (1 x ) arctan x C 5 5 5
1 Bx C A 2 (1 2 x)(1 x ) 1 2 x 1 x 2
A(1 x 2 ) ( Bx C )(1 2 x) 2 (1 2 x)(1 x ) 2 1 A(1 x ) ( Bx C)(1 2x), 1 4 1 取x 得A , 取x 0得1 A C, C , 5 5 2 2 取x 1得1 2 A 3( B C), B
积分重要知识点归纳

2
x 2
sin
2
x 2
1 tan sec
2
x 2
1 tan 1 tan
2
x 2 , x 2
x 2
2
2 tan sin x 1 tan
x 2
2
1 tan
2
x 2 , x 2
x 2
,
cos x 1 tan
2
令
u tan
x 2
x 2 arctan u
(万能代换公式)
A 5
B6
故
原式
5 x2
6 x3
(3) 混合法
2
1 (1 2 x )(1 x )
2
A 1 2x
Bx C 1 x
2
A(1 x ) ( Bx C )(1 2 x ) 1
令x ,得
1 2
A
4 5
B 2 5
4 5 8
5
C 1
3( B C ) 1
dx
(1
2u
du
(1 u ) (1 u )
2 2
( 1 u )( 1 u )
2
du
1 x x x 2 1 1 arctan usec ln(1ln | u ) tan ln | | C . u | C ln | | 2 2 2
2
A
A ln x a C
A 1 n ( x a)
2
1 n
A
n
dx
C
(n 1)
2.
(1).
( 2).
有理函数的积分

1.有理函数的积分有理函数是指由两个多项式函数的商所表示的函数,一般形式为其中都是常数,为非负整数。
我们只需考虑真分式的积分,先来考虑两种特殊类型:(Ⅰ)这种类型是容易积出来的,(Ⅱ)作适当换元(令),可化为上式右端第一个不定积分可用凑微分法积出来为:对第二个不定积分,记用分部积分法可导出递推公式:整理得重复使用递推公式,最终归结为计算而可积出来为这样就可完成对不定积分(Ⅱ)的计算。
对任一个有理函数而言,均可写成一个多项式与一个有理真分式的和,而多项式的积分问题已经解决,下面主要考虑有理真分式(不妨设)的积分问题。
为叙述简便,不妨设.其方法是将化成许多简单分式(即类型(Ⅰ)、(Ⅱ))的代数和然后逐项积分。
由于类型(Ⅰ)、(Ⅱ)总是可“积出来”的,从面有理函数总是可以“积出来”。
下面简述分解有理真分式()的步骤:第一步按代数学的结论,将分母分解成实系数的一次因式与二次因式的乘幂之积。
其中均为自然数。
第二步根据因式分解结构,写出的部分分式的待定形式:对于每个形如的因式,所对应的部分分式为对于每个形如的因式,所对应的部分分式为把各个因式所对应的部分分式加起来,就完成了对的部分分式分解。
第三步确定待定系数:通分后比较分子上的多次式的系数,得待定系数的线性方程组,由此解得待定系数的值。
例8.13 求2.三角函数有理式和积分由及常数经过有限次四则运算所得的函数称为关于的有理式(或三角函数有理式)。
用表示对于这种函数的不定积分我们总可通过代换,化为以为变量的有理函数的积分。
理由是,,,又,故从而上面的讨论说明:三角函数有理式也总是可以“积出来”的,但对具体问题而言,用上述方法往往计算量太大,因此,有时要考虑用其它简便方法。
(1)如果是的奇函数时,即则设即可。
例如求(1);(2).(2)如果是的奇函数时,即则设即可。
例如求.(3)如果是关于与的偶函数时,即则设即可。
例如求(1);(2).(4)请研究被积函数为(为自然数)时的情况。
经济数学微积分有理函数的积分

例6 求积分
x 6
1 1 e e e
x 2 x 3 x 6
dx .
解
1 e e e
6 令 t e x 6 ln t , dx d t , t 1 1 6 dx dt x x x 3 2 1 t t t t 3 6 2
1 6 3 3 t 3 6 d t dt 2 2 t (1 t )(1 t ) t 1 t 1 t
1 dx . 例5 求积分 2 (1 2 x )(1 x )
4 2 1 x 1 5 dx 5 5 dx d x 解 2 1 2x 1 x2 (1 2 x )(1 x )
2 1 2x 1 1 ln(1 2 x ) dx dx 2 2 5 5 1 x 5 1 x 2 1 1 2 ln(1 2 x ) ln(1 x ) arctan x C . 5 5 5
可用递推法求出
※二、待定系数法举例
有理函数化为部分分式之和的一般规律: k (1)分母中若有因式 ( x a ) ,则分解后为
A1 A2 Ak , k k 1 ( x a) ( x a) xa
其中 A1 , A2 , , Ak 都是常数.
A ; 特殊地: k 1, 分解后为 xa
第四节 有理函数的积分
一、六个基本积分 二、待定系数法举例
三、小结
一、六个基本积分
定义 有理函数的定义:
n n 1
两个多项式的商表示的函数称之为有理函数.
P ( x ) a0 x a1 x an1 x an m m 1 Q( x ) b0 x b1 x bm 1 x bm
《有理函数积分》课件

有理函数的分类
总结词
根据分母中变量的最高次幂的次数,可以将有理函数分为一次、二次、三次等有理函数 。
详细描述
根据分母中变量的最高次幂的次数,可以将有理函数分为一次、二次、三次等有理函数 。例如,形如 f(x)=p(x)/x 的函数被称为一次有理函数,形如 f(x)=p(x)/(x^2+1) 的函 数被称为二次有理函数,以此类推。不同次数的有理函数具有不同的性质和积分方法。
舍入误差
在将数值近似为有限小数时,舍入误差是不可避免的。因 此,在处理实际问题时,需要注意舍入误差对结果的影响 。
初始条件和边界条件的影响
在求解微分方程时,初始条件和边界条件可能会影响积分 的结果。因此,在处理实际问题时,需要注意初始条件和 边界条件对结果的影响。
THANK YOU
信号处理
在信号处理中,有理函数积分用于描述信号的频 谱和滤波器的传递函数,如低通滤波器、高通滤 波器等。
材料力学
在材料力学中,有理函数积分用于描述材料的应 力-应变关系,从而为材料性能分析和优化提供 依据。
04
有理函数积分的注意 事项
积分公式的应用范围
确定被积函数的定义域
在应用积分公式之前,需要先确定被积函数的定义域,以避免出现 无意义或错误的积分结果。
02
有理函数的积分方法
部分分式积分法
总结词
将有理函数表示为部分分式的积分方法,适用于 有理函数积分问题。
适用范围
适用于有理函数积分问题,特别是当分母为多项 式时,应用更加广泛。
详细描述
部分分式积分法是一种将有理函数表示为部分分 式的积分方法,通过将有理函数分解为多项式和 简单函数的商,将积分问题转化为多项式和简单 函数的积分问题,从而简化计算过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A (3
B A
1, 2B)
3,
A B
5 ,
6
x2
x3 5x
6
5 x2
x
6
. 3
例2
1 x( x1)2
A x
(x
B 1)2
C, x1
1 A( x 1)2 Bx Cx( x 1)
(1)
代入特殊值来确定系数 A, B,C
取 x 0, A 1 取 x 1, B 1
取 x 2, 并将 A, B 值代入(1) C 1
x
cos
x
dx.
解
由万能置换公式
sin
x
1
2u u2
,
cos
x
1 1
u2 u2
2 dx 1 u2 du,
1
sin sin x
x
cos
x
dx
(1
2u u)(1
u2
du )
2u 1 u2 1 u2
(1 u)(1 u2 ) du
(1 (1
u)2 (1 u)(1
u
u2 2)
cos x
sec2
x
2
1
tan2
2 x
,
2
2
令u tan x x 2arctan u(万能置换公式) 2
sin
x
1
2u u2
,
cos
x
1 1
u2 u2
,
dx
1
2 u2
du
R(sin x,cos x)dx
2u 1 u2 2
R
1
u2
,
1
u2
1
u2
du.
例6
求积分
1
sin sin x
1 x( x 1)2
1 x
(x
1 1)2
1. x1
例3
(1
1 2x)(1
x2
)
1
A 2x
Bx C 1 x2
,
1 A(1 x2 ) (Bx C )(1 2x),
整理得 1 ( A 2B)x2 (B 2C )x C A,
A 2B 0,
B 2C 0, A C 1,
Mk x Nk x2 px q
其中Mi , N i 都是常数(i 1,2,, k).
特殊地:k
1,
分解后为
x
Mx 2
N px
q
;
真分式化为部分分式之和的待定系数法
例1
x
2
x
3 5x
6
(
x
x 2)(
3 x
3)
A x2
B, x3
x 3 A( x 3) B( x 2),
x 3 ( A B)x (3A 2B),
第四节 有理函数的积分
一、有理函数的积分
有理函数的定义:
两个多项式的商表示的函数称之.
P( Q(
x) x)
a0 xn b0 x m
a1 x n1 b1 x m1
an1 x bm1 x
an bm
其中m 、n 都是非负整数;a0 , a1 ,, an 及 b0 , b1 ,, bm 都是实数,并且a0 0 ,b0 0 .
)du
1 u 1 u2
du
1
1
du u
arctan u 1 ln(1 u2 ) ln | 1 u | C
2 u tan x
2
x 2
ln | sec x | ln | 1 tan x | C.
2
2
例7
求积分
1 sin 4
x
dx.
解(一) u tan x , 2
sin
x
1
2u u2
xdx
(1 cot2 x)csc2 xdx
(1 u2 )du
u3 (u ) C
3
cot3 x
(cot x
)C
3
特别注意
对于三角函数有理式的积分, 万能置换 不一定是最佳方法, 故三角有理式的计 算中先考虑其它手段, 不得已才用万能 置换.
三、简单无理函数的积分
讨论类型 R( x, n ax b), R( x, n ax b ), cx e
1
C.
例9 求积分
1 x1
3
x
dx. 1
例9 求积分
1 x1
3
x
dx. 1
解 令 t 6 x 1 6t 5dt dx,
1
(1 2x)(1
A x2 )
1
4, B 5 4
5 2x
2,C 5
2x1 55 1 x2
1 5
.
,
例4
求积分
1 x( x 1)2dx.
例4
求积分
1 x( x 1)2dx.
解
1 x(x
1)2dx
1 x
(x
1 1)2
1 x
1
dx
1
1
1
dx x
(
x
1)2
dx
x
dx 1
ln x 1 ln( x 1) C. x1
解决方法 作代换去掉根号.
例8
求积分
1 x
1 xdx x
解 令 1 x t 1 x t2,
x
x
1
x
t2ຫໍສະໝຸດ , 1dx 2tdt t2 1 2 ,
1 x
1
x
xdx
t
2
1t
t
2
2t
12
dt
2
t 2dt t2 1
2
1
t
2
1
1
dt
2t
ln
t t
1 1
C
2
1
x
x
ln
x
1
x
x
2
1
例5 求积分 (1 2x)(1 x2 ) dx.
1
例5 求积分 (1 2x)(1 x2 ) dx.
解
(1
1 2 x )(1
x2
)
dx
1
4
5 2x
dx
2x 5 1 x2
1 5dx
2 5
ln(1
2
x)
1 5
1
2
x x2
dx
1 5
1
1 x
2dx
2 ln(1 2x) 1 ln(1 x2 ) 1 arctan x C.
(x
A1 a)k
(x
A2 a)k1
Ak , xa
其中A1 , A2 ,, Ak 都是常数. 特殊地:k 1, 分解后为 A ;
xa
(2)分母中若有因式 ( x2 px q)k ,其中 p2 4q 0 则分解后为
M1x ( x2 px
N1 q)k
M2x N2 ( x2 px q)k1
,
dx
1
2 u2
du,
1 sin4
x
dx
1
3u2 3u4 8u4
u6du
1[ 8
1 3u3
3 u
3u
u3 3
]
C
24
1 tan
x 2
3
3 8 tan
x 2
3 tan 8
x 2
1 24
tan
x 2
3
C.
解(二) 令u cot x,则du csc2 xdx
1 sin4
x
dx
csc4
假定分子与分母之间没有公因式
(1) n m, 这有理函数是真分式;
(2) n m, 这有理函数是假分式;
利用多项式除法, 假分式可以化成一个 多项式和一个真分式之和.
例
x3 x2
x 1
1
x
1 x2
. 1
难点 将有理函数化为部分分式之和.
有理函数化为部分分式之和的一般规律:
(1)分母中若有因式 ( x a)k ,则分解后为
5
5
5
二、三角函数有理式的积分
三角有理式的定义:
由三角函数和常数经过有限次四则运算
构成的函数称之.一般记为 R(sin x,cos x)
sin x 2sin x cos x 22
2tan x 2
sec2 x
2tan x
1
tan
2
2
x
,
2
2
cos x cos2 x sin2 x ,
2
2
1 tan2 x 1 tan2 x