数字图像处理实验报告92184

合集下载

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告1. 引言数字图像处理是使用计算机来处理和优化图像的一种技术。

在本实验中,我们将探索几种常见的数字图像处理方法,并使用Python编程语言和相关库来实现。

2. 实验目的本实验的主要目的是:1.了解图像的基本特性和数字图像处理的基本原理;2.熟悉Python编程语言和相关图像处理库的使用;3.实现常见的图像处理算法并进行实验验证。

3. 实验方法在本实验中,我们使用Python编程语言和以下相关库来实现图像处理算法:•OpenCV:用于图像读取、显示和保存等基本操作;•Numpy:用于图像数据的处理和算术运算;•Matplotlib:用于图像的可视化和结果展示。

以下是实验涉及到的图像处理方法和步骤:1.图像读取和显示:使用OpenCV库读取图像,使用Matplotlib库显示图像;2.图像的灰度化:将彩色图像转换为灰度图像;3.图像的二值化:将灰度图像转换为黑白二值图像;4.图像的平滑处理:使用平滑滤波器对图像进行平滑处理,如均值滤波和高斯滤波;5.图像的边缘检测:使用边缘检测算法对图像进行边缘检测,如Sobel算子和Canny算子;6.图像的直方图均衡化:对灰度图像进行直方图均衡化,增强图像的对比度。

4. 实验过程和结果4.1 图像读取和显示首先,我们使用OpenCV库读取一张图像,并使用Matplotlib库显示该图像:import cv2import matplotlib.pyplot as plt# 读取图像img = cv2.imread('image.jpg')# 显示图像plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.axis('off')plt.show()4.2 图像的灰度化接下来,我们将彩色图像转换为灰度图像:# 灰度化图像gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 显示灰度图像plt.imshow(gray_img, cmap='gray')plt.axis('off')plt.show()4.3 图像的二值化然后,我们将灰度图像转换为黑白二值图像:# 二值化图像_, binary_img = cv2.threshold(gray_img, 128, 255, cv2.THRESH_BINARY)# 显示二值图像plt.imshow(binary_img, cmap='gray')plt.axis('off')plt.show()4.4 图像的平滑处理接下来,我们使用平滑滤波器对图像进行平滑处理,例如使用5x5的均值滤波器和高斯滤波器:# 均值滤波mean_img = cv2.blur(img, (5, 5))# 高斯滤波gaussian_img = cv2.GaussianBlur(img, (5, 5), 0) # 显示平滑处理后的图像plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(cv2.cvtColor(mean_img, cv2.COLOR_BGR2R GB))plt.title('Mean Filter')plt.axis('off')plt.subplot(122)plt.imshow(cv2.cvtColor(gaussian_img, cv2.COLOR_B GR2RGB))plt.title('Gaussian Filter')plt.axis('off')plt.show()4.5 图像的边缘检测然后,我们使用边缘检测算法对图像进行边缘检测,例如使用Sobel算子和Canny算子:# 边缘检测sobel_img = cv2.Sobel(gray_img, cv2.CV_8U, 1, 1, ksize=3)canny_img = cv2.Canny(gray_img, 50, 150)# 显示边缘检测结果plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(sobel_img, cmap='gray')plt.title('Sobel Operator')plt.axis('off')plt.subplot(122)plt.imshow(canny_img, cmap='gray')plt.title('Canny Operator')plt.axis('off')plt.show()4.6 图像的直方图均衡化最后,我们对灰度图像进行直方图均衡化,以增强图像的对比度:# 直方图均衡化equalized_img = cv2.equalizeHist(gray_img)# 显示直方图均衡化结果plt.imshow(equalized_img, cmap='gray')plt.axis('off')plt.show()5. 实验总结通过本实验,我们熟悉了数字图像处理的基本方法和步骤,并使用Python编程语言和相关库实现了图像的读取、显示、灰度化、二值化、平滑处理、边缘检测和直方图均衡化等操作。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。

2.掌握数字图像处理的基本方法。

3.掌握常用数字滤波器的性质和使用方法。

4.熟练应用数字图像处理软件进行图像处理。

实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。

% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。

图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。

在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。

RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。

% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。

数字图像处理中的滤波是一种常用的图像增强方法。

滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。

% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。

这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。

下面是数字图像处理在人脸识别应用中的一个简单例子。

% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告1一. 实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1.编程实现图像平移,要求平移后的图像大小不变;2.编程实现图像的镜像;3.编程实现图像的转置;4.编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架:3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:具体组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=”BM” bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebiXPelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIB Pixels DIB图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图, 用函数创建兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数 ,一般放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或打印机上显示DIB. 在显示时不进行缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI 位图.5. CreateDIBSection函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits 的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.数字图像处理实验报告2一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。

数字图像处理实验报告

数字图像处理实验报告

实验三、图像的傅立叶变换一、实验目的1、了解图像变换的意义和手段;2、熟悉傅里叶变换的性质;3、熟练掌握FFT变换及其应用;4、通过实验了解二维频谱的分布特点;5、通过本实验掌握利用MATLAB编程实现数字图像的傅立叶变换。

二、实验设备1、计算机;2、MATLAB软件;3、记录用的笔、纸。

4、移动式存储器(软盘、U盘等)。

三、实验原理1、应用傅立叶变换进行图像处理傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。

通过实验培养这项技能,将有助于解决大多数图像处理问题。

2、傅立叶(Fourier)变换的定义二维Fourier变换和二维离散傅立叶变换为:图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参1见相关书目,有关傅立叶变换的快速算法的程序不难找到。

实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。

四、实验步骤1、打开计算机,启动MATLAB程序;2、利用MatLab工具箱中的函数编制FFT频谱显示的函数;3、 a).调入、显示“实验一”获得的图像;图像存储格式应为“.gif”;b)对这幅图像做FFT并利用自编的函数显示其频谱;4、实现数字图像傅立叶变换的部分参考程序:I=imread(‘原图像名.gif’); %读入原图像文件imshow(I); %显示原图像fftI=fft2(I); %二维离散傅立叶变换sfftI=fftshift(fftI); %直流分量移到频谱中心RR=real(sfftI); %取傅立叶变换的实部II=imag(sfftI); %取傅立叶变换的虚部A=sqrt(RR.^2+II.^2);%计算频谱幅值A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225; %归一化figure; %设定窗口imshow(A); %显示原图像的频谱五、实验数据记录输入数字图像傅立叶变换的代码如下:I=imread(‘fengshu.gif’);imshow(I);fftI=fft2(I);sfftI=fftshift(fftI);RR=real(sfftI);II=imag(sfftI);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225;figure;imshow(A);运行以上程序原图像经傅立叶变换后的图像3实验四、图像的离散余弦变换和哈达玛变换一、实验目的1、了解图像离散余弦变换和逆变换的原理;2、理解离散余弦变换系数的特点;3、理解离散余弦变换在图像数据压缩中的应用;4、理解哈达玛变换的原理。

《数字图像处理》实验报告

《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。

在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。

首先,我们进行了图像的读取和显示实验。

通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。

这为我们后续的实验奠定了基础。

同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。

这使我们能够更好地理解后续实验中的算法和操作。

接下来,我们进行了图像的灰度化实验。

灰度化是将彩色图像转换为灰度图像的过程。

在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。

通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。

随后,我们进行了图像的直方图均衡化实验。

直方图均衡化是一种用于增强图像对比度的方法。

在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。

通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。

在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。

滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。

在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。

通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。

此外,我们还进行了图像的边缘检测实验。

边缘检测是一种用于提取图像边缘信息的方法。

在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。

通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。

最后,我们进行了图像的压缩实验。

图像压缩是一种将图像数据进行压缩以减小文件大小的方法。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-数字图像处理实验报告一、实验名称图像读取和图像直方图统计二、实验目的1.强化巩固《数字图像处理》课程中学习的知识,将理论用于实践。

2.学会利用C++程序语言实现数字图像处理中的“图像读取”和“图像直方图统计”功能,加深对这门课程的理解。

3.为以后更进一步学习数字图像处理的知识打下基础。

三、实验工具安装有VC 软件的电脑一台四、实验步骤(分实验一和实验二)(一)实验一:图像的读取1.按照实验指导书中的构建DIB函数库的方法,将此函数库的代码写进文本文档中,并另存为相应的“.cpp”文件和“.h”文件。

2.新建以“Miaoqi”为名字的工程,设置好相应选项。

3.接下来,在该工程中各个文件中添加相应代码。

点击“FileView”即可打开查看。

1)在“”中添加2)点击“查看”—“建立类向导”,添加“ON_WM_ERASEBKGND()”,“ON_COMMAND(ID_EDIT_COPY,OnEditCopy)”,“ON_COMMAND(ID_EDIT_PASTE,OnEditPaste)”,“ON_UPDATE_COMMAND_UI(ID_EDIT_COPY,OnUpdateEditCopy”, “ON_UPDATE_COMMAND_UI(ID_EDIT_ PASTE,OnUpdateEditPaste”。

并在中设置页数为1。

3)阅读实验指导书50页到页的内容,打开,完成以下函数相应代码的添加,以实现相应函数功能。

“void MiaoqiView::OnDraw(CDC*pDC)”,“BOOL MiaoqiView::OnEraseBkgnd(CDC*pDC) ”,“LRESULT MiaoqiView::OnDoRealize(WPARAM wParam, LPARAM)”,“void MiaoqiView::OnEditCopy()”,“void MiaoqiView::OnInitialUpdate() ”,“void MiaoqiView::CalcWindowRect(LPRECT lpClientRect, UINT nAdjustType)”,“void MiaoqiView::OnEditPaste() ”,“void CMiaoqiView::OnUpdateEditCopy(CCmdUI* pCmdUI) ”,“void CMiaoqiView::OnUpdateEditPaste(CCmdUI* pCmdUI)”,“void CChildFrame::ActivateFrame(int nCmdShow)”等。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告引言数字图像处理是一门研究如何对图像进行数字化处理的学科,它的应用广泛,涵盖了图像的获取、增强、压缩、分割等多个方面。

本次实验旨在探索数字图像处理的基本原理和常用技术,并通过实践操作加深对数字图像处理的理解。

实验目的1.学习掌握数字图像处理的基本原理;2.熟悉常用的数字图像处理工具和方法;3.实践应用数字图像处理技术解决实际问题。

实验环境在本次实验中,我们使用了以下环境和工具:- 操作系统:Windows 10 - 编程语言:Python - 图像处理库:OpenCV实验步骤步骤一:图像获取与显示首先,我们需要获取一张待处理的图像,并对其进行显示。

在Python中,我们可以使用OpenCV库来实现图像的读取和显示。

以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 显示图像cv2.imshow('Image', image)cv2.waitKey(0)cv2.destroyAllWindows()步骤二:图像增强图像增强是数字图像处理中常用的技术之一,旨在改善图像的质量和可视化效果。

常见的图像增强技术包括灰度转换、直方图均衡化、滤波器等。

以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 灰度转换gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GR AY)# 直方图均衡化equalized_image = cv2.equalizeHist(gray_image)# 高斯滤波器blurred_image = cv2.GaussianBlur(equalized_image, (5, 5), 0)# 边缘增强enhanced_image = cv2.Canny(blurred_image, 100, 20 0)# 显示图像cv2.imshow('Enhanced Image', enhanced_image)cv2.waitKey(0)cv2.destroyAllWindows()步骤三:图像压缩图像压缩是数字图像处理中的重要话题,旨在减少图像的存储空间和传输带宽。

数字图像处理 实验报告(完整版).doc

数字图像处理 实验报告(完整版).doc

数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。

6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。

7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。

其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理试验报告实验二:数字图像的空间滤波和频域滤波姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日1.实验目的1. 掌握图像滤波的基本定义及目的。

2. 理解空间域滤波的基本原理及方法。

3. 掌握进行图像的空域滤波的方法。

4. 掌握傅立叶变换及逆变换的基本原理方法。

5. 理解频域滤波的基本原理及方法。

6. 掌握进行图像的频域滤波的方法。

2.实验内容与要求1. 平滑空间滤波:1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。

2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。

3) 使用函数 imfilter 时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。

4) 运用for 循环,将加有椒盐噪声的图像进行10 次,20 次均值滤波,查看其特点,显示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。

5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。

6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。

2. 锐化空间滤波1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]对其进行滤波。

2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]3) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_moon.tif进行锐化滤波,并利用式g(x, y) f (x, y 2 f (x, y) 完成图像的锐化增强,观察其有何不同,要求在同一窗口中显示。

4) 采用不同的梯度算子对该幅图像进行锐化滤波,并比较其效果。

5) 自己设计锐化空间滤波器,并将其对噪声图像进行处理,显示处理后的图像;3. 傅立叶变换1) 读出一幅图像,对其进行快速傅立叶变换,分别显示其幅度图像和相位图像。

仅对相位部分进行傅立叶反变换后查看结果图像。

2) 仅对幅度部分进行傅立叶反变换后查看结果图像。

3) 将图像的傅立叶变换F 置为其共轭后进行反变换,比较新生成图像与原始图像的差异。

4. 平滑频域滤波1) 设计理想低通滤波器、巴特沃斯低通滤波器和高斯低通滤波器,截至频率自选,分别给出各种滤波器的透视图。

2) 读出一幅图像,分别采用理想低通滤波器、巴特沃斯低通滤波器和高斯低通滤波器对其进行滤波(截至频率自选),再做反变换,观察不同的截止频率下采用不同低通滤波器得到的图像与原图像的区别,特别注意振铃效应。

(提示:1)在频率域滤波同样要注意到填充问题;2)注意到(-1)x+y;)5. 锐化频域滤波1) 设计理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器,截至频率自选,分别给出各种滤波器的透视图。

2) 读出一幅图像,分别采用理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器对其进行滤波(截至频率自选),再做反变换,观察不同的截止频率下采用不同高通滤波器得到的图像与原图像的区别。

3.实验具体实现1. 平滑空间滤波:(1).读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。

img=imread('lena.png')figure,subplot(1,3,1); imshow(img);title('原始图像'); img2=imnoise(img,'salt &pepper',0.02); subplot(1,3,2);imshow(img2); title('椒盐噪声图像');img3=imnoise(img,'gaussian',0.02);subplot(1,3,3),imshow(img3);title('高斯噪声图像');(2).对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。

平滑滤波是低频增强的空间域滤波技术。

它的目的有两个,一是模糊,二是消除噪声。

将空间域低通滤波按线性和非线性特点有:线性、非线性平滑滤波器,线性平滑滤波器包括均值滤波器,非线性的平滑滤波器有最大值滤波器,中值滤波器,最小值滤波器。

代码如下:img=imread('lena.png') img=rgb2gray(img);figure,subplot(1,3,1);imshow(img);title('原始图像');img2=imnoise(img,'salt & pepper',0.02);subplot(1,3,2);imshow(img2);title('椒盐噪声图像');img3=imnoise(img,'gaussian',0.02);subplot(1,3,3),imshow(img3); title('高斯噪声图像');%对椒盐噪声图像进行滤波处理h=fspecial('average',3);I1=filter2(h,img2)/255;I2=medfilt2(img2,[3 3]);figure,subplot(2,2,1),imshow(img),title('原图像');subplot(2,2,2),imshow(img2),title('椒盐噪声图');subplot(2,2,3),imshow(I1),title('3*3 均值滤波图');subplot(2,2,4),imshow(I2),title('3*3 中值滤波图');%对高斯噪声图像进行滤波处理G1=filter2(h,img3)/255;G2=medfilt2(img3,[3 3]);figure,subplot(2,2,1),imshow(img),title('原图像');subplot(2,2,2),imshow(img3),title('高斯噪声图');subplot(2,2,3),imshow(G1),title('3*3 均值滤波图');subplot(2,2,4),imshow(G2),title('3*3 中值滤波图');(3). 使用函数imfilter 时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’c ircular’)进行低通滤波,显示处理后的图像。

g = imfilter(f, w, filtering_mode, boundary_options, size_options),其中,f 为输入图像,w 为滤波掩模,g 为滤波后图像。

h=fspecial('motion',50,45); %创建一个运动模糊滤波器filteredimg=imfilter(img,h);boundaryReplicate=imfilter(img,h,'replicate');boundary0=imfilter(img,h,0);boundarysymmetric=imfilter(img,h,'symmetric');boundarycircular=imfilter(img,h,'circular');figure,subplot(3,2,1),imshow(img),title('Original Image');subplot(3,2,2),imshow(filteredimg),title('Motion Blurred Image');subplot(3,2,3),imshow(boundaryReplicate),title('Replicate');subplot(3,2,4),imshow(boundary0),title('0-Padding');subplot(3,2,5),imshow(boundarysymmetric),title('symmetric');subplot(3,2,6),imshow(boundarycircular),title('circular');实验结果如下:(4).运用for 循环,将加有椒盐噪声的图像进行10 次,20 次均值滤波,查看其特点,显示均值处理后的图像(提示:利用fspecial 函数的’ave rage’类型生成均值滤波器)。

代码如下:h=fspecial('average');实验结果:(5).对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。

实验结果为:(6).自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。

代码如下:[m n]=size(img2);figure,subplot(1,2,1),imshow(img2); s=zeros(1,9);代码如下:h1=fspecial('average'); J=imfilter(img2,h1); J2=medfilt2(img2);figure,subplot(1,3,1),imshow(img2),title('salt & pepper Noise'); subplot(1,3,2),imshow(J),title('Averaging Filtering'); subplot(1,3,3),imshow(J2),title('Median Filtering'); for i=1:10J1=imfilter(img2,h); endfor j=1:20J2=imfilter(img2,h); endfigure,subplot(1,3,1),imshow(img2),title('salt & pepper Noise'); subplot(1,3,2),imshow(J1),title('10 Average Filtering');subplot(1,3,3),imshow(J2),title('20 Average Filtering');实验结果:2.锐化空间滤波(1)读出一幅图像,采用 3×3的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]对其 进行滤波。

相关文档
最新文档