对浙江省高考立体几何翻折问题的剖析

合集下载

立体几何中的翻折问题

立体几何中的翻折问题

C Q O P D
B
2 2 2 2 ) x2 2 x cos 45 ( )2 (2 x) 2 . 2 2 2
解得 x 1 . 由(1)知 AB 面 ACQ .
直线 AP 与平面 ACQ 所成的角的正弦值 sin 就是直线 AP 与直线 AB 所成角的
余弦值 cos BAP ,即 sin cos BAP = 即直线 AP 与平面 ACQ 所成的角为
绍兴市稽山中学 骆永明2来自展成平面, 逆向探究求最小值例5(06年江西卷文)
绍兴市稽山中学 骆永明
3.探寻轨迹, 点动成圆用两性质
例 6 已知矩形 ABCD,AB = 1,BC = 2 . 将△ABD 沿矩形 的对角线 BD 所在的直线进行翻折,在翻折过程中 ( ) A. 存在某个位置,使得直线 AC 与直线 BD 垂直 B. 存在某个位置,使得直线 AB 与直线 CD 垂直 C. 存在某个位置,使得直线 AD 与直线 BC 垂直 D. 对任意位置,直线 AC 与 BD,AB 与 CD,AD 与 BC 均 不垂直 ( 2012 年浙江省数学高考理科试题)
立体几何中的翻折问题
绍兴市稽山中学 骆永明
随着自主命题的深入,浙江省数学高 考立体几何试题对翻折问题似乎情有独 钟,且常考常新. 这类试题背景简单, 立意深远,对考生的空间想象能力要求很 高,能较好地改善学生对立体几何的思维 定势.
绍兴市稽山中学 骆永明
研究翻折问题应注意折前折后各元素相对位置的 变化. 要理清哪些位置关系和度量关系发生了变 化,哪些没有改变. 解决翻折问题的关键可以归纳 如下: ( 1) 找准“基准图”折叠; ( 2) 画好“2 个图”———折叠前的平面图和折 叠后的立体图; ( 3) 寻找“2 个量”———哪些量( 或关系) 发 生了变化,哪些量( 或关系) 没有发生变化.

立体几何中的翻折问题

立体几何中的翻折问题

AE = CFꎬ EF 交 BD 于 点 Hꎬ
将△DEF 沿 EF 折到△D′EF
的位置.
(1) 证明:AC⊥HD′ꎻ
(2) 若 AB
= 5ꎬAC
= 6ꎬAE

5 4
ꎬ OD′
=2
2 ꎬ求五棱锥
D′—ABCFE 的体积.
解析 (1) 由已知得 AC⊥BDꎬAD = CDꎬ又由 AE = CF
得AADE = CCDFꎬ故 AC∥EF.
参考文献:
[1]柴勤. 高中数学教学中学生解题能力的培养策略 [ J] . 考试周刊ꎬ208(45) :71.
[2]陈志全. 如何在高中数学教学中培养学生的数学 思维能力[ J] . 考试周刊ꎬ2018(43) :69.
[ 责任编辑:杨惠民]
立体几何中的翻折问题
莫碧华
( 重庆市第三十七中学校 400084)
由此得 EF⊥HDꎬEF⊥HD′ꎬ所以 AC⊥HD′.
— 32 —
为折痕ꎬ把△ABD 和△ACD 翻折成互相垂直的两个平面 后ꎬ某学生得出下列四个结论:
①AB⊥CDꎻ ②△BAC 是等边三角形ꎻ ③三棱锥 D—ABC 是正三棱锥ꎻ ④平面 ABD⊥平面 ABCꎻ 其中正确的是 . (写出所有正确命题的序号) 解析 由题知ꎬCD⊥平面 ABDꎬ故 CD⊥ABꎬ①正确ꎻ AD 为等腰直角△ABC 的斜边 BC 上的高ꎬ平面 ABD⊥平 面 ACDꎬ则 AB = AC = BCꎬ△BAC 是等边三角形ꎬ②正确ꎻ 易知 DA = DB = DCꎬ又由②知③正确ꎻ由①知④错. 故填: ①②③. 点评 涉及翻折中的线面位置关系的判定ꎬ根据翻 折前后所对应的平面图形与空间图形的位置关系ꎬ判定 线线、线面、面面的平行、垂直等位置关系.

立体几何中的折叠问题

立体几何中的折叠问题

链接高考:
(09 浙江)17.如图,在长方形 ABCD 中,AB 2 ,BC 1,E 为 DC 的
中点, F 为线段 EC (端点除外)上一动点.现将AFD 沿 AF 折起,
使平面 ABD 平面 ABC .在平面 ABD 内过点 D 作 DK AB , K 为垂
足.设 AK t ,则 t 的取值范围是
(3)AD与面BDM所成的角固定吗?(M为AC中点)
(4)二面角A-DB-C固定吗?
你能不用求解看出它的范围吗?
考向二:通过翻折得到一个不确定的几何体, 研究其点线面的位置关系
策略:明确不变量、紧抓关键量
C B
课本中翻折:
如图:边长为2的正方形ABCD中, (1)点E、F分别是边BC和CD的中点,将△ABE, △AFD分别沿AE,AF折起,使两点重合于P点,
归结为一个条件与结论明朗化的立几问题。 (3)将不变的条件集中到几何体图形中,将问题归结为一个条件与结论明朗化的立几问题。
研究其点线面的位置关系 求解翻折问题的基本方法: (4)二面角A-DB-C固定吗? 问题2、AD与BC会垂直吗? 温一模(16题) 图形的翻折问题在历年高考中时常出现,浙江省近几年就出现了四次,因为它是一个由直观到抽象的过程,所以每次的出现的题号都 偏后,同学们的答题情况也不太理想。
(1)AD与BC所成的角固定吗? 如图:边长为2的正方形ABCD中,
【总结规律】 你能不用求解看出它的范围吗?
问题6、二面角D-AC-B固定吗?范围为? 研究其点线面的位置关系。 如图:边长为2的正方形ABCD中,将△ACD沿对角线AC折起,连接BD,得到一个新的三棱锥D-ABC 问题5、AD与面BDM所成的角固定吗?(M为AC中点)
(2)求AD与面DBC所成角的正弦值 如图:边长为2的正方形ABCD中,将△ACD沿对角线AC折起,连接BD,得到一个新的三棱锥D-ABC (1)根据题中条件画出立体图形

立体几何中的翻折问题

立体几何中的翻折问题

规律小结:
分析求解折叠问题的关键是分辨折叠前后的不变量和不 变关系,在求解过程中充分利用不变量和不变关系.
如图,已知四边形ABCD是上、下底边长分别为2和6,高为 3 的等
腰梯形(如图①).将它沿对称轴OO1折成直二面角(如图②).
(1)证明:AC⊥BO1; (2)求二面角O—AC—O1的正弦值.
H
又因为BC⊂平面β,所以BC⊥D′E, 所以BC⊥α. 而D′C ⊂ α,所以BC⊥D′C, 所以∠D′CA为二面角β-BC-γ的平面角. 由于∠D′CA=45°, 所以二面角β-BC-γ的大小为45°.
VD'-ABC
=13SDABC
•D'O=1•1AC•BC•D'O 32
=13a2 46a=126a3
求解翻折问题的基本方法:
(1)先比较翻折前后的图形,弄清哪些量和位置关系在翻 折过程中不变,哪些已发生变化; (2)将不变的条件集中到立方体图形中,将问题归结为一 个条件与结论明朗化的立几问题.
(1)若二面角α-AC-β为直二面角,求二面角β-BC-γ的大小; (2)若二面角α-AC-β为60°,求三棱锥D′-ABC的体积.
立体几何中的翻折问题
如有一只小虫要从A爬到点M,
N
所走的最短路径是什么?
E
N
M
Hale Waihona Puke EFDC
A
B
N
MN
M
E
E F
F
D
C
D
C
A
BA
B
D
A
M
F
C
B
把一个平面图形按某种要求折起,转化为空间图 形,进而研究图形在位置关系和数量关系上的变 化,这就是翻折问题.

立体几何中的翻转与折叠问题

立体几何中的翻转与折叠问题

∵ AP=2,MP= √2 AP ⊥MP, ∴ tan ∠AMP=2√2
2
∴二面角A-EF-P大小为arctan ∠ AMP=2√2
(2) ∵ AP⊥PE,PE⊥PF,PF⊥AP,
∴VP-ABC=
1 3
×1×1×2=
2 3
(3)利用体积桥,

设P到平面AEF的距离为h,则S△AEF · h=3 VP-ABC
学生课前通过网络搜集资料,课上通 过学生动手操作、多媒体展示、师生互 动的讨论等环节,让学生在亲历探究的 过程中获得知识,从而达到培养能力的 目的,使学生情感、意志和能力都得到 充分的发展。
一.教学内容分析 二.教学对象分析 三.教学目标 四.教学方法 五.课堂结构和教学过程 六.教学评价 七.多媒体的应用
课堂小结 课后纸笔评价(分层作业)
五、课堂结构和教学过程
【课堂小结】
平面图形
翻 折 、展 剪开 拼 平面图形
不变量
位置关系 数量关系
解题关键
变量
位置关系 数量关系
五、课堂结构和教学过程
课后纸笔评价(分层作业)
变式训练:如图,已知ABCD是上下底边长分 D O 1
必 别为2和6,高为3 的等腰梯形,将它沿对称轴
一.教学内容分析 二.教学对象分析 三.教学目标 四.教学方法 五.课堂结构和教学过程 六.教学评价 七.多媒体的应用
三、教学目标
◆知识与技能目标: 1.使学生掌握翻折问题的解题方法,并会初步应用。 2.通过立体几何中翻折问题的学习,进一步掌握立体几何中
距离与成角的求法。
◆能力与方法目标: 1.培养学生的动手实践能力。 2.在实践过程中,使学生提高对立体图形的分析能力,进一
求解翻折问题的基本方法:

立体几何中的折叠问题含解析

立体几何中的折叠问题含解析

高考热点问题:立体几何中折叠问题一、考情分析立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等.二、经验分享(1)立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开.把一个平面图形按照某种要求折起,转化为空间图形,进而研究图形在位置关系和数量关系上的变化,这就是折叠问题.把一个几何体的表面伸展为一个平面图形从而研究几何体表面上的距离问题,这就是几何体的表面展开问题.折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,展开与折叠问题就是一个由抽象到直观,由直观到抽象的过程.此类问题也是历年高考命题的一大热点. (2) 平面图形通过折叠变为立体图形,就在图形发生变化的过程中,折叠前后有些量(长度、角度等)没有发生变化,我们称其为“不变量”.求解立体几何中的折叠问题,抓住“不变量”是关键.(3)把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.三、题型分析(一) 平面图形的折叠解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.不变的线线关系,尤其是平面图形中的线线平行、线线垂直关系是证明空间平行、垂直关系的起点和重要依据;不变的数量关系是求解几何体的数字特征,如几何体的表面积、体积、空间中的角与距离等的重要依据.1. 折叠后的形状判断【例1】如下图,在下列六个图形中,每个小四边形皆为全等的正方形,那么沿其正方形相邻边折叠,能够围成正方体的是_____________(要求:把你认为正确图形的序号都填上)①②③④⑤⑥【分析】根据平面图形的特征,想象平面图形折叠后的图形进行判断.也可利用手中的纸片画出相应的图形进行折叠.【答案】①③⑥【解析】①③⑥可以.②把横着的小方形折起后,再折竖着的小方形,则最上方的小方形与正方体的一个侧面重合,导致正方体缺少一个侧面;④把下方的小方形折起后,则上方的小方形中的第1,2个重合,导致正方体的底面缺少,不能折成正方体;⑤把中间的小方形当成正方体的底面,则右下方的小方形折叠不起来,构不成正方体.【小试牛刀】下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是()A. B. C. D.【例2】将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四边形ABCD(如图2),则在空间四边形ABCD中,AD与BC的位置关系是( )图1 图2A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【答案】C【解析】在图1中的等腰直角三角形ABC 中,斜边上的中线AD 就是斜边上的高,则AD ⊥BC ,折叠后如图2,AD 与BC 变成异面直线,而原线段BC 变成两条线段BD 、CD ,这两条线段与AD 垂直,即AD ⊥BD ,AD ⊥CD ,故AD ⊥平面BCD ,所以AD ⊥BC .【小试牛刀】如图,在正方形ABCD 中,点E,F 分别为边BC,AD 的中点,将沿BF 所在直线进行翻折,将沿DE 所在直线进行翻折,在翻折过程中( )A. 点A 与点C 在某一位置可能重合B. 点A 与点C 的最大距离为C. 直线AB 与直线CD 可能垂直D. 直线AF 与直线CE 可能垂直 3.折叠后几何体的数字特征折叠后几何体的数字特征包括线段长度、几何体的表面积与体积、空间角与距离等,设计问题综合、全面,也是高考命题的重点.解决此类问题的关键是准确确定折叠后几何体的结构特征以及平面图形折叠前后的数量关系之间的对应.【例3】(体积问题)如图所示,等腰ABC △的底边66AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积.(1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值?PED F B CA【解析】(1)由折起的过程可知,PE ⊥平面ABC,96ABC S ∆=,V(x)= (036x <<)(2),所以(0,6)x ∈时,'()0v x > ,V(x)单调递增;636x <<时'()0v x < ,V(x)单调递减;因此x=6时,V(x)取得最大值126.【小试牛刀】【河北省五个一名校联盟2019届高三下学期一诊】在平面四边形 中,AB=BC=2,AC=AD=2,现沿对角线AC 折起,使得平面DAC平面ABC ,则此时得到的三棱锥D-ABC外接球的表面积为( ) A .B .C .D .【例4】(空间角问题)如左图,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如右图所示),连结AP 、EF 、PF ,其中25PF =.(Ⅰ)求证:PF ⊥平面ABED ; (Ⅱ)求直线AP 与平面PEF 所成角的正弦值.【解析】(Ⅰ)由翻折不变性可知, , ,在PBF ∆中, ,所以PF BF ⊥ 在图1中,易得,在PEF ∆中, ,所以PF EF ⊥又,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .. .ACDBEF图图ABCD PEF(Ⅱ)方法一:以D 为原点,建立空间直角坐标系D xyz -如图所示,则()6,0,0A ,,()0,3,0E ,()6,8,0F ,所以, ,,设平面PEF 的法向量为(),,x y z =n ,则0FP EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即,解得560x y z ⎧=-⎪⎨⎪=⎩令6y =-,得,设直线AP 与平面PEF 所成角为θ,则81281427. 所以直线AP 与平面PEF 所成角的正弦值为81281427. 方法二:过点A 作AH EF ⊥于H ,由(Ⅰ)知PF ⊥平面ABED ,而AH ⊂平面ABED 所以PF AH ⊥,又,EF ⊂平面PEF ,PF ⊂平面PEF ,所以AH ⊥平面PEF ,所以APH ∠为直线AP 与平面PEF 所成的角. 在Rt APF ∆中,在AEF ∆中,由等面积公式得4861在Rt APH ∆中,所以直线AP 与平面PEF 所成角的正弦值为81281427. 【点评】折叠问题分析求解两原则:解法二图ABCD PEFHxy z 解法一图A BC D PEF(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变.【小试牛刀】【广东省汕头市2019届高三上学期期末】如图,已知是边长为6的等边三角形,点D、E分别是边AB、AC上的点,且满足,如图,将沿DE折成四棱锥,且有平面平面BCED.求证:平面BCED;记的中点为M,求二面角的余弦值.(二) 几何体的展开几何体表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面距离的问题,解题时不妨将它展开成平面图形试一试.1.展开后形状的判断【例5】把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案判断这个正方体是()解析:这是图③模型,在右图中,把中间的四个正方形围起来做“前后左右”四个面,有“空心圆”的正方形做“上面”,显然是正方体C的展形图,故选(C).【小试牛刀】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、“你”、“前”分别表示正方体的______________________.2.展开后的数字特征——表面上的最短距离问题【例6】如图,已知圆柱体底面圆的半径为2π,高为2,AB CD,分别是两底面的直径,AD BC,是母线.若一只小虫从A点出发,从侧面爬行到C点,求小虫爬行的最短路线的长度.【解析】如图,将圆柱的侧面展开,其中AB为底面周长的一半,即,2AD=.则小虫爬行的最短路线为线段AC.在矩形ABCD中,.所以小虫爬行的最短路线长度为22.【点评】几何体表面上的最短距离需要将几何体的表面展开,将其转化为平面内的最短距离,利用平面内两点之间的距离最短求解.但要注意棱柱的侧面展开图可能有多种展开图,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.【小试牛刀】如图,在长方体中, ,求沿着长方体表面从A到1C的最短路线长.四、迁移运用1.【浙江省2019年高考模拟训练】已知四边形中,,,在将沿着翻折成三棱锥的过程中,直线与平面所成角的角均小于直线与平面所成的角,设二面角,的大小分别为,则()A. B. C.存在 D.的大小关系无法确定【答案】B【解析】如图,在三棱锥中,作平面于,连,则分别为与平面所成的角.∵直线与平面所成角的角均小于直线与平面所成的角,∴.过作,垂足分别为,连,则有,∴分别为二面角,的平面角,∴.在中,,设BD的中点为O,则为边上的中线,由可得点H在CO的左侧(如图所示),∴.又,∴.又为锐角, ∴.故选B .2.【四川省德阳市2018届高三二诊】以等腰直角三角形ABC 的斜边BC 上的中线AD 为折痕,将ABD ∆与ACD ∆折成互相垂直的两个平面,得到以下四个结论:①BD ⊥平面ACD ;②ABC ∆为等边三角形;③平面ADC ⊥平面ABC ;④点D 在平面ABC 内的射影为ABC ∆的外接圆圆心.其中正确的有( ) A. ①②③ B. ②③④ C. ①②④ D. ①③④ 【答案】C【解析】由于三角形ABC 为等腰直角三角形,故,所以BD ⊥平面ACD ,故①正确,排除B 选项.由于AD BD ⊥,且平面ABD ⊥平面ACD ,故AD ⊥平面BCD ,所以AD CD ⊥,由此可知,三角形为等比三角形,故②正确,排除D 选项.由于,且ABC ∆为等边三角形,故点D 在平面ABC 内的射影为ABC ∆的外接圆圆心, ④正确,故选C .3.已知梯形如下图所示,其中,,为线段的中点,四边形为正方形,现沿进行折叠,使得平面平面,得到如图所示的几何体.已知当点满足时,平面平面,则的值为( )A. B. C. D.【答案】C 【解析】因为四边形为正方形,且平面平面,所以两两垂直,且,所以建立空间直角坐标系(如图所示),又因为,,所以,则,,设平面的法向量为,则由得,取,平面的法向量为,则由得,取,因为平面平面,所以,解得.故选C.4.如图是棱长为1的正方体的平面展开图,则在这个正方体中,以下结论错误的是( )A .点M 到AB 的距离为22B .AB 与EF 所成角是90︒C .三棱锥C DNE -的体积是16D .EF 与MC 是异面直线 【答案】D【解析】根据正方体的平面展开图,画出它的立体图形如图所示,A 中M 到AB 的距离为222MC =,A 正确;AB 与EF 所成角是90︒,B 正确;三棱锥C DNE -的体积是,C 正确;//EF MC ,D 错误.5.把正方形ABCD 沿对角线AC 折起,当以四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )度A .90B .60C .45D .30 【答案】C【解析】折叠后所得的三棱锥中易知当平面ACD 垂直平面ABC 时三棱锥的体积最大.设AC 的中点为O ,则DBO ∠即为所求,而DOB ∆是等腰直角三角形,所以,故选C .6.【辽宁省辽阳市2018学届高三第一次模拟】如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O , E , F , G , H 为圆O 上的点, ABE , BCF , CDG , ADH 分别以AB , BC , CD , DA 为底边的等腰三角形,沿虚线剪开后,分别以AB , BC , CD , DA 为折痕折起ABE , BCF , CDG , ADH ,使得E , F , G , H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为__________.【答案】500327π3cm【解析】如图:连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x ()0x >,则OI=2x , IE 62x =-. 因为该四棱锥的侧面积是底面积的2倍,所以,解得4x =,设该四棱锥的外接球的球心为Q ,半径为R ,则,,解得5R 3=,外接球的体积3cm7.【山东省济南市2019届高三上学期期末】在正方形中,点,分别为,的中点,将四边形沿翻折,使得平面平面,则异面直线与所成角的余弦值为__________.【答案】【解析】连接FC ,与DE 交于O 点,取BE 中点为N , 连接ON ,CN ,易得ON ∥BD ∴∠CON 就是异面直线与所成角设正方形的边长为2, OC=,ON=,CN=∴cos ∠CON==故答案为:8.如图所示,在四边形ABCD 中,,将四边形ABCD 沿对角线BD 折成四面体BCD A -',使平面⊥BD A /平面BCD ,则下列结论正确的是 .(1)BD C A ⊥'; (2);(3)A C '与平面BD A '所成的角为︒30; (4)四面体BCD A -'的体积为61. 【答案】(2)(4)【解析】平面⊥BD A /平面BCD CD ∴⊥平面'A BD ,/CA 与平面BD A /所成的角为'CA D ∠,四面体BCDA -/的体积为,,综上(2)(4)成立.9.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1AC 的中点,则在ADE ∆翻折过程中,下面四个选项中正确的是 (填写所有的正确选项)(1)||BM 是定值 (2)点M 在某个球面上运动(3)存在某个位置,使1DE A C ⊥ (4)存在某个位置,使//MB 平面1A DE 【答案】(1)(2)(4).【解析】取CD 中点F ,连接MF ,BF ,则1//MF DA ,//BF DE ,∴平面//MBF 平面1A DE , ∴//MB 平面1A DE ,故(4)正确;由,为定值,FB DE =为定值,由余弦定理可得,∴MB 是定值,故(1)正确;∵B 是定点,∴M 是在以B 为圆心,MB 为半径的圆上,故(2)正确;∵1AC 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,∴存在某个位置,使1DE A C ⊥错误,故(3)错误.10.【四川省广元市高2018届第二次高考适应性统考】如图,在矩形ABCD 中, 4AB =, 2AD =, E 是CD 的中点,以AE 为折痕将DAE ∆向上折起, D 变为'D ,且平面'D AE ⊥平面ABCE .(Ⅰ)求证: 'AD EB ⊥; (Ⅱ)求二面角'A BD E --的大小. 【答案】(Ⅰ)证明见解析;(Ⅱ) 90. 【解析】(Ⅰ)证明:∵, AB 4=,∴,∴AE EB ⊥,取AE 的中点M ,连结MD ',则,∵ 平面D AE '⊥平面ABCE ,∴MD '⊥平面ABCE ,∴MD '⊥ BE , 从而EB ⊥平面AD E ',∴AD EB '⊥ (Ⅱ)如图建立空间直角坐标系,则()A 4,2,0、()C 0,0,0、()B 0,2,0、()D 3,1,2',()E 2,0,0,从而BA =(4,0,0),,.设为平面ABD '的法向量,则可以取设为平面BD E '的法向量,则可以取因此, 12n n 0⋅=,有12n n ⊥,即平面ABD ' ⊥平面BD E ', 故二面角的大小为90.11.【福建省龙岩市2019届高三下学期教学质量检查】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面平面;(Ⅱ)求三棱锥的体积.【解析】(Ⅰ)折叠前,因为四边形为菱形,所以;所以折叠后,,, 又,平面,所以平面因为四边形为菱形,所以.又点为线段的中点,所以.所以四边形为平行四边形.所以.又平面,所以平面.因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.12.【湖南省长沙市长郡中学2019届高三上学期第一次适应性考试(一模】如图,在多边形中(图1),为长方形,为正三角形,现以为折痕将折起,使点在平面内的射影恰好在上(图2).(Ⅰ)证明:平面;(Ⅱ)若点在线段上,且,当点在线段上运动时,求三棱锥的体积. 【解析】(Ⅰ)过点作,垂足为.由于点在平面内的射影恰好在上,∴平面.∴.∵四边形为矩形,∴.又,∴平面,∴.又由,,可得,同理.又,∴,∴,且,∴平面.(Ⅱ)设点到底面的距离为,则.由,可知,∴.又,∴.13.【江西省上饶市重点中学2019届高三六校第一次联考】如图所示,在边长为2的菱形中,,现将沿边折到的位置.(1)求证:;(2)求三棱锥体积的最大值.【解析】(1)如图所示,取的中点为,连接,易得,,又面(2)由(1)知,= ,当时,的最大值为1.14.【云南师范大学附属中学2019届高三上学期第一次月考】如图所示甲,在四边形ABCD中,,,是边长为8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如图所示乙所示,点O,M,N分别为棱AC,PA,AD的中点.求证:平面PON;求三棱锥的体积.【解析】如图所示,为正三角形,O为AC的中点,,平面平面ACD,平面平面,平面ACD,平面ACD,.,,,,即.,N分别为棱AC,AD的中点,,,又,平面PON;解:由,,,可得,点O、N分别是AC、AD的中点,,是边长为8的等边三角形,,又为PA的中点,点M到平面ANO的距离,.又,.15.【湖北省荆门市2019届高三元月调研】如图,梯形中,,过分别作,,垂足分别,,已知,将梯形沿同侧折起,得空间几何体,如图.1若,证明:平面;2若,,线段上存在一点,满足与平面所成角的正弦值为,求的长.【解析】1由已知得四边形ABFE是正方形,且边长为2,在图2中,,由已知得,,平面又平面BDE,,又,,平面2在图2中,,,,即面DEFC,在梯形DEFC中,过点D作交CF于点M,连接CE,由题意得,,由勾股定理可得,则,,过E作交DC于点G,可知GE,EA,EF两两垂直,以E为坐标原点,以分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则,.设平面ACD的一个法向量为,由得,取得,设,则m,,,得设CP与平面ACD所成的角为,.所以16.【山西省吕梁市2019届高三上学期第一次模拟】已知如图(1)直角梯形,,,,,为的中点,沿将梯形折起(如图2),使.(1)证明:平面;(2)求点到平面的距离.【解析】(1)由已知可得为直角三角形,所以.又,所以,所以平面.(2)因为平面,平面,所以,又因为,平面,平面,,所以,平面,又因为,所以平面,又因为平面,所以.在直角中,,设点到平面的距离为,由,则,所以.16.正△ABC的边长为4,CD是AB边上的高,,E F分别是AC和BC边的中点,现将△ABC沿CD翻折--.成直二面角A DC B(1)试判断直线AB与平面DEF的位置关系,并说明理由;--的余弦值;(2)求二面角E DF C(3)在线段BC 上是否存在一点P ,使AP DE ⊥?证明你的结论.【分析】(1)问可利用翻折之后的几何体侧面ABC ∆的中位线得到//AB EF ,便可由线面平行的判定定理证得;(2)先根据直二面角A DC B --将条件转化为AD ⊥面BCD ,然后做出过点E 且与面BCD 垂直的直线EM ,再在平面BCD 内过M 作DF 的垂线即可得所求二面角的平面角;(3)把AP DE ⊥作为已知条件利用,利用ADC ∆中过A 与DE 垂直的直线确定点P 的位置.【解析】(1)如图:在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF//AB,又AB ⊄平面DEF,EF ⊂平面DEF .∴AB ∥平面DEF .(2)∵AD ⊥CD,BD ⊥CD∴∠ADB 是二面角A —CD —B 的平面角∴AD ⊥BD ∴AD ⊥平面BCD取CD 的中点M,这时EM ∥AD ∴EM ⊥平面BCD过M 作MN ⊥DF 于点N,连结EN,则EN ⊥DF∴∠MNE 是二面角E —DF —C 的平面角,在Rt △EMN 中,EM=1,MN=23 ∴tan ∠MNE=233,cos ∠MNE=721(3)在线段BC 上存在点P,使AP ⊥DE. 证明如下:在线段BC 上取点P,使BC BP 31 ,过P 作PQ ⊥CD 与点Q, ∴PQ ⊥平面ACD∵, 在等边△ADE 中,∠DAQ=30°,∴AQ ⊥DE ∴AP ⊥DE.。

【高考数学专题】立体几何中的翻折问题与最值问题 专题 高三一轮复习备考

【高考数学专题】立体几何中的翻折问题与最值问题  专题  高三一轮复习备考

立体几何中的翻折问题与最值问题一知识点导学1.解决折叠问题注意什么?折叠问题是立体几何的一个重要内容,是空间几何问题与平面几何问题相互转化的集中体现,处理这类问题的关键就是抓住折叠前后图形的特征关系。

解答折叠问题在于画好折叠前后的平面图形和立体图形,并弄清折叠前后哪些量和位置关系发生了变化,哪些量和位置关系没有发生变化,这些未发生变化的已知条件就是我们分析问题和解决问题的依据。

2立体几何常见的最值问题有哪些?如何解决?空间图形最值问题有线段、角、距离、面积、体积等最值问题,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次顺序思考,基本可以找到解题的途径.3如何解决涉及几何体切接问题最值计算?求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;4解决折叠问题的步骤有哪些?二.考点典例考点一:面积、体积最值问题空间几何体的侧面积、表面积、截面面积、体积等最值问题,往往是几何体中有关几何元素如顶点、侧棱、侧面、截面等在运动变化过程中,达到某个特殊位置时所具有的度量性质。

因此,在解决此类问题时,要注意分析这些几何元素运动变化与所求量的联系,建立两者之间的数量关系。

实例演练1(2021•湖南模拟)如图所示,圆形纸片的圆心为O,半径为6cm,该纸片上的等边三角形ABC的中心为O,D,E,F为圆O上的点,DBC∆分别是∆,FAB∆,ECA以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC ∆,ECA ∆,FAB ∆,使得D ,E ,F 重合,得到三棱锥.则当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是( )A .(0,36)πB .(0,C .(0,45-D .(0,解:设三棱锥的底面边长为a ,则0a <<连接OD ,交BC 于点G ,则6OD =,OG ,6DG =,∴2,侧面积为213(6)92S a a =⨯⨯=,∴三棱锥的表面积9S a =,0a <<9(0S a ∴=∈,,∴当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是(0,.故选:D .实例演练2(2021•宜宾模拟)已知三棱锥A BCD -的各个顶点都在球O 的表面上,AD ⊥平面BCD ,BD CD ⊥,3BD =,CD =E 是线段CD 上一点,且3CD CE =.若球O 的表面积为40π,则过点E 作球O 的截面,所得截面圆面积的最小值为( )A .4πB .6πC .8πD .10π解:依题意,AD ,BD ,CD 两两互相垂直,取BC 中点M ,连接MD ,由对称性可知,球心O 在M 点正上方,且OM ⊥平面BCD ,OA OB OC OD R ====,3BD =,CD =6BC ∴=,则3BM CM DM ===,设球O 的半径为R ,则2440R ππ=,解得R由22222222()OM BM R OB AD OM DM R OA⎧+==⎨-+==⎩,解得12OM AD =⎧⎨=⎩,OM ⊥平面BCD ,OM ME ∴⊥,又13CE CD =cos CD BCD BC ∠==,∴在CEM ∆中,由余弦定理有2222cos 3ME CE MC CE MC BCD =+-⋅⋅∠=,故ME =,在OME ∆中,2OE =,要使过E 作圆O 的截面面积最小,则此时截面与OE垂直,设此时截面圆半径为r ,则r ==∴26min S r ππ==.故选:B .实例演练3.(2021•河南模拟)现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD 为正方形,2AB =,侧面PAD ∆为等边三角形,线段BC 的中点为E ,若1PE =,则所需球体原材料的最小体积为( )A B .283π C .9π D 解:所需原材料体积最小的球体即为四棱锥P ABCD -的外接球,如图,设F 为AD 中点,G 为正方形ABCD 中心,PAD ∆为边长为2的等边三角形,PF ∴,又1PE =,2EF =,60PEF ∴∠=︒1PE EB EC ===,E ∴是PBC ∆的外心,过E 作面PBC 的垂线与过G 与面ABCD 的垂线交于O ,则O 为四棱锥P ABCD -外接球的球心.906030OEG OEP FEP ∠=∠-∠=︒-︒=︒,又1GE =,∴在直角三角形OGE 中求出OG =,又直角OAG ∆中,AG ,OA ∴=,即球半径R =,得343V R π==球.由于此时四棱锥P ABCD -在球心同侧,不是最小球,可让四棱锥下移到面ABCD 过球心时,即球半径12R AC =时,原材料最省,此时343V π=⨯=球.故选:A .实例演练4(20211,O 为底面圆心,OA ,OB 为底面半径,且23AOB π∠=,M 是母线PA 的中点.则在此圆锥侧面上,从M 到B 的路径中,最短路径的长度为( )A B 1 C D 1解:由题意,在底面半径为1O 是底面圆心,P 为圆锥顶点,圆锥的侧面展开图是半圆,如图,A ,B 是底面圆周上的两点,23AOB π∠=,所以在展开图中,3APB π∠=2=,M 为母线PA 的中点,所以1PM =,所以从B 到M 的最短路径的长是BM A .考点2:角的最值问题立体几何中的角有异面直线所成角、线面角和二面角的平面角三种。

高考数学难点突破八立体几何中的翻折问题答案

高考数学难点突破八立体几何中的翻折问题答案

高考数学难点突破八----立体几何中的翻折问题一、知识储备翻折问题就是把平面图形经过折叠变成一个空间图形,实际上,折叠问题就是轴对称的问题,折痕就是对称轴,重合的即是全等图形,解决折叠问题时,要把运动着的空间图形不断地与原平面图形进行对照,看清楚其中哪些量在变化,哪些量没有变化,从而寻找出解决问题的方法,达到空间问题与平面问题相互转化的目的。

核心是抓牢折痕就是翻折前与翻折后平面图形的公共底边,折痕与公共底边上两高所在平面垂直。

二、应用举例例1.如图,在矩形ABCD 中,M 在线段AB 上,且1AM AD ==,3AB =,将ADM ∆沿DM 翻折.在翻折过程中,记二面角A BC D --的平面角为θ,则tan θ的最大值为(C )ABCD例2.在矩形ABCD 中,4,3AB AD ==,E 为边AD 上的一点,1DE =,现将ABE ∆沿直线BE 折成A BE '∆,使得点A '在平面 BCDE 上的射影在四边形BCDE 内(不含边界),设二面角 A BE C '--的大小为θ,直线,A B A C ''与平面BCDE 所成的角分 别为αβ,,则( D ) A.βαθ<< B.βθα<< C.αθβ<< D.αβθ<<例3.如图,矩形ABCD 中心为, O BC AB >,现将DAC 沿着对角线AC 翻折成EAC ,记BOE a ∠=,二面角B AC E --的平面角为β,直线DE 和BC 所成角为γ,则( D )A. ,2a ββγ>>B. ,2a ββγ><C. ,2a ββγ<>D. ,2a ββγ<<例4.如图,在ABC △中,1AB =,22BC =,4B π=,将ABC △绕边AB 翻转至ABP △,使面ABP ⊥面ABC ,D 是BC 中点,设Q 是线段PA 上的动点,则当PC 与DQ 所成角取得最小值时,线段AQ 的长度为( B ) A .5 B .25C .35D .25例5.已知在矩形ABCD 中,2AD AB =,沿直线BD 将ABD ∆ 折成'A BD ∆,使得点'A 在平面BCD 上的射影在BCD ∆内(不含边界),设二面角'A BD C --的大小为θ,直线','A D A C 与平面BCD 所成的角分别为,αβ,则( )A. αθβ<<B. βθα<<C. βαθ<<D. αβθ<< 【答案】DQ DPCBA【解析】分析:由题意画出图形,由两种特殊位置得到点A′在平面BCD上的射影的情况,由线段的长度关系可得三个角的正弦的大小,则答案可求.详解:如图,∵四边形ABCD为矩形,∴BA′⊥A′D,当A′点在底面上的射影O落在BC上时,有平面A′BC⊥底面BCD,又DC⊥BC,可得DC⊥平面A′BC,则DC⊥BA′,∴BA′⊥平面A′DC,在Rt△BA′C中,设BA′=1,则,∴A′C=1,说明O为当A′点在底面上的射影E落在BD上时,可知A′E⊥BD,设BA′=1,则A D'=,要使点A′在平面BCD上的射影F在△BCD内(不含边界),则点A′的射影F落在线段OE上(不含端点).可知∠A′EF为二面角A′﹣BD﹣C的平面角θ,直线A′D与平面BCD所成的角为∠A′DF=α,直线A′C与平面BCD所成的角为∠A′CF=β,<,而A′C的最小值为1,可求得DF>CF,∴A′C<A′D,且A′E=13∴sin∠A′DF<sin∠A′CF<sin∠A′EO,则α<β<θ.故答案为:D点睛:本题主要考查二面角的平面角和直线与平面所成的角,考查正弦函数的单调性,意在考查学生对这些基础知识的掌握能力和空间想象能力分析推理能力.例6、(嘉兴市2020年1月期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .22π分析:设 AC ,FC 的中点为 M , N ,CP 的中点G 的轨迹是以 MN 为直径的半圆.例7、(宁波市2020年1月期终)已知平面四边形ABCD 中,90A C ∠=∠=︒,BC CD =,AB AD >,现将ABD △沿对角线BD 翻折得到三棱锥A BCD '-,在此过程中,二面角A BC D '--、A CDB '--的大小分别为α,β,直线A B '与平面BCD 所成角为γ,直线A D '与平面BCD 所成角为δ,则( )A .γδβ<<B .γαβ<<C .αδβ<<D .γαδ<<例8、(柯桥一中2020年1月期终)已知在矩形ABCD 中,2AB =,4AD =,E ,F 分别在边AD ,BC 上,且1AE =,3BF =,如图所示, 沿EF 将四边形AEFB 翻折成A EFB '',则在翻折过程中,二面角B CD E '--的大小为θ,则tan θ的最大值为( C ) A.5B.5C.4例9、(名校合作体2020年3月)已知C 为ABD Rt ∆斜边BD 上一点,且ACD ∆为等边三角形,现将ABC ∆沿AC 翻折至C B A '∆,若在三棱锥ACD B -'中,直线B C '和直线B A '与平面ACD 所成角分别为βα,,则( )A. βα<<0B.βαβ2≤<C.βαβ32≤≤例10、(2020年1月嘉兴期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .分析:取DE 中点O ,连CO PO ,,则点G 的轨迹是以CO 的中点为圆心,2221=PO 为半径的半圆,轨迹长为22ππ=r例11、(2020年4月温州模拟)如图,在ABC ∆中,点M 是边BC 的中点,将ABN ∆沿着AM 翻折成M B A '∆,且点B '不在平面AMC 内,点P 是线段C B '上一点,若二面角B AM P '--与二面角C AM P --的平面角相等,则直线AP 经过C B A '∆的( A ) A. 重心 B. 垂心 C. 内心 D.外心G PFD B A例12、(2020年嘉兴一模)将边长为1的正方形ABCD 沿对角线BD 翻折,使得二面角A BD C --的平面角的大小为π3,若点E ,F 分别是线段AC 和BD 上的动点,则BE CF 的取值范围为 ( )A .[1,0]-B .1[1,]4-C .1[,0]2-D . 11[,]24-例13、(2020年5月暨阳联考)如图:ABC ∆中,︒=∠⊥90,ACB BC AB ,D 为AC 的中点,ABD ∆沿BD 边翻折过程中,直线AB 与BC 直线所成的最大角,最小角分别记为11βα,,直线AD 与直线BC 所成的最大角,最小角分别记为22βα,,则有( D )A. ββαα≤<121,B. 2121ββαα><,C. 2121ββαα≤≥,D.2121ββαα>≥,分析一:翻折到180时,,AB BC 所成角最小,可知130β=,,AD BC 所成角最小,20β=,翻折0时,,AB BC 所成角最大,可知190α=,翻折过程中,可知AD 的投影可与BC 垂直,所以,AD BC 所成最大角290α=,所以 1190,30αβ︒︒==,2290,0αβ︒︒==分析二:对角线向量定理例14、(2020年4月台州二模)如下图①,在直角梯形ABCD 中,90=∠=∠=∠DAB CDB ABC , 30=∠BCD ,4=BC ,点E 在线段CD 上运动,如下图②,沿BE 将BEC ∆折至C BE '∆,使得平面⊥'C BE 平面ABED ,则C A '的最小值为 .⇒例15、(2020年嘉兴市基础知识测试)如图,矩形ABCD 中,2,1==BC AB ,点E 为AD 中点,将ABE ∆沿BE 折起,在翻折过程中,记二面角B DC A --的平面角大小为α,则当α最大时,=αtan ( ) A. 22 B. 32 C. 31 D.21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档