高频小信号放大器实验报告
高频实验报告(电子模板)4题版

高频实验报告(电子版)班级:班级:学号:学号:姓名:姓名:201年月实验一、小信号谐振放大器 1:本次实验电原理图输入信号Ui(mV P-P)50mV P-P放大管电流Ic 1 0.5mA 1mA 2mA 3mA 4mA 4.5mA 输出信号Uo(V P-P)2-1:直流工作点与对放大器影响关系得结论:输入信号Ui(mV P-P) 50mV P-P阻尼电阻R Z (1K2=1) R=∞(R11) R=100 Ω(R7) R=1K(R6) R=10K(R5) R=100K输出信号Uo(V P-P)3-1:阻尼电阻—LC 回路的特性曲线图3-2:阻尼电阻—LC 回路的特性结论4:逐点法测量放大器的幅频特性实验电原理图粘贴处特性曲线图 粘贴处输入信号幅度(mV P-P)50mV P-P输入信号(MHz )2727.52828.52929.530输出幅值(V P-P)输入信号 (MHz ) 30.53131.53232.533输出幅值(V P-P)4-1:放大器的幅频特性曲线图4-2:放大器的的特性结论5:本次实验实测波形选贴选作思考题:(任选一题)1. 单调谐放大器的电压增益K U 与哪些因素有关?双调谐放大器的有效频带宽度B 与哪些因素有关?2.改变阻尼电阻R 数值时电压增益K U 、有效频带宽度B 会如何变化?为什么?3. 用扫频仪测量电压增益输出衰减分别置10dB 和30dB 时,哪种测量结果较合理?4. 用数字频率计测量放大器的频率时,实测其输入信号和输出信号时,数字频率计均能正确显示吗?为什么?5. 调幅信号经放大器放大后其调制度m 应该变化吗?为什么?思考题( )答案如下:幅频特性曲线图粘贴处实测波形1 粘贴处 实测波形2 粘贴处实验二、高频谐振功率放大器1:本次实验电原理图2: 谐振功放电路的交流工作点统调实测值级别激励放大级器(6BG1) 末级谐振功率放大器(6BG2)测量项目注入信号U i(V6-1)激励信号U bm(V6-2)输出信号U0(V6-3)未级电流I C(mA)峰峰值V P-P有效值VU bm(V p-p)1 2 3 4 5 Uo(V p-p)Ic(mA)3-1:谐振功率放大器的激励特性U bm–U0特性曲线图3-2:谐振功率放大器的的特性结论U bm–U0特性曲线图粘贴处实验电原理图粘贴处RL(Ω) 50Ω 75Ω 100Ω 125Ω 150Ω 螺旋天线Uo(V p-p) (V6-3) Ic(mA) (V2)4-1:谐振功率放大器的负载特性RL-- Uo 特性曲线图4-2:谐振功率放大器的RL-- Uo 特性结论V2 (V) 2 V 4V 6V 8V 10V 12V U O (V p-p ) Ic (mA)5-1:谐振功率放大器的电压特性V2—Uo 特性曲线图5-2:谐振功率放大器的V2—Uo 特性结论V2—Uo 特性曲线图粘贴处RL-- Uo 特性曲线图粘贴处6:谐振放大器高频输出功率与工作效率的测量:电源输入功率P D : Ic = mA 、 V2 = V 、 P D = mW 高频输出功率P 0 : Uo = V p-p RL = Ω P 0 = mW 电路工作效率η: %5:本次实验实测波形选贴选作思考题:(任选一题)1 当调谐末级谐振回路时,会出现i C 的最小值和U 0的最大值往往不能同时出现。
高频小信号放大器实验报告

实验1高频小信号放大器幅频特性曲线为:带宽:8.0*0.7=5.6Bw1=6.6-6.1=0.5MHz2、观察集电极负载对单调谐回路谐振放大器幅频特性的影响当放大器工作于放大状态下,运用上步点测法测出接通与不接通1R3的幅频特性曲线。
既令2K1置“on”,重复测量并与上步图表中数据作比较。
f/MHz 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1U/mV 1.7 1.9 2.0 2.4 2.6 3.2 3.6 4.0 5.2 5.6 5.6 5.2 4.4 3.8 3.2 2.6 2.4 2.0幅频特性曲线为:5.6*0.7=3.92;Bw2=6.65-6.1=0.55MHz3、双调谐回路谐振放大器幅频特性测量(保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性。
)2K2往上拨,接通2C6(80P),2K1置off。
高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。
2K03往下拨,使高频信号送入放大器输入端。
示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。
反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。
按照下表改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入下表中。
f/MHz 4.8 5.0 5.2 5.4 5.7 5.8 5.9 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 U/mV 0.8 1.4 2.6 4.2 8.0 8.8 8.0 8.0 8.0 8.2 8.4 6.4 4.8 3.2 2.0 1.8 1.4 1.2 幅频特性曲线:8*0.7=5.6V;Bw3=6.55-5.5-1.05MHz4、放大器动态范围测量2K1置off,2K2置单调谐,接通2C6.高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHz,幅度为100mV。
高频小信号放大器实验报告

基于Multisim的通信电路仿真实验实验一高频小信号放大器1.1 实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
2、熟悉谐振回路的调谐方法及测试方法。
3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
1.2 实验容1.2.1 单调谐高频小信号放大器仿真图1.1 单调谐高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。
ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。
下图中绿色为输入波形,蓝色为输出波形Avo=Vo/Vi=1.06/0.252=4.2063、利用软件中的波特图仪观察通频带,并计算矩形系数。
通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)=(14.278GHz-9.359KHz)/7.092MHz=2013.2544、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av相应的图,根据图粗略计算出通频带。
Fo(KHz) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV) 0.669 0.765 1 1.05 1.06 1.06 0.977 0.816 0.749 0.653 0.574 0.511 Av 2.655 3.036 3.968 4.167 4.206 4.206 3.877 3.238 2.972 2.591 2.278 2.0285、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。
2次谐波4次谐波6次谐波1.2.2 双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0。
高频小信号放大器 实验报告

高频小信号放大器实验报告高频小信号谐振放大器一、实验目的1、了解高频小信号谐振放大器的电路组成、工作原理。
2、进一步理解高频小信号放大器与低频小信号放大器的不同。
3、掌握用Multisim8分析、测试高频小信号放大器的基本性能。
4、掌握谐振放大器的调试方法。
5、掌握用示波器测试小信号谐振放大器的基本性能。
6、学会用扫频仪测试小信号谐振放大器幅频特性的方法。
二、实验仪器双踪示波器 数字频率计 高频毫伏表频率特性测试仪BT —3 直流稳压电源 万用表高频信号发生器三、实验原理高频小信号谐振放大器最典型的单元电路如图4.2.1所示,由LC 单调谐回路作为负载构成晶体管调谐放大器。
晶体管基极为正偏,工作在甲类状态,负载回路调谐在输入信号的频率10.7MHz 上。
该放大电路能够对输入的高频小信号进行反相放大。
LC 调谐回路的作用主要有两个:一是选频滤波,选择放大o f f =的工作信号频率,抑制其它频率的信号。
二是提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。
高频小信号频带放大器的主要性能指标有:(1)中心频率o f :指放大器的工作频率。
它是设计放大电路时,选择有源器件、计算谐振回路元件参数的依据。
(2)增益:指放大器对有用信号的放大能力。
通常表示为在中心频率上的电压增益和功率增益。
电压增益 o o i A V V υ= (4.2.1)功率增益 po o i A P P = ( 4.2.2)图4.2.1 晶体管单调谐回路调谐放大器式中o V 、i V 分别为放大器中心频率上的输出、输入电压,o P 、i P 分别为放大器中心频率上的输出、输入功率。
增益通常用分贝表示为()20lg o o i A dB V V υ= ( 4.2.3) ()10lg po o i A dB P P = ( 4.2.4)(3)通频带:指放大电路增益由最大值下降3db 时所对应的频带宽度,用BW 0,7表示。
它相当于输入不变时,输出电压由最大值下降到0.707倍或功率下降到一半时对应的频带宽度,如图4.2.2所示。
实训1 高频小信号谐振放大器(高频书后实验报告)

实训1 高频小信号谐振放大器
1.实训目的
(1)EWB常用菜单的使用;
(2)搭接实训电路及各种测量仪器设备;
(3)估算小信号谐振放大器的宽频和矩形系数。
2.实训内容及步骤
(1)利用软件绘制出如图1所示的高频小信号谐振放大器实训电路
图1
(2)当接上信号源U S(50Mv/6MHz/0)时,开启仿真实训电源开关,双击示波器,调整适当的时基及A、B通道的灵敏度,即可看到如图所示的输入、输出波形
图2
(3)观察并对比输入与输出波形,估算此电路的电压增益。
Au=25.04
(4)双击波特图仪,适当选择垂直坐标与水平坐标的起点与终点值,即可看到如图所示的高频小信号放大器的幅频特性曲线。
从波特图仪上的幅频特性曲线分析此电路的带宽与矩形系数。
f=6.439MHz
(5)改变电阻R4的阻值,观察频带宽度的变化。
结论:由图上可以知道,它的输入波形没有什么变化但是它的频带宽度并不是一直增加的,而是有一个峰值。
一般在实际电路中通常采用在LC回路两端并联电阻的办法,来降
低调谐回路的有载品质因数Qe的值,以达到展宽放大器的通频带的目的。
高频小信号调谐放大器实验结论

高频小信号调谐放大器实验结论高频小信号调谐放大器是一种常见的电路,在无线通信中起到了至关重要的作用。
我们进行了一系列实验,研究了这种电路的性能和特点,得出了以下结论。
首先,高频小信号调谐放大器的主要作用是放大高频小信号。
在实验中,我们使用了两个变容二极管,一个电感和一个晶体管来构建这个电路。
当输入的高频小信号经过变容二极管调谐后,经由电感和晶体管放大后输出。
其次,调谐电路的参数非常重要,对电路性能有重要影响。
我们通过改变两个变容二极管的电容值和电感器的电感值,调整电路的谐振频率,从而得到最佳的放大效果。
在调整电路参数时,我们需要注意电路共振的问题,以防止电路失稳。
第三,晶体管的选择也非常关键。
我们选择了高频放大器专用的双极晶体管,能够提供更高的放大倍数和更好的线性度。
在实验中,我们还尝试了改变晶体管的偏置电压和失谐度对电路性能的影响。
第四,我们还研究了高频小信号调谐放大器的频率响应特性。
实验结果表明,电路在其工作频率范围内,输出信号的增益随着频率的变化而变化。
我们根据实验结果绘制了频率响应曲线,从而对电路的性能有了更深刻的了解。
最后,我们还针对不同的应用场景,进行了一系列的实际测试。
实验结果表明,在不同的频段和输入信号功率下,电路的增益和性能均有不同程度的变化。
因此,在实际应用中,需要根据具体情况进行参数调整和电路优化。
总之,高频小信号调谐放大器是一种非常实用的电路,在无线通信、雷达和电视等行业有着广泛的应用。
通过本次实验,我们对这种电路的特点、性能和应用有了更深入的了解,并可以为实际应用提供指导意义。
高频实验:小信号调谐放大器实验报告综述

实验一 小信号调谐放大器实验报告一 实验目的1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。
2.掌握高频小信号调谐放大器的调试方法。
3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。
二、实验使用仪器1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。
所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。
这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。
图1.1 高频小信号调谐放大器的频率选择特性曲线小信号调谐放大器技术参数如下:K ( f ) / K 010.7070.10f 0B 0.7B 0.1f1.增益:表示高频小信号调谐放大器放大微弱信号的能力2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。
衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。
2.实验电路原理图分析:In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。
In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。
电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。
晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。
通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。
高频小信号调谐放大器实验报告

⾼频⼩信号调谐放⼤器实验报告⾼频⼩信号调谐放⼤器实验报告⼀、实验⽬的1、熟悉单级⼩信号调谐放⼤器的⼯作原理和设计⽅法2、熟悉并联调谐回路两端并联电阻RL对于频率特性的影响,并分析回路品质因数,回路通频带以及选择性之间的关系3、理解放⼤器的传输特性,了解放⼤器电压传输曲线Vom-Vim在谐振点的测量⽅法,并了解Ic对于传输特性曲线的影响⼆、实验原理⾼频⼩信号单调谐放⼤器上图为晶体管共发射极⾼频单级⼩信号单调谐放⼤器,它不仅可以放⼤⾼频信号⽽且还具有⼀定的选频作⽤,此电路采⽤LC 并联谐振回路作为负载。
Cb为输⼊耦合电容,滤除直流信号,Rb1,Rb2,Re提供静态⼯作点,使其⼯作在放⼤区Ce是Re的旁路电容,LC构成并联谐振回路。
RL是集电极交流电阻,它影响了回路的品质因数,增益带宽。
三、实验内容与步骤(1)实验电路图:(2)静态测量短接JP2_A的3_4,选择发射结电阻Re_A = 1K,断开JP_A,使RLA不连⼊电路,车辆VBQ,VEQ,VCQ。
静态⼯作点测量静态⼯作点VBQ(V) VEQ(V) VCQ(V)实际测量值 1.90 1.20 12.06(3)动态研究1、电路连接选取RLA = 10k,Re_A=1K,将⾼频信号发⽣器Vpp设置为100mV,频率为10.7MHz,接⼊电路输⼊J1_A⽰波器探头,连接J2_A,观察2、调节电路调节CT1_A的值,当电压幅度最⼤时,转去调节⾼频⼩信号发⽣器,直⾄⽰波器显⽰输出幅值最⼤,记下f0为谐振频率3、数据测量选择RL=10k,⾼频信号发⽣器调节f0,Re_A=2K,调节输⼊电压Vi从20mV--820mV,逐点记录并填表(4)数据处理频率和相应输出电压值频率与相应的输出电压值f(MHz) 7.9 8.1 8.3 8.5 8.7 8.9 9.1 9.3 9.5Vo(V)RL_A= 10K Ω 0.78 0.93 1.07 1.22 1.51 1.91 2.46 3.33 4.08RL_A= 2K Ω 0.655 0.724 0.792 0.892 0.989 1.104 1.206 1.297 1.35 RL_A= 470Ω0.370.378 0.390.398 0.406 0.410.414 0.418 0.41f(MHz) 9.79.910.110.310.510.710.911.1Vo(V)RL_A= 10K Ω 3.68 2.84 2.2 1.77 1.45 1.3 1.1 0.98 RL_A= 2K Ω 1.4 1.351.281.19 1.11 1.01 0.95 0.88 RL_A= 470Ω0.422 0.418 0.410.40.40.390.40.3900.511.522.533.544.57.588.599.51010.51111.5频率与相应的输出电压值RL_A=10KRL_A=2KRL_A=0.47K输⼊电压和相应输出电压值输⼊电压与相应的输出电压值Vi(mV) 20 70 120 170 220 270 320 370 420Vo(V)RL_A= 10K Ω 0.579 1.71 2.35 2.71 2.93 3.13 3.26 3.4 3.55 RL_A= 10K Ω 1.2 3.3 4.5 5.1 5.5 5.9 6.16.46.6 RL_A= 10K Ω2.01 5.89 8.01 9.13 9.86 10.4 10.94 11.5 11.8Vi(mV) 470520 570 620 670 720 770 820Vo(V)Re_A= 2K Ω 3.67 3.78 3.9 4.01 4.11 4.25 4.34 4.46 Re_A= 1K Ω 6.9 7.2 7.4 7.6 7.8 8 8.2 8.4 RL_A= 510Ω12.112.312.612.812.912.912.913.0四、课后思考题1、引起⼩信号谐振放⼤器不稳定的原因:主要是集电极内部反馈电容,使输出电压反馈到输⼊端如果实验中出现⾃激现象,消除的⽅法:A 、中和法B 、失配法024*********100200300400500600700800900输⼊电压与相应的输出电压值Re_A=2KRe_A=1KRe_A=0.51K2、负载电阻和三极管β值负载电阻RL增加时电压增益减⼩通频带增⼤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于Multisim的通信电路仿真实验
实验一高频小信号放大器
1.1 实验目的
1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
2、熟悉谐振回路的调谐方法及测试方法。
3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
1.2 实验内容
1.2.1 单调谐高频小信号放大器仿真
图1.1 单调谐高频小信号放大器
1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。
ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz
2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。
下图中绿色为输入波形,蓝色为输出波形
Avo=Vo/Vi=1.06/0.252=4.206
3、利用软件中的波特图仪观察通频带,并计算矩形系数。
通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz
矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)=
(14.278GHz-9.359KHz)/7.092MHz=2013.254
4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出
电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av
相应的图,根据图粗略计算出通频带。
Fo(KHz
)
65 75 165 265 365 465 1065 1665 2265 2865 3465 4065
Uo(mV
) 0.66
9
0.76
5
1 1.05 1.06 1.06 0.97
7
0.81
6
0.74
9
0.65
3
0.574 0.511
Av 2.65
5 3.03
6
3.96
8
4.16
7
4.20
6
4.20
6
3.87
7
3.23
8
2.97
2
2.59
1
2.278 2.028
5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。
2次谐波
4次谐波
6次谐波
1.2.2 双调谐高频小信号放大器
图1.2 双调谐高频小信号放大器
1、通过示波器观察输入输出波形,并计算出电压增益Av0。
Avo=Vo/Vi=3.68/0.02=184
2、利用软件中的波特图仪观察通频带,并计算矩形系数。
通频带BW=2Δf0.7=9.385MHz-7.66MHz=1.725MHz
矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)=
(19.932MHz-5.385MHz)/1.725MHz=8.433MHz
实验二高频功率放大器
2.1 实验目的
1、掌握高频功率放大器的电路组成与基本工作原理。
2、熟悉谐振回路的调谐方法及测试方法。
3、掌握高频功率放大器各项主要技术指标意义及测试技能。
2.2 实验内容
图2.1 高频功率放大器
一、原理仿真
1、搭建Multisim电路图(Q1选用元件Transistors中的
BJT_NPN_VIRTUAL)
2、设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析设置。
要设置起始时间与终止时间,和输出变量。
(提示:单击simulate菜单中中analyses选项下的transient analysis...命令,在弹出的对话框中设置。
在设置起始时间与终止时间不能过大,影响仿真速度。
例如设起始时间为
0.03s,终止时间设置为0.030005s。
在output variables页中设置输出节点变量时选择vv3#branch即可)
3、将输入信号的振幅修改为1V,用同样的设置,观察ic的波形。
4、根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数QL。
根据各个电压值,计算此时的导通角θc。
ω0=6.299MHz QL=R/(ω0*L)=0.0378 导通角θc=
5、要求将输入信号V1的振幅调至1.414V。
注意:此时要改基极的反向偏置电压V2=1V,使功率管工作在临界状态。
同时为了提高选频能力,修改
R1=30KΩ。
6、正确连接示波器后,单击“仿真”按钮,观察输入与输出的波形。
7、读出输出电压的值并根据电路所给参数值,计算输出功率P0,PD,ηC。
二、外部特性
1、调谐特性,将负载选频网络中的电容C1修改为可变电容(400pF),在电路中的输出端加一直流电流表。
当回路谐振时,记下电流表的读数,修改可变电容百分比,使回路处于失谐状态,通过示波器观察输出波形,并记下此时电流表的读数;
2、将电容调为90%时,观察波形。
3、负载特性,将负载R1改为电位器(60k),在输出端并联一万用表。
根据原理中电路图知道,当R1=30k,单击仿真,记下读数U01,修改电位器的百分比为70%,重新仿真,记下电压表的读数U02。
修改电位器的百分比为30%,重新仿真,记下电压表的读数U03。
比较三个数据,说明当前电路各处于什么工作状态?
R1(百分比)50% 70% 30%
4、当电位器的百分比为30%时,通过瞬态分析方法,观察ic的波形。
5、振幅特性,在原理图中的输出端修改R1=30KΩ并连接上一直流电流表。
将原理图中的输入信号振幅分别修改为1.06V, 0.5V,并记下两次的电流表的值,比较数据的变化,说明原因。
6、倍频特性,将原理图中的信号源频率改为500KHz,谐振网络元件参数不变,使电路成为2倍频器,观察并记录输入与输出波形,并与第2个实验结果比较,说明什么问题?通过傅里叶分析,观察结果。
(提示:在单击Simulate 菜单中中Analyses选项下的Fourier Analysis...命令,在弹出的对话框中设置。
在Analysis Parameters标签页中的Fundamental frequency中设置基波频率与信号源频率相同,Number Of Harmonics 中设置包括基波在内的谐波总数,Stop time for sampling 中设置停止取样时间,通常为毫秒级。
在Output variables页中设置输出节点变量)。