实验一高频小信号调谐放大器实验报告
高频实验报告(电子模板)4题版

高频实验报告(电子版)班级:班级:学号:学号:姓名:姓名:201年月实验一、小信号谐振放大器 1:本次实验电原理图输入信号Ui(mV P-P)50mV P-P放大管电流Ic 1 0.5mA 1mA 2mA 3mA 4mA 4.5mA 输出信号Uo(V P-P)2-1:直流工作点与对放大器影响关系得结论:输入信号Ui(mV P-P) 50mV P-P阻尼电阻R Z (1K2=1) R=∞(R11) R=100 Ω(R7) R=1K(R6) R=10K(R5) R=100K输出信号Uo(V P-P)3-1:阻尼电阻—LC 回路的特性曲线图3-2:阻尼电阻—LC 回路的特性结论4:逐点法测量放大器的幅频特性实验电原理图粘贴处特性曲线图 粘贴处输入信号幅度(mV P-P)50mV P-P输入信号(MHz )2727.52828.52929.530输出幅值(V P-P)输入信号 (MHz ) 30.53131.53232.533输出幅值(V P-P)4-1:放大器的幅频特性曲线图4-2:放大器的的特性结论5:本次实验实测波形选贴选作思考题:(任选一题)1. 单调谐放大器的电压增益K U 与哪些因素有关?双调谐放大器的有效频带宽度B 与哪些因素有关?2.改变阻尼电阻R 数值时电压增益K U 、有效频带宽度B 会如何变化?为什么?3. 用扫频仪测量电压增益输出衰减分别置10dB 和30dB 时,哪种测量结果较合理?4. 用数字频率计测量放大器的频率时,实测其输入信号和输出信号时,数字频率计均能正确显示吗?为什么?5. 调幅信号经放大器放大后其调制度m 应该变化吗?为什么?思考题( )答案如下:幅频特性曲线图粘贴处实测波形1 粘贴处 实测波形2 粘贴处实验二、高频谐振功率放大器1:本次实验电原理图2: 谐振功放电路的交流工作点统调实测值级别激励放大级器(6BG1) 末级谐振功率放大器(6BG2)测量项目注入信号U i(V6-1)激励信号U bm(V6-2)输出信号U0(V6-3)未级电流I C(mA)峰峰值V P-P有效值VU bm(V p-p)1 2 3 4 5 Uo(V p-p)Ic(mA)3-1:谐振功率放大器的激励特性U bm–U0特性曲线图3-2:谐振功率放大器的的特性结论U bm–U0特性曲线图粘贴处实验电原理图粘贴处RL(Ω) 50Ω 75Ω 100Ω 125Ω 150Ω 螺旋天线Uo(V p-p) (V6-3) Ic(mA) (V2)4-1:谐振功率放大器的负载特性RL-- Uo 特性曲线图4-2:谐振功率放大器的RL-- Uo 特性结论V2 (V) 2 V 4V 6V 8V 10V 12V U O (V p-p ) Ic (mA)5-1:谐振功率放大器的电压特性V2—Uo 特性曲线图5-2:谐振功率放大器的V2—Uo 特性结论V2—Uo 特性曲线图粘贴处RL-- Uo 特性曲线图粘贴处6:谐振放大器高频输出功率与工作效率的测量:电源输入功率P D : Ic = mA 、 V2 = V 、 P D = mW 高频输出功率P 0 : Uo = V p-p RL = Ω P 0 = mW 电路工作效率η: %5:本次实验实测波形选贴选作思考题:(任选一题)1 当调谐末级谐振回路时,会出现i C 的最小值和U 0的最大值往往不能同时出现。
高频实验实验一高频小信号调谐放大器

实验一高频小信号调谐放大器一、实验目的1.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算。
2.掌握信号源内阻及负载对谐振回路Q值的影响。
3.掌握高频小信号放大器动态范围的测试方法。
二、实验内容1.调测小信号放大器的静态工作状态。
2.用示波器观察放大器输出与偏置及回路并联电阻的关系。
3.观察放大器输出波形与谐振回路的关系。
4.调测放大器的幅频特性。
5.观察放大器的动态范围。
三、基本原理:小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1所示。
该电路由晶体管VT7、选频回路CP2二部分组成。
它不仅对高频小信号放大,而且还有一定的选频作用。
本实验中输入信号的频率fs=10MH。
R67、R68和射极电阻决定晶体管的静态工作点。
拨码开关S7改变回路并联电阻,即改变回路Q值,从而改变放大器的增益和通频带。
拨码开关S8改变射极电阻,从而改变放大器的增益。
四、实验步骤:熟悉实验板电路和各元件的作用,正确接通实验箱电源。
1.静态测量将开关S8的2,3,4分别置于“ON”,测量对应的静态工作点,将短路插座J27断开,用直流电流表接在J27C.DL两端,记录对应I c值,计算并填入表1.1。
将S8“l”置于“ON”,调节电位器VR15,观察电流变化。
2.动态测试(1)将10MHZ高频小信号(<50mV)输入到“高频小信号放大”模块中J30(XXH.IN)。
(2)将示波器接入到该模块中J31(XXH.OUT)。
(3)J27处短路块C.DL连到下横线处,拨码开关S8必须有一个拨向ON,示波器上可观察到已放大的高频信号。
(4)改变S8开关,可观察增益变化,若S8“ l”拨向“ON”则可调整电位器VR15,增益可连续变化。
(5)将S8其中一个置于“ON”,改变输出回路中周或半可变电容使增益最大,即保证回路谐振。
(6)将拨码开关S7逐个拨向“ON”,可观察增益变化,该开关是改变并联在谐振回路上的电阻,即改变回路Q值。
实验一高频小信号调谐放大器实验

实验一高频小信号调谐放大器实验高频小信号调谐放大器实验一、实验目的1.熟悉高频电路实验箱,示波器,扫频仪的使用。
2.掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
3.熟悉谐振回路的调谐方法及幅频特性测试分析方法。
4.掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
二、实验内容1、谐振频率的调整与测定。
2、谐振回路的幅频特性的测量与分析--通频带与选择性。
3、主要技术性能指标的测定:谐振频率、谐振放大增益Avo及动态范围、通频带BW0.7、矩形系数Kr0.1。
三、实验原理1、单调谐小信号放大器高频信号放大器工作频率高,但带宽相对工作频率却很窄。
按器件分:BJT、FET、集成电路(IC) ;按带宽分:窄带、宽带;按电路形式分:单级、多级;按负载性质分:谐振、非谐振。
晶体管集电极负载通常是一个由LC组成的并联谐振电路。
由于LC并联谐振回路的阻抗是随着频率变化而变化。
理论上可以分析,并联谐振在谐振频率处呈现纯阻,并达到最大值,即放大器在回路谐振频率上将具有最大的电压增益。
若偏离谐振频率,输出增益减小。
调谐放大器不仅具有对特定频率信号的放大作用,同时一也起着滤波和选频的作用。
单调谐放大器电路原理图单调谐放大器质量指标谐振频率谐振增益AV 0 p1 p2 y fe g通频带选择性2、双调谐放大器电路原理图AV 0v0 p1 p2 y fe vi 2g双调谐回路放大器具有频带宽、选择性好的优点,并能较好地解决增益与通频带之间的矛盾,从而在通信接收设备中广泛应用。
在双调谐放大器中,被放大后的信号通过互感耦合回路加到下级放大器的输入端,若耦合回路初、次级本身的损耗很小,则均可被忽略。
p1 p2 y fe 电压增益为AV 0 2g 通频带为弱耦合时,谐振曲线为单峰;为强耦合时,谐振曲线出现双峰;临界耦合时,双调谐放大其的通频带BW2 f 0.7f0 2 QL四、实验步骤单调谐小信号放大器单元电路实验1、单频率谐振的调整断电状态下,按如下框图进行连线:单调谐小信号放大电路连线框图用示波器观测TP3,调节①号板信号源模块,使之输出幅度为200mV、频率为10.7MHz正弦波信号。
实验一.小信号调谐放大器实验

c.改变扫频仪输出衰减使曲线的顶点正好与基准 同高,由衰减器衰减系数便知放大器的放大倍 数,显示的曲线为谐振放大器的幅频特性曲线, 由曲线可看出中心频率及通频带的数值。 5.当高频信号源输出Ui=10mV,m=30% 的调幅信号 加到放大器输入端时,用示波器观察输出波形, 测出输出信号的m值。
m m值的测量可用下述公式: A B 100 % A B
图1.小信号谐振放大器实验电路图如下:
QL
f0
B0.7
RL RP 0 L
kv
f
i
无阻尼电阻接入时(R=∞)的幅频特性曲线
接入阻尼电阻(R=3kΩ )时的幅频特性曲线
比较可以看出,接入阻尼电阻,放大器增益下降, 通频带展宽.
实验内容
1.为顺利完成本次实验,应先对电路作以仿真分 析,仿真时可完成下列内容: a:静态工作点对放大器的影响。 b: 阻尼电阻变化对放大器增益、带宽、品质因 数等的影响。 c:负载电阻的变化对放大器的影响。 2.测量并调整放大器的工作点:调Rw1使UEQ=2V,测 此时的工作点Q(UCEQ,ICQ)。※注意:测试时, 输入高频=0,ICQ值可用间接法获得。 3.用逐点测试法测试放大器的幅频特性曲线,并 算出增益、带宽及品质因数 测试条件:
f0
1
C
便于实现调试,C取47pF的固定电容和可调电容 5/22pF并联使用。 (4).工程估算 a.谐振增益 因 goe=200μ s, gp=1/ω 0LQ0=1/2π f0LQ0≈53.1μ S ∴G∑=n12goe+n22gL+gp≈353.1s ∴Av0=n1n2Yfe/GΣ ≈32或30dB b.通频带 由前知 QL=1/GΣ ω 0L≈106/(353.1×2×π ×15×2)≈1
高频小信号放大器实验报告

实验1高频小信号放大器幅频特性曲线为:带宽:8.0*0.7=5.6Bw1=6.6-6.1=0.5MHz2、观察集电极负载对单调谐回路谐振放大器幅频特性的影响当放大器工作于放大状态下,运用上步点测法测出接通与不接通1R3的幅频特性曲线。
既令2K1置“on”,重复测量并与上步图表中数据作比较。
f/MHz 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1U/mV 1.7 1.9 2.0 2.4 2.6 3.2 3.6 4.0 5.2 5.6 5.6 5.2 4.4 3.8 3.2 2.6 2.4 2.0幅频特性曲线为:5.6*0.7=3.92;Bw2=6.65-6.1=0.55MHz3、双调谐回路谐振放大器幅频特性测量(保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性。
)2K2往上拨,接通2C6(80P),2K1置off。
高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。
2K03往下拨,使高频信号送入放大器输入端。
示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。
反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。
按照下表改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入下表中。
f/MHz 4.8 5.0 5.2 5.4 5.7 5.8 5.9 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 U/mV 0.8 1.4 2.6 4.2 8.0 8.8 8.0 8.0 8.0 8.2 8.4 6.4 4.8 3.2 2.0 1.8 1.4 1.2 幅频特性曲线:8*0.7=5.6V;Bw3=6.55-5.5-1.05MHz4、放大器动态范围测量2K1置off,2K2置单调谐,接通2C6.高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHz,幅度为100mV。
实训1 高频小信号谐振放大器(高频书后实验报告)

实训1 高频小信号谐振放大器
1.实训目的
(1)EWB常用菜单的使用;
(2)搭接实训电路及各种测量仪器设备;
(3)估算小信号谐振放大器的宽频和矩形系数。
2.实训内容及步骤
(1)利用软件绘制出如图1所示的高频小信号谐振放大器实训电路
图1
(2)当接上信号源U S(50Mv/6MHz/0)时,开启仿真实训电源开关,双击示波器,调整适当的时基及A、B通道的灵敏度,即可看到如图所示的输入、输出波形
图2
(3)观察并对比输入与输出波形,估算此电路的电压增益。
Au=25.04
(4)双击波特图仪,适当选择垂直坐标与水平坐标的起点与终点值,即可看到如图所示的高频小信号放大器的幅频特性曲线。
从波特图仪上的幅频特性曲线分析此电路的带宽与矩形系数。
f=6.439MHz
(5)改变电阻R4的阻值,观察频带宽度的变化。
结论:由图上可以知道,它的输入波形没有什么变化但是它的频带宽度并不是一直增加的,而是有一个峰值。
一般在实际电路中通常采用在LC回路两端并联电阻的办法,来降
低调谐回路的有载品质因数Qe的值,以达到展宽放大器的通频带的目的。
高频电子线路_小信号调谐放大器和高频功放_实验报告

1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。
二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。
三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。
2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。
利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。
按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。
显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。
用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。
实验1--小信号调谐放大器

实验1 小信号调谐放大器【实验目的】●熟悉电子元器件和高频电子线路实验系统;●掌握单调谐回路谐振放大器的基本工作原理;●掌握测量放大器幅频特性的方法;●熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;●了解放大器动态范围的概念和测量方法。
【实验内容】●采用点测法测量单调谐和双调谐放大器的幅频特性;●用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;●用示波器观察耦合电容对双调谐放大器幅频特性的影响;●用示波器观察放大器的动态范围;●用示波器观察集电极负载对放大器幅频特性的影响。
【实验步骤】✓实验准备插装好单调谐回路谐振放大器模块,接通实验箱上电源开关,按下模块上开关2K3,此时电源指示灯亮。
✓单调谐●单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
本实验采用点测法,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路揩振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
步骤如下:①2K1置“off”位,即断开集电极电阻2R3。
2K2置“单调谐”位,此时2C6被短路,放大器为单调谐回路。
高频信号源输出连接到单调谐放大器的输入端(2P01)。
示波器CH1接放大器的输入端2TP01,示波器CH2接单调谐放大器的输出端2TP02,调整高频信号源频率为6.3MHZ(用频率计测量),高频信号源输出幅度(峰——峰值)为200mv(示波器CH1监测)。
调整单调谐放大器的电容2C5,使放大器的输出为最大值(示波器CH2监测)。
此时回路谐振于6.3MHZ。
比较此时输入输出幅度大小,并算出放大倍数。
②按照表1-1改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度为200mv(示波器CH1监视),从示波器CH2上读出与频率相对应的单调谐放大器的电压幅值,并把数据填入表1-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频小信号调谐放大器
一、实验目的
1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。
2.掌握高频小信号调谐放大器的调试方法。
3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。
4.熟练掌握multisim软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用
二、实验仿真
利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真
仿真电路图如下:
六、数据处理
()
f MHz
7 8 9 9.7 9.8 9.9 10 10.1 10.
2
10.
3
()
i
u mV15 15 15 15 15 15 15 15 15 15
()
o
u mV19 28 55 120 128 138 143 150 140 130
(/)
u o i
A u u 1.2
7 1.8
7
3.6
7
8.0
8.5
3
9.2
9.5
3
10.0
9.3
3
8.6
7
()
f MHz10.
4 10.
5
10.
6
10.
7
11 12 13 14 15 16
()
i
u mV15 15 15 15 15 15 15 15 15 15
()
o
u mV120 100 90 80 64 39 28 24 20 18
(/)
u o i
A u u8.0
0 6.6
7
6.0
5.3
3
4.2
7
2.6
1.8
7
1.6
1.3
3
1.2
7
8910111213141516
25
50
75
100
125
150
uo(mV)
f(MHz)
二、实验仿真
利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下:
使得晶体满足:
1.发射极正偏:b e V V >,且0.6be V V >
2.集电极反偏:b c V V <
3.1ce V V >(若ce V 过小,将导致晶体管饱和导通,此时小信号放大器没有放大倍数)
通过测量,可得到通频带约为10.819MHz-10.655MHz =0.164MHz。