高频小信号单调谐与双调谐放大器实验报告

合集下载

高频小信号单调谐与双调谐放大器实验报告

高频小信号单调谐与双调谐放大器实验报告

高频小信号单调谐与双调谐放大器实验报告14044012 孙胤邦14 级电子一班•输出电压幅值U/mV1 \j \J____ ■实验表格及图像单调谐放大器的电压幅值输入信号频率f/fHz 5.45.55.65.75.85.96 6.16.26.36.46.56.66.76.86.9输出电压幅值U/m V 1.61.7622.162.42.73.123.844.86.327.928.087.526.084.83.84单调谐放大器幅频特性输入信号频率9 8 72 1如图所示(纵坐标为幅值mV ,横坐标为频率MHZ )单调谐的峰值为8.08mV , 下降到0.707倍时的值为5.71mv 。

输入 信号 频率 f/MHz 48 55 25 45 6 5 7 5 8 5 9 66 162 63 64 65 66 67 68 6 9 7 7 1 输出 电压 幅值 U/mV 0 61 1 4257 46 85 85 45 66 47 27 46 24 43 62 2 81 6 81 41 1 2双调谐回路幅频特性如图所示(纵坐标为幅值mV ,横坐标为频率MHZ )双调谐的峰值为7.40mV 和7.40mv 下降到0.707倍时的值为5.23mV 和5.23mV 。

这样看来,单调谐放大器优点是电路简单,缺点是通频带窄、选择性差、增益低。

双调谐放大器具有良好的选择性、 较宽的通频带。

而且由图可以看出双调谐的选 择性明显优于单调谐放大器。

值幅压电岀输2 3 4 5 输入信号频率6 7 88 7 6 54 3 2 1 0放大器输入电压与输出电压关系三、(纵坐标为输出电压V,横坐标为输入电压mV )。

当放大器的输入电压增加到一定的程度之后,输出的波形会失真,和输入波形不再一模一样。

二、实验结论及感想这是这一学期的第一次高频实验,通过低频放大的和高频所学内容,使我更真切地了解了高频小信号调谐放大器的工作原理,尤其是单级单调谐放大器和双级单调谐放大电路的原理,更是巩固了通电理论课上学到的谐振放大器电压增益、通频带、选择性的相关知识和计算方法,并在实验中测试了各组数据,验证了理论知识。

小信号实验报告

小信号实验报告

一、实验目的1. 了解小信号放大器的基本原理和组成。

2. 掌握小信号放大器的性能指标及其测试方法。

3. 学会使用示波器、信号发生器等实验仪器进行实验操作。

4. 培养动手能力和实验技能。

二、实验原理小信号放大器是一种将输入信号进行放大,同时保持放大前后信号波形不失真的电子电路。

其主要组成部分包括放大管、偏置电路、耦合电容、负载电阻等。

实验中,我们将对单调谐放大器和双调谐放大器进行性能测试。

1. 单调谐放大器:单调谐放大器由一个放大管、偏置电路、耦合电容和负载电阻组成。

其工作原理是利用放大管放大输入信号,通过耦合电容将放大后的信号传递到负载电阻,实现信号的放大。

2. 双调谐放大器:双调谐放大器由两个单调谐放大器级联而成,具有更高的选择性。

其工作原理是第一个单调谐放大器对输入信号进行初步放大,第二个单调谐放大器对放大后的信号进行选择性放大。

三、实验仪器与设备1. 实验箱:高频电子线路综合实验箱2. 示波器3. 信号发生器4. 双踪示波器5. 频率测试仪四、实验步骤1. 连接实验电路:根据实验要求,将单调谐放大器和双调谐放大器的电路连接到实验箱上。

2. 测试单调谐放大器性能:(1)测量静态工作点:调整偏置电路,使放大管工作在最佳状态。

(2)观察输入输出信号:使用示波器观察输入输出信号的幅度和相位关系,计算放大倍数。

(3)测试幅频特性:使用频率测试仪观察幅频特性曲线,测量3dB带宽和通频带。

(4)测试相频特性:使用频率测试仪观察相频特性曲线,测量相位变化。

3. 测试双调谐放大器性能:(1)测量静态工作点:调整偏置电路,使放大管工作在最佳状态。

(2)观察输入输出信号:使用示波器观察输入输出信号的幅度和相位关系,计算放大倍数。

(3)测试幅频特性:使用频率测试仪观察幅频特性曲线,测量3dB带宽和通频带。

(4)测试相频特性:使用频率测试仪观察相频特性曲线,测量相位变化。

4. 分析实验数据:对实验数据进行整理和分析,得出单调谐放大器和双调谐放大器的性能指标。

高频小信号放大器实验报告

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验实验一高频小信号放大器1.1 实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

2、熟悉谐振回路的调谐方法及测试方法。

3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。

1.2 实验容1.2.1 单调谐高频小信号放大器仿真图1.1 单调谐高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。

ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形Avo=Vo/Vi=1.06/0.252=4.2063、利用软件中的波特图仪观察通频带,并计算矩形系数。

通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)=(14.278GHz-9.359KHz)/7.092MHz=2013.2544、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av相应的图,根据图粗略计算出通频带。

Fo(KHz) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV) 0.669 0.765 1 1.05 1.06 1.06 0.977 0.816 0.749 0.653 0.574 0.511 Av 2.655 3.036 3.968 4.167 4.206 4.206 3.877 3.238 2.972 2.591 2.278 2.0285、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

2次谐波4次谐波6次谐波1.2.2 双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0。

高频电子线路_小信号调谐放大器和高频功放_实验报告

高频电子线路_小信号调谐放大器和高频功放_实验报告

1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。

二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。

三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。

2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。

扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。

点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。

(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。

利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。

按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。

显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。

用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。

小信号调谐放大器实验

小信号调谐放大器实验

小信号调谐放大器实验一、实验目的1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐和双调谐放大器的基本工作原理; 3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响; 5.了解放大器动态范围的概念和测量方法。

二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理在无线电技术中,经常会遇到这样的问题—所接收到的信号很弱,而这样的信号又往往与干扰信号同时进入接收机。

我们希望将有用的信号放大,把其它无用的干扰信号抑制掉。

借助于选频放大器,便可达到此目的。

小信号调谐放大器便是这样一种最常用的选频放大器,即有选择地对某一频率的信号进行放大的放大器。

小信号调谐放大器是构成无线电通信设备的主要电路,其作用是放大信道中的高频小信号。

调谐放大器主要由放大器和调谐回路两部分组成。

因此,调谐放大器不仅有放大作用,而且还有选频作用。

小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,其主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。

小信号调谐放大器中,小信号,通常指输入信号电压一般在微伏至毫伏数量级,放大这种信号的放大器工作在线性范围内;调谐,主要是指放大器的集电极负载为调谐回路(如LC 谐振回路)。

这种放大器对谐振频率o f 的信号具有最强的放大作用,而对其他远离o f 的频率信号,放大作用很差。

调谐放大器的幅频特性如图1-1所示。

放大倍数fof 1f K0.7K oK图 1-1 调谐放大器的幅频特性(1)单调谐放大器小信号调谐放大器的种类很多,按调谐回路区分,有单调谐放大器、双调谐放大器和参差调谐放大器。

按晶体管连接方法区分,有共基极、共发射极和共集电极调谐放大器,等等。

该电路采用共发射极单调谐放大,原理电路如图1-2所示。

图 1-2 共发射极单调谐放大器原理电路图1-2中晶体管T 起放大信号的作用,R b1、R b2、R e 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。

高频小信号放大器实验报告

高频小信号放大器实验报告

实验1高频小信号放大器幅频特性曲线为:带宽:8.0*0.7=5.6Bw1=6.6-6.1=0.5MHz2、观察集电极负载对单调谐回路谐振放大器幅频特性的影响当放大器工作于放大状态下,运用上步点测法测出接通与不接通1R3的幅频特性曲线。

既令2K1置“on”,重复测量并与上步图表中数据作比较。

f/MHz 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1U/mV 1.7 1.9 2.0 2.4 2.6 3.2 3.6 4.0 5.2 5.6 5.6 5.2 4.4 3.8 3.2 2.6 2.4 2.0幅频特性曲线为:5.6*0.7=3.92;Bw2=6.65-6.1=0.55MHz3、双调谐回路谐振放大器幅频特性测量(保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性。

)2K2往上拨,接通2C6(80P),2K1置off。

高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。

2K03往下拨,使高频信号送入放大器输入端。

示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。

反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。

按照下表改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入下表中。

f/MHz 4.8 5.0 5.2 5.4 5.7 5.8 5.9 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 U/mV 0.8 1.4 2.6 4.2 8.0 8.8 8.0 8.0 8.0 8.2 8.4 6.4 4.8 3.2 2.0 1.8 1.4 1.2 幅频特性曲线:8*0.7=5.6V;Bw3=6.55-5.5-1.05MHz4、放大器动态范围测量2K1置off,2K2置单调谐,接通2C6.高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHz,幅度为100mV。

高频小信号调谐放大器实验报告

⾼频⼩信号调谐放⼤器实验报告⾼频⼩信号调谐放⼤器实验报告⼀、实验⽬的1、熟悉单级⼩信号调谐放⼤器的⼯作原理和设计⽅法2、熟悉并联调谐回路两端并联电阻RL对于频率特性的影响,并分析回路品质因数,回路通频带以及选择性之间的关系3、理解放⼤器的传输特性,了解放⼤器电压传输曲线Vom-Vim在谐振点的测量⽅法,并了解Ic对于传输特性曲线的影响⼆、实验原理⾼频⼩信号单调谐放⼤器上图为晶体管共发射极⾼频单级⼩信号单调谐放⼤器,它不仅可以放⼤⾼频信号⽽且还具有⼀定的选频作⽤,此电路采⽤LC 并联谐振回路作为负载。

Cb为输⼊耦合电容,滤除直流信号,Rb1,Rb2,Re提供静态⼯作点,使其⼯作在放⼤区Ce是Re的旁路电容,LC构成并联谐振回路。

RL是集电极交流电阻,它影响了回路的品质因数,增益带宽。

三、实验内容与步骤(1)实验电路图:(2)静态测量短接JP2_A的3_4,选择发射结电阻Re_A = 1K,断开JP_A,使RLA不连⼊电路,车辆VBQ,VEQ,VCQ。

静态⼯作点测量静态⼯作点VBQ(V) VEQ(V) VCQ(V)实际测量值 1.90 1.20 12.06(3)动态研究1、电路连接选取RLA = 10k,Re_A=1K,将⾼频信号发⽣器Vpp设置为100mV,频率为10.7MHz,接⼊电路输⼊J1_A⽰波器探头,连接J2_A,观察2、调节电路调节CT1_A的值,当电压幅度最⼤时,转去调节⾼频⼩信号发⽣器,直⾄⽰波器显⽰输出幅值最⼤,记下f0为谐振频率3、数据测量选择RL=10k,⾼频信号发⽣器调节f0,Re_A=2K,调节输⼊电压Vi从20mV--820mV,逐点记录并填表(4)数据处理频率和相应输出电压值频率与相应的输出电压值f(MHz) 7.9 8.1 8.3 8.5 8.7 8.9 9.1 9.3 9.5Vo(V)RL_A= 10K Ω 0.78 0.93 1.07 1.22 1.51 1.91 2.46 3.33 4.08RL_A= 2K Ω 0.655 0.724 0.792 0.892 0.989 1.104 1.206 1.297 1.35 RL_A= 470Ω0.370.378 0.390.398 0.406 0.410.414 0.418 0.41f(MHz) 9.79.910.110.310.510.710.911.1Vo(V)RL_A= 10K Ω 3.68 2.84 2.2 1.77 1.45 1.3 1.1 0.98 RL_A= 2K Ω 1.4 1.351.281.19 1.11 1.01 0.95 0.88 RL_A= 470Ω0.422 0.418 0.410.40.40.390.40.3900.511.522.533.544.57.588.599.51010.51111.5频率与相应的输出电压值RL_A=10KRL_A=2KRL_A=0.47K输⼊电压和相应输出电压值输⼊电压与相应的输出电压值Vi(mV) 20 70 120 170 220 270 320 370 420Vo(V)RL_A= 10K Ω 0.579 1.71 2.35 2.71 2.93 3.13 3.26 3.4 3.55 RL_A= 10K Ω 1.2 3.3 4.5 5.1 5.5 5.9 6.16.46.6 RL_A= 10K Ω2.01 5.89 8.01 9.13 9.86 10.4 10.94 11.5 11.8Vi(mV) 470520 570 620 670 720 770 820Vo(V)Re_A= 2K Ω 3.67 3.78 3.9 4.01 4.11 4.25 4.34 4.46 Re_A= 1K Ω 6.9 7.2 7.4 7.6 7.8 8 8.2 8.4 RL_A= 510Ω12.112.312.612.812.912.912.913.0四、课后思考题1、引起⼩信号谐振放⼤器不稳定的原因:主要是集电极内部反馈电容,使输出电压反馈到输⼊端如果实验中出现⾃激现象,消除的⽅法:A 、中和法B 、失配法024*********100200300400500600700800900输⼊电压与相应的输出电压值Re_A=2KRe_A=1KRe_A=0.51K2、负载电阻和三极管β值负载电阻RL增加时电压增益减⼩通频带增⼤。

实验报告——高频小信号调谐放大器实验

实验报告——高频小信号调谐放大器实验一、实验目的1.熟悉高频电路实验箱,示波器,扫频仪的使用。

2.掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

3.熟悉谐振回路的调谐方法及幅频特性测试分析方法。

4.掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。

二、实验条件实验仪器1、1号板信号源模块 1块2、2号板小信号放大模块 1块3、6号板频率计模块 1块4、双踪示波器 1台5、扫频仪(可选) 1块三、实验原理1、单调谐小信号放大器高频信号放大器工作频率高,但带宽相对工作频率却很窄。

按器件分:BJT、FET、集成电路(IC);按带宽分:窄带、宽带;按电路形式分:单级、多级;按负载性质分:谐振、非谐振。

晶体管集电极负载通常是一个由LC组成的并联谐振电路。

由于LC并联谐振回路的阻抗是随着频率变化而变化。

理论上可以分析,并联谐振在谐振频率处呈现纯阻,并达到最大值,即放大器在回路谐振频率上将具有最大的电压增益。

若偏离谐振频率,输出增益减小。

调谐放大器不仅具有对特定频率信号的放大作用,同时一也起着滤波和选频的作用。

单调谐放大器电路原理图谐振频率:谐振增益:12fe Vp p y Ag∑=通频带:2、双调谐放大器电路原理图双调谐回路放大器具有频带宽、选择性好的优点,并能较好地解决增益与通频带之间的矛盾,从而在通信接收设备中广泛应用。

在双调谐放大器中,被放大后的信号通过互感耦合回路加到下级放大器的输入端,若耦合回路初、次级本身的损耗很小,则均可被忽略。

电压增益为:通频带:1202fe Vp p y Ag=0.722LffQ ∆=为弱耦合时,谐振曲线为单峰;为强耦合时,谐振曲线出现双峰;临界耦合时,双调谐放大其的通频带BW四、实验步骤单调谐小信号放大器单元电路实验1、单频率谐振的调整断电状态下,按图连好电路,用示波器观测TP3,调节①号板信号源模块,使之输出幅度为200mV、频率为10.7MHz正弦波信号。

调谐放大器实验报告

高频实验一高频小信号调谐放大器实验一、实验目的1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。

2.掌握高频小信号调谐放大器的调试方法。

3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。

4.熟练掌握multisim软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用二、实验仪器1.小信号调谐放大器实验板2.200MHz泰克双踪示波器(Tektronix TDS 2022B)3. 8808A FLUKE万用表4.220V市电接口5.EE1461高频信号源6.AT6011 频谱分析仪7.PC一台(附有multisim仿真软件)三、实验原理1.小信号调谐放大器的基本原理小信号调谐放大器的作用是有选择地对某一频率范围的高频小信号进行放大。

所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,由于信号小,从而可以认为放大器工作在晶体管的线性范围内。

所谓“调谐”,主要是指放大器的集电极负载为调谐回路。

这种放大器对谐振频率f及附近频率的信号具有较强的放大作用,而对其它远离f的频率信号,放大作用很差。

高频小信号调谐放大器是我主要质量指标如下:1.增益:放大器输出电压与输入电压之比,用来表示高频小信号调谐放大器放大微弱信号的能力,即2.通频带:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。

3.选择性:从含有各种不同频率的信号总和(有用和有害的)中选出有用信号排除有害(干扰)信号的能力,称为放大器的选择性。

衡量选择性的基本指标一般有两个:矩形系数和抑制比。

矩形系数通常用K0.1表示,它定义为,其中是指放大倍数下降至0.1处的带宽。

且矩形系数越小,选择性越好,其抑制邻近无用信号的能力就越强。

抑制比见末尾附录,此处略。

4.稳定性:指放大器的工作状态(直流偏置)、晶体管的参数、电路元件参数等发生可能的变化时,放大器的主要特性的稳定程度。

小信号调谐放大器实验报告

一、实验目的本次实验旨在通过搭建和调试小信号调谐放大器电路,深入了解调谐放大器的工作原理和设计方法,掌握其特性参数的测量方法,并通过实验数据分析放大器的性能,为后续高频电子线路设计打下基础。

二、实验原理小信号调谐放大器是一种高频放大器,其主要功能是对高频小信号进行线性放大。

其工作原理是利用LC并联谐振回路作为晶体管的集电极负载,通过调节谐振频率来实现对特定频率信号的放大。

实验中,我们采用共发射极接法的晶体管高频小信号调谐放大器。

晶体管的静态工作点由电阻RB1、RB2及RE决定。

放大器在高频情况下的等效电路如图1所示,其中晶体管的4个y参数分别为输入导纳yie、输出导纳yoe、正向传输导纳yfe和反向传输导纳yre。

图1 高频小信号调谐放大器等效电路三、实验仪器与设备1. 高频信号发生器:用于产生不同频率和幅度的正弦波信号。

2. 双踪示波器:用于观察放大器输入、输出信号的波形和幅度。

3. 万用表:用于测量电路中电阻、电容等元件的参数。

4. 扫频仪(可选):用于测试放大器的幅频特性曲线。

四、实验步骤1. 搭建小信号调谐放大器电路,连接好实验仪器。

2. 调整谐振回路的电容和电感,使放大器工作在谐振频率附近。

3. 使用高频信号发生器输入不同频率和幅度的正弦波信号,观察放大器输入、输出信号的波形和幅度。

4. 使用示波器测量放大器的电压放大倍数、通频带和矩形系数等性能指标。

5. 使用扫频仪测试放大器的幅频特性曲线,进一步分析放大器的性能。

五、实验结果与分析1. 电压放大倍数通过实验,我们得到了放大器的电压放大倍数Avo,其值约为30dB。

这说明放大器对输入信号有较好的放大作用。

2. 通频带放大器的通频带BW0.7为2MHz,说明放大器对频率为2MHz的信号有较好的放大效果。

3. 矩形系数放大器的矩形系数Kr0.1为1.2,说明放大器对信号的选择性较好。

4. 幅频特性曲线通过扫频仪测试,我们得到了放大器的幅频特性曲线,如图2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频小信号单调谐与双调谐放大器
实验报告
14044012 孙胤邦
14级电子一班
一、实验表格及图像
单调谐放大器的电压幅值
如图所示(纵坐标为幅值mV,横坐标为频率MHZ)单调谐的峰值为8.08mV,下降到0.707倍时的值为5.71mv。

双调谐回路谐振放大器的电压幅值
如图所示(纵坐标为幅值mV,横坐标为频率MHZ)双调谐的峰值为7.40mV 和7.40mv,下降到0.707倍时的值为5.23mV和5.23mV。

这样看来,单调谐放大器优点是电路简单,缺点是通频带窄、选择性差、增益低。

双调谐放大器具有良好的选择性、较宽的通频带。

而且由图可以看出双调谐的选择性明显优于单调谐放大器。

三、(纵坐标为输出电压V,横坐标为输入电压mV)。

当放大器的输入电压增加到一定的程度之后,输出的波形会失真,和输入波形不再一模一样。

二、实验结论及感想
这是这一学期的第一次高频实验,通过低频放大的和高频所学内容,使我更真切地了解了高频小信号调谐放大器的工作原理,尤其是单级单调谐放大器和双级单调谐放大电路的原理,更是巩固了通电理论课上学到的谐振放大器电压增益、通频带、选择性的相关知识和计算方法,并在实验中测试了各组数据,验证了理论知识。

当然了,通过在实验室调试各种高频仪器,我基本上学会了使用高频中的扫频仪、示波器、万用表、直流稳压电源和信号源,以及消除自激的方法。

总体说来,本次实验是一次很好的尝试,让我对高频电路有了进一步了解,激发了学习通信电子电路的兴趣。

相关文档
最新文档