小信号放大器实验报告

合集下载

小信号实验报告

小信号实验报告

一、实验目的1. 了解小信号放大器的基本原理和组成。

2. 掌握小信号放大器的性能指标及其测试方法。

3. 学会使用示波器、信号发生器等实验仪器进行实验操作。

4. 培养动手能力和实验技能。

二、实验原理小信号放大器是一种将输入信号进行放大,同时保持放大前后信号波形不失真的电子电路。

其主要组成部分包括放大管、偏置电路、耦合电容、负载电阻等。

实验中,我们将对单调谐放大器和双调谐放大器进行性能测试。

1. 单调谐放大器:单调谐放大器由一个放大管、偏置电路、耦合电容和负载电阻组成。

其工作原理是利用放大管放大输入信号,通过耦合电容将放大后的信号传递到负载电阻,实现信号的放大。

2. 双调谐放大器:双调谐放大器由两个单调谐放大器级联而成,具有更高的选择性。

其工作原理是第一个单调谐放大器对输入信号进行初步放大,第二个单调谐放大器对放大后的信号进行选择性放大。

三、实验仪器与设备1. 实验箱:高频电子线路综合实验箱2. 示波器3. 信号发生器4. 双踪示波器5. 频率测试仪四、实验步骤1. 连接实验电路:根据实验要求,将单调谐放大器和双调谐放大器的电路连接到实验箱上。

2. 测试单调谐放大器性能:(1)测量静态工作点:调整偏置电路,使放大管工作在最佳状态。

(2)观察输入输出信号:使用示波器观察输入输出信号的幅度和相位关系,计算放大倍数。

(3)测试幅频特性:使用频率测试仪观察幅频特性曲线,测量3dB带宽和通频带。

(4)测试相频特性:使用频率测试仪观察相频特性曲线,测量相位变化。

3. 测试双调谐放大器性能:(1)测量静态工作点:调整偏置电路,使放大管工作在最佳状态。

(2)观察输入输出信号:使用示波器观察输入输出信号的幅度和相位关系,计算放大倍数。

(3)测试幅频特性:使用频率测试仪观察幅频特性曲线,测量3dB带宽和通频带。

(4)测试相频特性:使用频率测试仪观察相频特性曲线,测量相位变化。

4. 分析实验数据:对实验数据进行整理和分析,得出单调谐放大器和双调谐放大器的性能指标。

高频小信号放大器实验报告

高频小信号放大器实验报告

实验1高频小信号放大器幅频特性曲线为:带宽:8.0*0.7=5.6Bw1=6.6-6.1=0.5MHz2、观察集电极负载对单调谐回路谐振放大器幅频特性的影响当放大器工作于放大状态下,运用上步点测法测出接通与不接通1R3的幅频特性曲线。

既令2K1置“on”,重复测量并与上步图表中数据作比较。

f/MHz 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1U/mV 1.7 1.9 2.0 2.4 2.6 3.2 3.6 4.0 5.2 5.6 5.6 5.2 4.4 3.8 3.2 2.6 2.4 2.0幅频特性曲线为:5.6*0.7=3.92;Bw2=6.65-6.1=0.55MHz3、双调谐回路谐振放大器幅频特性测量(保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性。

)2K2往上拨,接通2C6(80P),2K1置off。

高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。

2K03往下拨,使高频信号送入放大器输入端。

示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。

反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。

按照下表改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入下表中。

f/MHz 4.8 5.0 5.2 5.4 5.7 5.8 5.9 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 U/mV 0.8 1.4 2.6 4.2 8.0 8.8 8.0 8.0 8.0 8.2 8.4 6.4 4.8 3.2 2.0 1.8 1.4 1.2 幅频特性曲线:8*0.7=5.6V;Bw3=6.55-5.5-1.05MHz4、放大器动态范围测量2K1置off,2K2置单调谐,接通2C6.高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHz,幅度为100mV。

高频小信号放大器实验报告

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验实验一高频小信号放大器1.1 实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

2、熟悉谐振回路的调谐方法及测试方法。

3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。

1.2 实验容1.2.1 单调谐高频小信号放大器仿真图1.1 单调谐高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。

ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形Avo=Vo/Vi=1.06/0.252=4.2063、利用软件中的波特图仪观察通频带,并计算矩形系数。

通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)=(14.278GHz-9.359KHz)/7.092MHz=2013.2544、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av相应的图,根据图粗略计算出通频带。

Fo(KHz) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV) 0.669 0.765 1 1.05 1.06 1.06 0.977 0.816 0.749 0.653 0.574 0.511 Av 2.655 3.036 3.968 4.167 4.206 4.206 3.877 3.238 2.972 2.591 2.278 2.0285、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

2次谐波4次谐波6次谐波1.2.2 双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0。

小信号调谐放大器实验

小信号调谐放大器实验

小信号调谐放大器实验一、实验目的1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐和双调谐放大器的基本工作原理; 3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响; 5.了解放大器动态范围的概念和测量方法。

二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理在无线电技术中,经常会遇到这样的问题—所接收到的信号很弱,而这样的信号又往往与干扰信号同时进入接收机。

我们希望将有用的信号放大,把其它无用的干扰信号抑制掉。

借助于选频放大器,便可达到此目的。

小信号调谐放大器便是这样一种最常用的选频放大器,即有选择地对某一频率的信号进行放大的放大器。

小信号调谐放大器是构成无线电通信设备的主要电路,其作用是放大信道中的高频小信号。

调谐放大器主要由放大器和调谐回路两部分组成。

因此,调谐放大器不仅有放大作用,而且还有选频作用。

小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,其主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。

小信号调谐放大器中,小信号,通常指输入信号电压一般在微伏至毫伏数量级,放大这种信号的放大器工作在线性范围内;调谐,主要是指放大器的集电极负载为调谐回路(如LC 谐振回路)。

这种放大器对谐振频率o f 的信号具有最强的放大作用,而对其他远离o f 的频率信号,放大作用很差。

调谐放大器的幅频特性如图1-1所示。

放大倍数fof 1f K0.7K oK图 1-1 调谐放大器的幅频特性(1)单调谐放大器小信号调谐放大器的种类很多,按调谐回路区分,有单调谐放大器、双调谐放大器和参差调谐放大器。

按晶体管连接方法区分,有共基极、共发射极和共集电极调谐放大器,等等。

该电路采用共发射极单调谐放大,原理电路如图1-2所示。

图 1-2 共发射极单调谐放大器原理电路图1-2中晶体管T 起放大信号的作用,R b1、R b2、R e 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。

高频实验:小信号调谐放大器实验报告综述

高频实验:小信号调谐放大器实验报告综述

实验一 小信号调谐放大器实验报告一 实验目的1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。

2.掌握高频小信号调谐放大器的调试方法。

3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。

二、实验使用仪器1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。

所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。

这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。

图1.1 高频小信号调谐放大器的频率选择特性曲线小信号调谐放大器技术参数如下:K ( f ) / K 010.7070.10f 0B 0.7B 0.1f1.增益:表示高频小信号调谐放大器放大微弱信号的能力2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。

衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。

2.实验电路原理图分析:In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。

In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。

电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。

晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。

通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。

高频小信号放大器实习报告

高频小信号放大器实习报告

实验名称:高频小信号放大器一、实习目的《通信电子电路》是通信工程的专业课程,以基础技能训练和能力培养为主线,从培养学生动手能力,培养工程技术实际应用型人才入手,强化综合性、实际性。

目的是通过实习使学生掌握通信电子电路的实际开发所要掌握技术,培养其动手能力,观察能力,分析和解决实际问题的能力,巩固、加深理论课知识,增加感性认识,进一步加深对通信电子电路应用的理解,提高对电路制造调试能力和系统设计能力。

提高对常见电路故障的分析和判断能;培养学生严肃认真、实事求是的科学态度,理论联系实际的工作作风和辩证思维能力。

二、实习内容1掌握发射系统电路和接收系统电路的基本组成。

2.理解各个单元模块的工作原理,和调试方法。

3.掌握电路印刷板的设计与开发方法。

4.掌握实际电路的制作技术与焊接工艺。

5.掌握单元电路和系统电路的调试技术。

6.能对简单的高频电子电路进行设计、制作及调试。

7.实习报告(一、制作电路的印刷板图,二、电路的制作过程,调试和实习心得)三、实验仪器:示波器10直流电源导线若干高频信号源电路板 3个可变电容 3个固定电容 1个电感 n勾道mos管一个四、实习方式本实习为校内集中实习,主要在老师讲授方式下,学生通过上机使用PROTEL绘制电路原理图,印刷电路板PCB,然后实践操作,制作电路模块、调试、排除故障。

五、实验步骤1、用protel99es设计并好绘制好电路图:2、安要求将各元器件进行,标号,封装,赋值。

3具栏的tool中的erc菜单检查连线是否正确,没有错误的话,则出现以下提示:4反回绘制好的图层,在design的下拉菜单中选择update pcb,在弹出的对话框中把第一个勾去掉,然后点击excute,弹出的界面入土所示:5先进行动工布线,之后再进行自动布线,并重复以上操作,直至显示布线100%为止:6、放置矩形填充,7放置泪滴8、放置敷铜,电路设计便完成了:。

小信号调谐(单调谐)放大器实验

小信号调谐(单调谐)放大器实验

实验一高频小信号单调谐放大器实验一、实验目的1.掌握小信号单调谐放大器的基本工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;3.了解高频单调谐小信号放大器动态范围的测试方法;4.了解BT3C-B频率特性测试仪的使用方法。

二、实验原理图1 高频小信号调谐放大器电路小信号单谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大。

其实验单元电路如图1所示。

该电路由晶体管G1、选频回路T1二部分组成。

它不仅对高频小信号进行放大,而且还有一定的选频作用。

基极偏置电阻W3、R22、R4和射极电阻R5决定晶体管的静态工作点。

可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。

表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A u0,放大器的通频带BW 0.7及选择性(通常用矩形系数K 0.1来表示)等。

放大器各项性能指标及测量方法如下:1.谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LC f π21式中,L 为调谐回路电感线圈的电感量;∑C 为调谐回路的总电容,∑C 的表达式为21oe C C n C ∑=+式中, C oe 为晶体管的输出电容; n 1为初级线圈抽头系数;n 2为次级线圈抽头系数。

谐振频率f 0的测量方法是:用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T1的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。

2.电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数A u0称为调谐放大器的电压放大倍数。

A u0的表达式为12120022120fe fe u i oe L e n n y n n y u A u g n g n g g ∑--=-==++ 式中,∑g 为谐振回路谐振时的总电导。

要注意的是y fe 本身也是一个复数,所以谐振时输出电压u 0与输入电压u i 相位差不是180º 而是为180º+Φfe 。

小信号调谐放大器实验报告

小信号调谐放大器实验报告

一、实验目的本次实验旨在通过搭建和调试小信号调谐放大器电路,深入了解调谐放大器的工作原理和设计方法,掌握其特性参数的测量方法,并通过实验数据分析放大器的性能,为后续高频电子线路设计打下基础。

二、实验原理小信号调谐放大器是一种高频放大器,其主要功能是对高频小信号进行线性放大。

其工作原理是利用LC并联谐振回路作为晶体管的集电极负载,通过调节谐振频率来实现对特定频率信号的放大。

实验中,我们采用共发射极接法的晶体管高频小信号调谐放大器。

晶体管的静态工作点由电阻RB1、RB2及RE决定。

放大器在高频情况下的等效电路如图1所示,其中晶体管的4个y参数分别为输入导纳yie、输出导纳yoe、正向传输导纳yfe和反向传输导纳yre。

图1 高频小信号调谐放大器等效电路三、实验仪器与设备1. 高频信号发生器:用于产生不同频率和幅度的正弦波信号。

2. 双踪示波器:用于观察放大器输入、输出信号的波形和幅度。

3. 万用表:用于测量电路中电阻、电容等元件的参数。

4. 扫频仪(可选):用于测试放大器的幅频特性曲线。

四、实验步骤1. 搭建小信号调谐放大器电路,连接好实验仪器。

2. 调整谐振回路的电容和电感,使放大器工作在谐振频率附近。

3. 使用高频信号发生器输入不同频率和幅度的正弦波信号,观察放大器输入、输出信号的波形和幅度。

4. 使用示波器测量放大器的电压放大倍数、通频带和矩形系数等性能指标。

5. 使用扫频仪测试放大器的幅频特性曲线,进一步分析放大器的性能。

五、实验结果与分析1. 电压放大倍数通过实验,我们得到了放大器的电压放大倍数Avo,其值约为30dB。

这说明放大器对输入信号有较好的放大作用。

2. 通频带放大器的通频带BW0.7为2MHz,说明放大器对频率为2MHz的信号有较好的放大效果。

3. 矩形系数放大器的矩形系数Kr0.1为1.2,说明放大器对信号的选择性较好。

4. 幅频特性曲线通过扫频仪测试,我们得到了放大器的幅频特性曲线,如图2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验设计报告
(模拟电子技术基础实践)
学院:电气工程与自动化学院
题目:小信号放大器的设计
专业班级:自动化131班
学号:2420132905
学生姓名:吴亚敏
指导老师:曾璐
2014年10月20日
第一章理论设计
1.设计目标与技术要求
1.1 设计目标:设计一个放大倍数约为10倍的小信号交流放大器
1.2 技术要求:
(1)保证电路要有较大的输入电阻,主要是为了增大获取输入信号的能力。

(2)电路要有较小的输出电阻,主要是为了增大信号输出的能力。

(3)设计该放大电路,通过测试相应的参数,理解该放大电路的工作原理,掌握一些参数(输入阻抗、输出阻抗、放大倍数)的测量和计算方法。

2.设计方法(电路、元器件选择与参数计算)
2.1 实验原理图如下:
2.2 元件的选择:
电阻:需要33KΩ、16KΩ、3.9KΩ、2KΩ、1.2KΩ、390Ω的电阻各一个;
电容:需要47uF的4个,0.1uF的一个;
三极管:需要NPN型通用小信号晶体管2SC2458两个;
2.3 参数的计算:
(1)基极的直流电位Ve是用R1和R2对电源电压Vcc分压后的电位,则 Vb=(R2/(R1+R2))*Vcc
(2)发射机的直流电位Ve,则 Ve=Vb-Vbe
(3)发射极上流过的直流电流Ie,则 Ie=Ve/Re=(Vb-Vbe)/Re
(4)集电极的直流电压Vc等于电源电压减去Rc的压降而得到的值,则 Vc=Vcc-Ic*Rc
(5)由于基极电流很小,我们在计算的时候可以省去,
则 Ic=Ie,Vc=Vcc-Ie*Rc
(6)交流电压的放大倍数,则 Av=Rc/Re
(7)确定耦合电容C1,C2和C3,C4的阻值
因为C1和C2是将基极或集电极的直流电压截止,仅让交流成分进行输入输出的耦合电容,电路中C1和输入阻抗,C2和连接在输出端的负载电阻分别形成高通滤波器--也就是让高频通过的滤波器,所以C1=C2=10uF,而C3和C4是电源的耦合电容应该是降低电源对GND交流阻抗的电容,如果没有这个电容的话,电路中可能产生振荡。

所以要在电源上并联连接好小容量的C3=0.1uF电容器和大容量的C4=10uF电容器,能在宽频范围降低电源对GND的阻抗。

(8)静态工作点:
Vbq=5*(R2/(R1+R2))=5*(33/(33+16))=3.44V
Ieq=Ve/Re=(Vb-Vbe)/Re=Icq=0.5mA
Vceq=Vcc-Ieq*Rc-Icq*Re=2.8V
Ibq=Icq/(1+β)=0.05mA
(9)动态工作点:
Av=Rc/Re=3.9K/(2K//390)=10 Ri=Rb1//Rb2=33K//16K=0.093KΩ
Ro=Rc=0Ω
第二章实物制作
1.制作要求
布局合理:元件疏密程度合理,焊锡的走向清晰
焊接牢固:焊接处牢固,没有松动现象
整体美观:元件错落有致,没有堆叠现象
元件可换:先焊接插孔,再将元件插在插孔上
2.实物照片
第三章测试
1.测试方法
小信号放大器可以把输入的交流小信号按设计好的参数按一定的比例放大。

通过信号发生器产生小信号的交流电压,由输出线接到焊接好的电路板输入端,经过电路中的电容滤波,三极管的放大,信号将按一定的比例放大,再由电路板的输出端接上数字示波器的输入线最后在数字示波器的屏幕上得到后的电压的正弦波形,以及放大后的电压值、周期。

2.测试步骤
1). 将信号发生器与数字示波器电源接好,再把信号发生器的输出线的红色接口和黑色接口与数字示波器的输入线的红黑接口相接,打开信号发生器和数字示波器的开关,查看波形,若为正确的正弦波则两个仪器可用来测试电路。

若波形不对则进行调节,得到正确波形。

2). 关掉两仪器,断开信号发生器与数字示波器的接线,接入电路板,利用电源提供5V的电压给电路板,再接入信号发生器的红色接口到电路板的输入端,把数字示波器的红色接口接到电路板的输出端,两个黑色接口均接地。

3). 打开两仪器的开关,查看波形是否完整光滑以及峰值是否是输入电压的10倍。

3.测试数据
4.测试结果
输入/输出参数对比
5.结论
通过小信号交流放大器的制作实验,加深了我该实验的了解,对不同的静态工作点的对输出电压的影响和理解,验证了小信号交流放大倍数,其为:Av=Rc/Re,加深了对小信号交流放大器的各个器件的不同作用的影响作用,同时表明了射极跟随器对共射电路输出阻抗高的作用验证,容易受到作为负载所接的电路有影响的缺点,以及射极跟随器的输出阻抗为0,通常接在共发射极和共基极等电路的后缀,其主要的作用是降低输出阻抗,使整个电路具有良好的负载能力。

参考文献
【1】模拟电子技术基础/童诗白,华成英主编;清华大学电子学教研组编.-----4版.----北京:高等教育出版社,2006.5(2013.12重印)。

相关文档
最新文档