单管放大电路的设计与实现实验报告

合集下载

单管放大电路实验报告

单管放大电路实验报告

单管放大电路实验报告.单管放大电路一、实验目的1.掌握放大电路直流工作点的调整与测量方法;2.掌握放大电路主要性能指标的测量方法;3.了解直流工作点对放大电路动态特性的影响;4.掌握射极负反馈电阻对放大电路特性的影响;5.了解射极跟随器的基本特性。

二、实验电路实验电路如图 2.1 所示。

图中可变电阻R W是为调节晶体管静态工作点而设置的。

三、实验原理1.静态工作点的估算将基极偏置电路V CC,R B1和R B 2用戴维南定理等效成电压源。

RB 2开路电压V BB V CC,内阻RB1RB 2R B R B1 // R B2则I BQV BB V BEQ,(1)( R E1R B R E2)I CQ I BQVCEQ VCC(R C R E1RE2)ICQ可见,静态工作点与电路元件参数及晶体管β均有关。

在实际工作中,一般是通过改变上偏置电阻RB1(调节电位器RW )来调节静态工作点的。

RW 调大,工作点降低(ICQ 减小),RW 调小,工作点升高(ICQ 增加)。

一般为方便起见,通过间接方法测量I CQ,先测V E, I CQ I EQ V E /(R E1 R E2)。

2.放大电路的电压增益与输入、输出电阻(R C // R L )R i R B 1 // R B 2 // r be R O R Curbe式中晶体管的输入电阻r =r+(β+1) V /IEQ ≈r+(β+ 1)× 26/ICQ(室温)。

be bb′T bb′3.放大电路电压增益的幅频特性放大电路一般含有电抗元件,使得电路对不同频率的信号具有不同的放大能力,即电压增益是频率的函数。

电压增益的大小与频率的函数关系即是幅频特性。

一般用逐点法进行测量。

测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。

由曲线确定出放大电路的上、下限截止频率f H、f L和频带宽度BW= f H- f L。

单管放大电路实验报告

单管放大电路实验报告

单管放大电路实验报告前言单管放大电路是电子学中常用的一个基本元件,广泛应用于各种电子设备,如放音机、放大器、电视机等。

本文旨在探讨单管放大电路实验的基本原理、实验操作步骤和实验结果与分析。

实验目的1.了解单管放大电路的基本结构和工作原理;2.学习单管放大电路的电路分析方法;3.实际操作单管放大电路电路进行实验,掌握实验方法以及实验过程中的一些实用问题的解决方案;4.根据实验结果完成数据分析和讨论,加深理解单管放大电路的原理和特性。

实验原理单管放大电路是由一个晶体管和若干个电阻、电容等组成的。

晶体管的基本结构是由广泛的p型半导体和狭窄的n型半导体构成的。

晶体管有三个引脚,分别为基极、发射极和集电极。

在单管放大电路中,基极通过一个电阻Rb与信号源相连,集电极通过一个负载电阻RL与电源相连,而发射极则接地。

当输入信号通过Rb注入基极时,由于晶体管发生的放大归功于其特性,即当晶体管输在正向区时,它是三极管,将输入信号转换为电流信号并经过电容耦合AC通过变压器通过负载电阻RL输出。

放大系数可以通过电路参数来调节,如增大Rb或降低RL可以提高放大系数。

实验器材本次实验使用的器材包括:晶体管、电容、电阻、示波器、调节电源、万用表等。

实验步骤1.按照图1所示的单管放大电路电路原理图进行连线,并将开关S1关闭;2.接通调节电源,在标准电压下,观察电路是否正常工作;3.将示波器连接到负载电阻RL两端,并调节示波器参数,使信号幅度和频率适合检测;4.调节Rb通过测量输入电压和输入电流确定其值;5.改变RL的电阻值并观察其对电路输出的影响;6.连续进行多次测量,以获取更多数据,以便进行分析和比较。

实验结果本实验的结果如下:1.掌握了单管放大电路的基本原理和使用方法;2.了解了基极电阻对放大倍数的影响;3.测定了电路输入输出电压,并且通过万用表测定了电路中的电流,分析了实验结果的数据;4.测试Rb和RL对音频信号的放大和失真的影响,获得了电压放大倍数和工作参数与输出信号之间的关系曲线。

共射极单管放大电路实验报告

共射极单管放大电路实验报告

共射极单管放大电路实验报告
共射极单管放大电路是一种常见的放大电路,由一个NPN型晶体管组成。

本实验的目的是通过实验验证共射极单管放大电路的放大特性。

一、实验原理:
共射极单管放大电路是一种常用的放大电路,使用一个NPN型晶体管来放大输入信号。

晶体管的三个引脚分别为发射极(E)、基极(B)、集电极(C)。

在共射极单管放大电路中,输入信号通过耦合电容C1输入到基极,集电极通过负载电阻RC与正电源相连。

输出信号由电容C2耦合到负载电阻RL上。

二、实验仪器:
1. 功率放大器实验箱
2. 万用表
3. 音频信号发生器
三、实验步骤:
1. 连接电路:根据实验箱上的电路图,将电路连接好。

2. 调整电源:根据实验箱上的电源电压要求,调整电源电压。

3. 调节发生器:将发生器的频率调节到所需的数值,信号幅度调节适宜值。

4. 测量电压:用万用表分别测量发射极电压、集电极电压和基极电压。

5. 测量电流:用万用表测量发射极电流、集电极电流和基极电流。

6. 测量电容:用万用表测量输入输出电容。

四、实验结果:
将实验测得的数据填入实验报告中,并绘制相应的图表。

五、实验分析:
根据实验结果分析共射极单管放大电路的放大特性、输入输出电容等参数。

六、实验总结:
总结本实验的目的、步骤、结果以及实验中遇到的问题等。

七、思考题:
进一步思考实验中遇到的问题,并提出解决方案。

单管放大电路实验报告

单管放大电路实验报告

单管放大电路实验报告单管放大电路实验报告引言:单管放大电路是电子学中最基础的电路之一,它可以将输入信号放大到更大的幅度,使得信号能够被更远的距离传输或被更多的设备接收。

本实验旨在通过搭建和测试单管放大电路,探究其工作原理和特性。

一、实验目的本实验的主要目的是:1. 理解单管放大电路的基本原理;2. 学习如何设计和搭建单管放大电路;3. 测试并分析单管放大电路的特性。

二、实验器材和元件1. 电源:直流电源供应器;2. 信号发生器:用于提供输入信号;3. 电阻:用于构建电路;4. 电容:用于滤波;5. 二极管:用于保护电路。

三、实验步骤1. 搭建单管放大电路a. 将一个NPN型晶体管与几个电阻和电容相连接,按照电路图搭建电路;b. 连接电源,并确保电路连接正确;c. 连接信号发生器,将其输出信号接入电路中。

2. 测试电路特性a. 调节信号发生器的频率和幅度,观察输出信号的变化;b. 测量输入信号和输出信号的幅度,并计算电压增益;c. 测量输入信号和输出信号的相位差。

四、实验结果与分析通过实验,我们得到了如下结果:1. 随着输入信号幅度的增加,输出信号的幅度也相应增加,但在一定范围内,输出信号的幅度增加不再线性;2. 随着输入信号频率的增加,输出信号的幅度先增加后减小,且在某一频率下达到最大值;3. 输入信号和输出信号之间存在相位差,且随着频率的增加而增大。

根据实验结果,我们可以得出以下结论:1. 单管放大电路的电压增益是非线性的,且受到输入信号幅度的限制;2. 单管放大电路的频率响应是有限的,存在一个截止频率,超过该频率后放大效果下降;3. 单管放大电路引入了相位差,这可能对特定应用产生影响。

五、实验总结通过本次实验,我们深入了解了单管放大电路的工作原理和特性。

我们学习到了如何设计和搭建单管放大电路,并通过测试分析了其电压增益、频率响应和相位差等特性。

这些知识对于我们理解和应用其他更复杂的放大电路非常重要。

单管共发射极放大电路实验报告

单管共发射极放大电路实验报告

单管共发射极放大电路实验报告一、实验目的。

本实验旨在通过搭建单管共发射极放大电路,了解其工作原理和特性,掌握其基本性能参数的测量方法,并通过实验验证理论知识的正确性。

二、实验原理。

单管共发射极放大电路是一种常用的放大电路,其基本原理是利用晶体管的放大作用将输入信号放大,输出一个放大后的信号。

在共发射极放大电路中,输入信号通过电容耦合方式输入到晶体管的基极,晶体管的发射极接地,输出信号则从晶体管的集电极获取。

三、实验仪器和器材。

1. 电源,直流稳压电源。

2. 信号源,正弦波信号源。

3. 示波器,示波器。

4. 元器件,晶体管、电容、电阻等。

四、实验步骤。

1. 按照电路图搭建单管共发射极放大电路,注意连接的正确性和稳固性。

2. 调节电源,使其输出电压为所需工作电压。

3. 将正弦波信号源连接到输入端,调节信号源的频率和幅度。

4. 连接示波器,观察输入信号和输出信号的波形。

5. 测量输入信号和输出信号的幅度,并计算电压增益。

6. 调节电路参数,如电容、电阻值,观察对电路工作的影响。

五、实验结果与分析。

通过实验观察和测量,我们得到了单管共发射极放大电路的输入输出波形和幅度,并计算出了电压增益。

通过调节电路参数,我们也观察到了电路工作的变化。

实验结果表明,单管共发射极放大电路能够有效放大输入信号,并且其放大倍数与理论计算值基本吻合。

六、实验总结。

本次实验通过搭建单管共发射极放大电路,对其工作原理和特性有了更深入的了解。

同时,我们也掌握了测量电路性能参数的方法,并通过实验验证了理论知识的正确性。

在实验过程中,我们也发现了一些问题和不足之处,为今后的实验和学习提供了一定的参考和借鉴。

七、实验心得。

通过本次实验,我对单管共发射极放大电路有了更深入的了解,也提高了实验操作和数据处理的能力。

在今后的学习和科研工作中,我将继续努力,不断提升自己的实验技能和理论水平。

以上就是本次单管共发射极放大电路实验的报告内容,希望能对大家有所帮助。

单管放大电路实验报告

单管放大电路实验报告

单管放大电路实验报告实验目的:本实验旨在通过搭建单管放大电路,了解单管放大电路的基本原理,掌握单管放大电路的工作特性,以及对单管放大电路的频率响应进行实验研究。

实验仪器与设备:1. 电源,直流稳压电源。

2. 示波器,双踪示波器。

3. 信号源,正弦波信号源。

4. 电阻,多个不同阻值的电阻。

5. 电容,多个不同容值的电容。

6. 二极管。

7. 三极管。

8. 万用表。

实验原理:单管放大电路是由一个三极管(或者场效应管)和少数几个被动器件(电阻、电容)组成的放大电路。

在单管放大电路中,三极管的基极电流小的特点决定了单管放大电路的输入电阻较高,而集电极电流大的特点决定了单管放大电路的输出电阻较低。

单管放大电路能够将输入信号放大到较大的幅度,同时保持信号波形的不失真。

实验步骤:1. 搭建单管放大电路电路图,连接好各个元器件。

2. 调节电源电压,使其符合三极管的工作电压范围。

3. 使用示波器观察输入信号和输出信号,并记录波形。

4. 改变输入信号的频率,观察输出信号的变化,并记录波形。

5. 测量输入信号和输出信号的幅度,并计算放大倍数。

6. 测量单管放大电路的输入电阻和输出电阻。

实验结果与分析:通过实验观察,我们发现单管放大电路能够将输入信号放大到较大的幅度,且输出信号的波形基本与输入信号一致。

随着输入信号频率的增加,输出信号的幅度有所下降,说明单管放大电路的频率响应存在一定的限制。

通过测量,我们得到了单管放大电路的输入电阻和输出电阻的数值,验证了单管放大电路的输入电阻较高,输出电阻较低的特性。

实验总结:本次实验通过搭建单管放大电路,深入了解了单管放大电路的工作原理和特性,掌握了单管放大电路的频率响应规律,提高了实验操作能力和数据处理能力。

同时,也加深了对电子电路原理的理解,为今后的学习和科研打下了坚实的基础。

通过本次实验,我们对单管放大电路有了更深入的了解,同时也意识到了单管放大电路的局限性,为今后的电子电路设计和应用提供了一定的参考和借鉴。

共射极单管放大电路实验报告

共射极单管放大电路实验报告

共射极单管放大电路实验报告一、实验目的。

本实验旨在通过搭建共射极单管放大电路,掌握共射极放大电路的基本原理,了解其放大特性,并通过实验验证其放大性能。

二、实验原理。

共射极单管放大电路是一种常用的放大电路,其基本原理是利用晶体管的放大特性,实现信号的放大。

在共射极放大电路中,输入信号加在基极上,输出信号则从集电极上取出。

当输入信号加在基极上时,晶体管的输出电流会随之变化,从而实现对输入信号的放大。

三、实验仪器与器材。

1. 三极管(晶体管)×1。

2. 电阻(1kΩ,10kΩ)×2。

3. 电容(0.1μF,10μF)×2。

4. 信号发生器。

5. 示波器。

6. 直流稳压电源。

7. 万用表。

8. 面包板。

9. 连接线。

四、实验步骤。

1. 将三极管、电阻和电容等元器件按照电路图连接在面包板上;2. 将信号发生器的正负极分别连接到输入端,将示波器的探头分别连接到输入端和输出端;3. 调节直流稳压电源,给电路提供适当的电压;4. 调节信号发生器的频率和幅度,观察示波器上的波形变化;5. 记录输入信号和输出信号的波形,并测量其幅度。

五、实验结果与分析。

通过实验观察和记录,我们得到了输入信号和输出信号的波形图,并测量了其幅度。

根据实验数据,我们可以得出共射极单管放大电路的放大倍数、频率响应等性能指标。

六、实验结论。

通过本次实验,我们成功搭建了共射极单管放大电路,并对其放大特性进行了验证。

实验结果表明,共射极单管放大电路具有良好的放大效果和频率响应特性,能够对输入信号进行有效放大,并且在一定频率范围内保持稳定的放大倍数。

七、实验总结。

本次实验使我们深入了解了共射极单管放大电路的工作原理和特性,掌握了搭建和调试放大电路的方法,提高了对电子电路的实际操作能力和理论知识的应用水平。

通过本次实验,我们不仅学到了共射极单管放大电路的基本原理和实验操作技巧,还对电子电路的实际应用有了更深入的了解。

希望通过今后的实验学习,能够进一步提高自己的实验能力和动手能力,为今后的学习和科研打下坚实的基础。

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告
一、实验目的
本实验旨在了解单极晶体管放大电路的基本原理,掌握单极晶体管放大电路的设计和调试方法,熟悉实验仪器的使用,培养学生动手能力和实验技能。

二、实验原理
单极晶体管是一种三层结构的半导体器件,由发射极、基极和集电极组成。

其放大电路主要由一个单极晶体管和几个被动元件组成。

当输入信号加到基极时,会使得集电极电流变化,从而输出信号也随之变化。

因此,单极晶体管放大电路可以将输入信号放大并输出。

三、实验器材
1. 单片机开发板
2. 万用表
3. 示波器
4. 功率放大器
四、实验步骤及结果分析
1. 确定工作点:首先根据所选用的型号计算出工作点参数,并设置基准电压。

2. 确定放大倍数:利用万用表测量输入输出信号幅值,并计算出放大
倍数。

3. 调整偏置:根据所选用的型号调整偏置点使得工作在合适状态下。

4. 调整负载:根据所选用的型号调整负载使得输出信号稳定。

5. 测量输出电压:利用示波器测量输出电压,并记录结果。

五、实验结论
通过本次实验,我们了解了单极晶体管放大电路的基本原理和设计方法,掌握了单极晶体管放大电路的调试方法,熟悉了实验仪器的使用。

同时,我们还通过实验得到了实际的数据并进行了分析,从而得出了
正确的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华中科技大学
《电子线路设计、测试与实验》实验报告
实验名称:单管放大电路的设计与实现
院(系):
专业班级:
姓名:
学号:
时间:
地点:华中科技大学南一楼
实验成绩:
指导教师:
一、实验目的
1.掌握单管放大电路的工作原理。

2.掌握MOSFET共源放大电路以及BJT共射放大电路静态工作点的设置与调整方法。

3.了解电路参数变化对于电路静态工作点的影响。

4.学习使用PSpice或Multisim软件对模拟电子电路进行仿真分析。

5.掌握BJT单极共射放大电路主要性能指标(A v、R i、R o)的测量方法。

二、实验元器件
类型型号(参数)数量
三极管9013 1只
电位器100kΩ1只
电阻51Ω、1kΩ、100kΩ各1只;
10kΩ、10kΩ各2只;
电容10μF 2只
47μF 1只
三、实验原理及参考电路
1.参考电路
实验电路如图1所示。

该电路采用自动稳定工作点的分压式射极偏置电路,其温度稳定性好。

图1
2.静态工作点的估算与调整
静态工作点是指输入交流信号为零时三极管的基极电流IBE、集电极电流I CQ、和管压降V CEQ。

根据上图所示的直流通路可得出:
开路电压V BB = R b12V CC/(R b11+R b12)
内阻R B = R b11//R b12
则I BQ =(V BB–V BEQ)/( R B +(1+β)( R e1 +R e2)) I CQ = βI BQ
V CEQ ≈ V CC – (R C + R e1 +R e2)I CQ
当管子确定后,改变V CC、R B、R B2、R C、(或R E)中任一参数值,都会导致静态工作点的变化。

当电路参数确定后,静态工作点主要通过R P调整。

工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。

但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。

当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。

3.放大电路电压增益的测量
放大电路电压增益A v 是指输出电压与输入电压的有效值之比,即
A v =V o /V i。

对于该电路,放大电路的电压增益A v 为
A v= -β(R C // R L) /( r be + (1 + β)R e1)
当三极管跟负载电阻选定后,A v主要取决于静态工作点I CQ。

4.输入电阻的测量
对于上述参考电路图所示参数,放大电路输入电阻为:
R i = R b11//R b12//[r be + (1 + β)R e1]
三极管输入电阻r be 为:
r be = 300 + (1+β)CQ
测量原理为:在信号源与放大电路之间串一个已知阻值的电阻R,用万用表分别测出R 两端的电压V S,和V i,则输入电阻为:
Ri = Vi / Ii = Vi R /( V s- V i)
5.输出电阻的测量
输出电阻的测量原理为:用万用表分别测量放大器的开路电压V O和负载电阻上的电压V OL,则输出电阻R O可通过计算求得。

R O =( V O – V OL)R L /V OL
当R L = R O 时,测量误差最小。

6.幅频特性的测量
放大器的幅频特性是指放大器的增益与输入信号频率之间的关系曲线。

一般用逐点法进行测量。

在保持输入信号幅值不变的情况下,改变输入信号的频率,住店测量不同频率点的电压增益。

利用各点数据,在单对数坐标纸上描绘出幅频特性曲
线。

通常将电压增益下降到中频增益的0.707 时所以对应的频率称为该放大电路
的上限、下限截止频率,用f H 和 f L 表示,则该放大电路的通频带为:
BW = f H - f L ≈f H
四、仿真实验结果
1.静态工作点分析
2.瞬态分析
3.频域分析
4.求解输入阻抗
5.求解输出阻抗
五、硬件实验内容
1.静态工作点测量及动态调节
(1)接通电源,将电路输入端接地,测量电路的静态工作点。

(2)用万用表直流电压档,分别测量晶体管的B、E、C极对地电压V BQ、V EQ及V CQ。

(3)调节R B1,使放大器的输出v o不失真。

(4)增大输入信号(如V iPP=120mV),v o无明显失真,或者逐渐增大输入信号时,v o顶部和底部差不多同时开始畸变,说明Q点设置得比较合适。

(5)此时移去信号源,分别测量放大器的静态工作点V BQ、V EQ、V CQ,并计
算V CEQ、I CQ、I BQ、。

2.测量放大倍数
(1)在波形不失真的条件下,测出V i (有效值)或V im(峰值)或V p-p(峰-峰值)和V o(有效值)或V om(峰值)或V p-p(峰-峰值) ,则:
3.测量通频带BW
放大器的频率特性如图所示,采用“逐点法”测量放大器的幅频特性曲线。

(1)记录f=1KHz时的Avo 。

(2).减小f,直到Avl=0.707*Avo,记录f(l)。

(3).增大f,直到Avh=0.707*Avo,记录f(h)。

(调整f时,一定要用示波器监视Vi的幅值,保证幅值不变)
(4)通频带Bw=f(h)-f(l)。

4.测量输入电阻
在输出波形不失真的情况下进行测量。

V o为放大器负载开路时的输出电压的值;V oL为接入RL后放大器负载上的电压的值,则
5.测量输出电阻
在输出波形不失真的情况下进行测量。

V o为放大器负载开路时的输出电压的值;V oL为接入R L后放大器负载上的电压的值,则
六、实验结果及分析
1.静态工作点测量及动态调节
V BQ=1.92V;V EQ=1.21V;V CQ=6.32V;V CEQ=5.11V,此时说明晶体管基本工作在线性放大状态。

但Q点不一定是最佳的,还要进行动态波形观测。

进行动态调节,调节到最大无失真后:V BQ=2.14V;V EQ=1.43V;V CQ=5.26V;V CEQ=3.83V,此时晶体管基本工作在线性放大状态,Q点是最佳的。

2.测量放大倍数
V IP-P=152mV,V OP-P=4.92V。

所以A V= V OP-P/ V IP-P=32.37。

通带增益仿真结果为30.793dB,大约等于34.64倍,相对误差为-6.5%,相对误差较小,结果合理。

3.测量通频带BW
f L=52.730Hz,f H=519.92kHz。

所以BW = f H- f L=519.87kHz。

仿真结果为f L=50.048Hz,f H=14.036MHz。

f L实际与仿真结果大致相等,f H实际与仿真结果相差较大,分析原因是仿真用的三极管比较理想,上限截止频率大于实际三极管。

4.测量输入电阻
测量时选取的R=5.01k,V S=156mV,V i=70mV。

根据公式算出输入电阻R i=4.08k。

通带内输入电阻仿真结果为4.9706k,实际结果与仿真结果比较接近,结果合理。

5.测量输出电阻
R L=4.97k,V O=4.48V,V OL=2.32V,根据公式算出输入电阻R o=4.63k。

通带内输出电阻仿真结果为4.9705k,实际结果与仿真结果比较接近,结果合理。

相关文档
最新文档