模电共射放大电路实验报告
模电实验报告之单级共射放大电路性能

模拟电子线路实验报告——单级共射、共集放大电路性能与研究实验学院电子工程学院班级卓越工程师班学号00101201姓名冉艳伟实验时间2012.5.4单级共射、共集放大电路性能与研究实验一、实验目的1.放大器组成基本原理及其放大条件;2.交流通路与直流通路的区别;3.器静态工作点的调整;4.共射放大器放大倍数、输入电阻、输出电阻的测量方法;5.共集放大器的特点和应用场合。
掌握场效应管放大器的特点及应用。
二、实验仪器1.仪器;双踪示波器、三用表、信号源、毫伏表、直流稳压电源等2.电路通用实验板(内含三极管、电阻、电位器、电容)3.线路器件工具箱三、实验内容及要求基本命题1.首先用万用表判断所用器件的好坏。
(比如连接导线,所用三极管的极性与好坏)2.以下电路在给定的通用板上搭建电路,用万用表检查电路连线是否正确,特别要判断电源与地之间是否有短路现象;如果有短路现象则重新检查电路。
3.加电源+12V ,调节Rw ,用万用表观察U CE 直流电压在较大范围变化即可(一般在2V 到10V 之间)。
4.将Rw 分别调到最大和最小的情况下,输入1KHz 正弦信号,用示波器观察其输出波形,并判断失真类型。
5.将静态工作点调至( =5V ),输入1KHz 正弦信号(有效值为5mV),大小以不失真为原则。
测量放大器的直流工作点、放大倍数(R L =10K 接入放大器)、输入电阻、输出电阻,并将测试数据列入下表中。
6.将R L 调到最大,接入电路,改变信号源输出正弦波幅度大小,用示波器监视输出在刚要使失真又没有失真的情况下,测量出放大器最大动态范围 。
四、 实验路线与策略1.直流工作点的调整及测试放大器的直流工作点通常是指管压降 和集电极电流 ,记作( , )。
当放大电路及晶体管确定后,可以通过调整上偏O P P U C EU C E Q U C Q I C E Q U C Q I置电阻,以达到所需要的直流工作点。
2.放大器参数 、 、 、 测试。
模拟电路实验报告单级共射放大电路

模拟电子系统设计实验第2次实验报告1 实验原理:一:单级共射放大电路电路原理图如下:当I 1>>I BQ 时,有:CC b2b1b2B V R R R V ⋅+≈eBE B E C R V V I I -=≈)(e c C CC e E c C CC CE R R I V R I R I V V +-≈--=βCB I I =调节Rp大小可以改变电路的静态工作点。
接入100mV,1kHz正弦波后,在实验要求的30~50倍增益条件下,调节Rp使输入电压幅值增大时,输出波形波峰和波谷同时开始失真,则静态工作点设置合适,可以作为后续电路电压比较器的输入之一二:三角波产生电路、电压比较器及功率放大器(一)三角波产生电路1.施密特触发器:电路符号如下:输入输出特性图线如下:2.积分电路3.三角波发生器积分后反馈至施密特触发器。
(二)比较器:功能:比较同相输入端和反相输入端的电压,前者高则输出高,反之输出低。
电路包含一个正反馈。
(三)功率放大器:对输入音频做PWM,然后驱动半桥做功率放大,最后滤波2实验元器件仪器:EE1643C型信号发生器/计算器TDS2001C型示波器稳压电源万用表电烙铁主要器件:电阻,电容,电位器,面包板,BJT,各类运放(如TL082,TL3116等)3实验结果和分析D类功率放大器在焊板上走锡线,注意信号线与地线的布线。
得到焊板如下:因实验中电路前一部分的三角波产生电路波形出了问题,所以未得到功放的测试波形。
实验中最常见的问题就是元件焊接时短路或者虚焊。
4实验总结与反思本次试验中,我主要承担了第一级BJT放大电路的搭建工作和最后一级功率放大器的焊接工作。
搭建放大电路主要是计算元件参数,在找到与理论值最接近的电阻之后,搭建电路并寻找静态工作点使得输出波形不失真。
在这个过程中,遇到了面包板接触不良,布线不合理导致干扰过大或者没有输出波形,以及直流电源的使用错误(如未按下output键)等很多问题。
中山学院模电实验报告——基本共射放大电路

三、实验数据、计算及分析
1.静态工作点参数测试
在静态测量时,暂时不要将交流信号接入电路。
(1)观察Rb对静态工作点参数的影响。
VCC=12V,RC=2 kΩ,Rb分别取33kΩ、100kΩ、200kΩ、300kΩ、600kΩ。用万能表分别测量各个Rb阻值下的静态工作点参数,将测量结果填入表1-1,并据UCE的大小来判断三极管的工作状态。
表1-1
Rb(Ω)
33k
100k
200k
300k
600k
UCE(V)
0.0241
0.0451
0.0751
0.1007
3.612
工作状态
截止区
截止区
截止区
截止区
放大区
Rb增大时,UCE如何变化?静态工作点向哪个区域移动?
(2)观察RC对静态工作点参数的影响
VCC=12V,Rb=600kΩ,RC分别取2 kΩ、5.1kΩ ,用万能表分别测量每一个RC阻值下的静态工作点参数,将测量结果填入表1-2中,确定三极管的工作状态。
学生实验报告
院别
电子信息学院
课程名称
模拟电路实验
班级
实验名称
基本共射放大电路
姓名
实验时间
学号
指导教师
成绩
批改时间
报告内容
一、实验目的和任务
1.加深对基本共射放大电路放大特性的理解;
2.学习放大电路的静态工作点参数的测量方法;
3.了解电路参数对静态工作点的影响和静态调试方法;
4.学习放大电路交流参数的测量方法;
表1-4
共射放大电路实验报告

共射放大电路实验报告实验目的,通过实验,掌握共射放大电路的基本原理、特性及其应用。
实验仪器设备,示波器、信号发生器、直流稳压电源、电压表、电流表、共射放大电路实验箱等。
实验原理,共射放大电路是由一个NPN型晶体管组成的放大电路。
在共射放大电路中,输入信号加在晶体管的基极上,输出信号则是从集电极上取出。
当输入信号变化时,基极-发射极间的电压也会相应地变化,从而引起集电极-发射极间的电流发生变化。
由于集电极电流的变化,集电极电压也会相应地变化,从而得到输出信号。
实验步骤:1. 将示波器、信号发生器、直流稳压电源等设备连接好。
2. 调节信号发生器的频率和幅度,使其输出一个正弦波信号。
3. 将正弦波信号输入到共射放大电路的输入端,观察输出端的波形。
4. 调节直流稳压电源的电压,观察输出端波形随电压的变化情况。
5. 记录实验数据,并绘制输入输出特性曲线。
实验结果与分析:通过实验,我们得到了共射放大电路的输入输出特性曲线。
在实验中,我们发现当输入信号的幅度较小时,输出信号的幅度基本与输入信号一致;当输入信号的幅度较大时,输出信号的幅度出现了明显的失真。
这说明共射放大电路在一定范围内可以实现较好的放大效果,但是在过大的输入信号下会出现失真。
结论:通过本次实验,我们深入了解了共射放大电路的基本原理和特性。
共射放大电路作为一种常见的放大电路,在实际应用中具有重要的意义。
通过对其特性的了解,我们可以更好地应用它,设计出更加稳定和可靠的电路。
实验总结:本次实验使我们对共射放大电路有了更深入的了解,也提高了我们的动手能力和实验操作技能。
在今后的学习和工作中,我们将更加注重理论与实践相结合,不断提高自己的专业能力。
以上就是本次共射放大电路实验的报告内容,希望对大家有所帮助。
模拟电子技术基础 单级共射放大电路实验报告(免费)

单级共射放大电路一.实验目的1.2.二.实验设备模拟电子技术实验箱、双踪示波器、数字万用表三.实验原理1.实验电路图2. 理论分析计算(1)静态工作点(2)放大倍数:全旁路:空载带负载部分旁路:空载带负载(3)输入电阻:全旁路:部分旁路:(4)输出电阻:3.实验测量方法(1)静态工作点测量(2)放大倍数测量方法(3)输入电阻测量(4)输出电阻测量(5)最大不失真电压测量四.实验测试内容及数据记录1.静态工作点的调试与测量静态测量应在u i(即不接入交流输入信号)的情况下进行,调节R W,使U EQ=2.8V,用万用表测量U BQ、U CQ,并测量R W的值(注意:电阻R W的值要在断电和断路的情况下测量)。
静态工作点测试数据记录表(仿真结果)2.动态参数测量保持R W的值不变,在放大器输入端加入频率为1kHz的正弦信号,调节信号源使放大器的输入信号和输出信号幅度适中(保证输出不失真),同时用示波器观察放大器输入信号u i和输出信号u o的波形并完成相关测量。
动态参数测量数据记录表(仿真结果)3.测量最大不失真输出电压测试条件:Ce只旁路R e”,带负载R L测试方法:调整Q点使电路动态范围最大,加大输入信号i u使o u稍有失真,调节R W使失真消失,再加大输入信号使o u 失真,再调节R W 使失真消失,为此反复调节直到o u 波形正、负半周同时出现失真,此时输出达最大不失真输出幅度,记录该最大不失真输出幅度并测量此时的静态工作点。
最大不失真输出测量数据记录表(实 验 结 果)4.Q 点对输出的影响调节R W 改变电路的静态工作点,同时配合调节输入信号的幅度是输出出现截止失真、饱和失真、同时出现截止、饱和失真,记录三种情况下的输入、输出波形。
失真波形记录 (仿 真 结 果)(实 验 结 果)u itu otu itu ot u itu otu itu otu itu ot u itu ot。
基本共射放大电路 模拟电子技术基础,三极管,实验报告,课程设计

实验名称 三极管单管放大
日期
2009.11.23
姓名
专业
通信工程
一、实验目的(详细指明输入输出)
1、深入研究三极管单级放大器的工作原理,相关参数的测量方法。 2、研究三极管输入输出电压的幅值关系和相位关系
3、设计出能够实现不失真稳定的放大,频率范围为几十 Hz 到几千 Hz,放大能力为几 v
共射极放大电路(图一)
VBQ = Rb2/(Rb1+Rb2)*VCC ≈5V VEQ = VBQ-VBE ≈ 4.3V VCQ = VCC-ICQ*Rc = 8.1V IEQ = VE/(Re1+Re2) ≈2.3mA ICQ ≈ IEQ = 2.3mA 由万用表测出三极管β= 285 ∴IBQ = IE/(1+β) ≈8.4uA 由于 IB 非常小,所以在计算时可认为其近似等于 0 故 无旁路电容无负载时 Au = RC/(Re1+Re2) ≈1.5
8 7 6 5 4 3 2 1 0
f(Hz)
Vo(V) 50 100 200 600 1K 10K 15K 18K 20K 50K 100K 450K
五、问题总结(实验中遇到的已解决和未解决的问题)
实验中出现的问题 1、刚开始集电极电阻和发射极电阻没有把握好,导致管压降过低,最大输出电压受到 很大的限制。 2、一开始对基极电流设定过低,导致管子容易出现截止失真。 3、要注意把地线单独引出,以免在测试时发生短路。 4、实验中如果函数信号发生器的电源没有和示波器的电源接在同一个接线板上就很容 易出现自己震荡
80 70 60 50 40 30 20 10
0
2 10 20 28 1K 10K 30K 100K 400K 600K f(HZ)
北邮信通 模电实验三-共射放大电路计算、仿真、测试分析报告

实验三共射放大电路计算、仿真、测试分析报告(请在本文件中录入结果并进行各类分析,实验结束后,提交电子文档报告)实验目的:掌握共射电路静态工作点的计算、仿真、测试方法;掌握电路主要参数的计算、中频时输入、输出波形的相位关系、失真的类型及产生的原因;掌握获得波特图的测试、仿真方法;掌握负反馈对增益、上下限截频的影响,了解输入输出间的电容对上限截频的影响等。
实验设备及器件:笔记本电脑(预装所需软件环境)AD2口袋仪器电容:100pF、0.01μF、10μF、100μF电阻:51Ω*2、300Ω、1kΩ、2kΩ、10kΩ*2、24kΩ面包板、晶体管、2N5551、连接线等实验内容:电路如图3-1所示(搭建电路时应注意电容的极性)。
图3-1实验电路1.静态工作点(1)用万用表的β测试功能,获取晶体管的β值,并设晶体管的V BEQ=0.64V,r bb’=10Ω(源于Multisim模型中的参数)。
准确计算晶体管的静态工作点(I BQ、I EQ、V CEQ,并填入表3-1)(静态工作点的仿真及测量工作在C4为100pF完成);主要计算公式及结果:晶体管为2N5551C,用万用表测试放大倍数β(不同的晶体管放大倍数不同,计算时使用实测数据,并调用和修改Multisim中2N5551模型相关参数,计算静态工作点时,V BEQ=0.64V)。
静态工作点计算:为获取静态工作点,需通过直流通路进行分析,如下为直流通路电路图:(2)通过Multisim仿真获取静态工作点(依据获取的β值,修改仿真元件中晶体管模型的参数,修改方法见附录。
使用修改后的模型参数仿真I BQ、I EQ、V CEQ,并填入表3-1);下图为仿真电路图和仿真结果图(直流工作点分析):(3)搭建电路测试获取工作点(测试发射极对地电源之差获得I EQ,测试集电极与发射极电压差获取V CEQ,通过β计算I BQ,并填入表3-1);主要测试数据:图一:V EQ值(用于计算I EQ)图二:V CEQ值(用于计算I BQ)4(4)对比分析计算、仿真、测试结果之间的差异。
模电实验报告(新)

实验目的掌握共射放大电路的静态工作点(Q )、电压放大倍数(A u )的测试方法。
观测电路参数变化对放大电路的静态工作点、电压放大倍数及输出波形的影响。
实验仪器与元器件直流稳压电源 信号发生器 交直流毫伏毫安表6502型示波器单管放大电路模块实验内容及步骤熟悉实验面板上各元件的位置。
按图示电路 接线,基极接入 R b2,集电极接入 R 尸2k Q ,发射极接 入旁路电容C e,负载电阻R L = 8(开路)检查接线无误后,将直流电源输出的 到实验板上,并校准12V O1. 测量静态工作点、卄将电路的输入端对地短路。
调节P , 保持R p 不变。
分别测量U B 、U E 的值,并将测量结果记入表2-3-1中。
2. 测量电压放大倍数 A u去掉输入端对地短路线。
从电路输入端送入U i = 5mV (有效值)、f = 1kHz 的正弦波信号,当示波器观察 的输出波形为放大的、不失真的正弦波时 ,测量输出电压U 。
的值,并将测量结果及波形记入表2-3-2中。
关闭电源开关。
3. 观测电路参数变化对电路的 Q 点、A u 及输出波形的影响 (1) R c 变化:R c = 3k Q, R L = 8, R p 保持不变。
专业实验名称 实验类型同组人实验三单管共射放大电路 验证型年 月指导教师任文霞(任课教师)批阅教师-O+咯O12V 电压加使 U C = 9V ,3DS6Q单管放大电路去掉输入信号,测量 U c 、U B 和U E 的值,将测量结果记入表 2-3-1中。
电路的输入端接入 U i = 5mV 、f =1kHz 正弦波信号,测量输出电压 U o 的值,用示波器观察输出信号的波形,将结果记入表关闭电源开关。
(2) R L 变化:改变R c = 2k Q, R L = 2k Q, R p 保持不变。
重复3. (1)中的测量步骤,并将测量结果及波形记入表关闭电源开关4. 观测静态工作点设置不合适时对电路输出波形的影响(1) R c = 2k Q, R L =S ,将R p 调至最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一BJT单管共射电压放大电路
实验报告
自动化一班
李振昌
一、实验目的
(1)掌握共射放大电路的基本调试方法。
(2)掌握放大电路电压放大倍数、输入电阻、输出电阻的基本分析方法。
(3)进一步熟练电子仪器的使用。
二、实验内容和原理
仿真电路图
静态工作点变化而引起的饱和失真与截止失真
静态工作点的调整和测量 : 调节RW1,使Q 点满足要求(ICQ =。
测量个点的静态电压值
RL =∞及RL =2K 时,电压放大倍数的测量 : 保持静态工作点不变!输入中频段正弦波,示波器监视输出波形,交流毫伏表测出有效值。
装 订
线
RL=∞时,最大不失真输出电压Vomax(有效值)≥3V : 增大输入信号幅度与调节RW1,用示波器监视输出波形、交流毫伏表测出最大不失真输出电压Vomax 。
输入电阻和输出电阻的测量 : 采用分压法或半压法测量输入、输出电阻。
放大电路上限频率fH、下限频率fL的测量 : 改变输入信号频率,下降到中频段输出电压的倍。
观察静态工作点对输出波形的影响 : 饱和失真、截止失真、同时出现。
三、主要仪器设备
示波器、函数信号发生器、12V稳压源、万用表、实验电路板、三极管9013、电位器、各种电阻及电容器若干等
四、操作方法和实验步骤
准备工作:
修改实验电路
将K1用连接线短路(短接R7);
RW2用连接线短路;
在V1处插入NPN型三极管(9013);
将RL接入到A为RL=2k,不接入为RL=∞(开路) 。
开启直流稳压电源,将直流稳压电源的输出调整到12V,并用万用表检测输出电压。
确认输出电压为12V后,关闭直流稳压电源。
用导线将电路板的工作电源与12V直流稳压电源连接。
开启直流稳压电源。
此时,放大电路已处于工作状态。
实验步骤
1.测量并调整放大电路的静态工作点
调节电位器RW1,使电路满足ICQ=。
为方便起见,测量ICQ时,一般采用测量电阻Rc两端的压降VRc,然后根据ICQ=VRc/Rc计算出ICQ 。
测量晶体管共射极放大电路的静态工作点,用表格记录测量值与理论估算值。
2.测量放大电路的电压放大倍数Av
保持静态工作点不变,放大电路S端输入频率约为1kHz、幅度约为30mV的正弦波信号Vs。
接信号后测量
RL开路,输出端接示波器,监视Vo波形,当波形无失真现象时,用交流毫伏表分别测量Vs、Vi、V ’o电压值,将其值记录在下表中,并计算电压放大倍数Av。
接入RL=2k,采用上述方法分别测量Vs、Vi、Vo电压值,将其值记录在下表中,并计算RL=2k时的电压放大倍数Av。
用示波器双踪观察Vo和Vi的波形,测出它们的大小和相位。
并将波形画在同一坐标纸上。
3.测量RL=∞时的最大不失真输出电压Vomax
测量方法:使RL=∞,增大输入信号,同时调节RW1,改变静态工作点,使波形Vo同时出现饱和与截止失真。
然后,逐步减小输入信号Vi,当无明显失真时,测得最大不失真输出电压Vomax、输入电压Vimax、计算放大倍数Av并与前项所测得的结果进行比较,两者数值应一致;断开输入信号Vi,依据静态工作点的测量方法,测得ICQmax值。
4.输入电阻和输出电阻的测量
(1) 放大电路的输入电阻Ri 的测量
放大电路的输入电阻Ri可用电阻分压法来测量,图中R为已知阻值的外接电阻,用交流毫伏表分别测出Vs和Vi,则可计算出输入内阻
若R为可变电阻,调节R的阻值,使Vi=1/2Vs,则Ri=R。
这种方法称为半压法测输入电阻。
(2) 放大电路的输出电阻Ro 的测量
放大电路的输出电阻可用增益改变法来测量,分别测出负载开路时的输出电压V ‘o和接入负载RL后的输出电压Vo
5.放大电路上限频率fH、下限频率fL的测量
通常当电压增益下降到中频增益倍时(即下降3dB)所对应的上下限频率用fH和 fL表示。
则fH
与fL之间的范围就称为放大电路的通频带宽度BW。
(1) 在RL=∞条件下,放大器输入端接入中频段正弦波,增大输入信号幅度,监视输出电压Vo保持不失真。
用交流毫伏表测出此时输出电压值Vo;
(2) 保持信号源输出信号幅度不变,改变信号源输出频率(增加或减小),当交流毫伏表测数的输出电压值达到Vo×值时,停止信号源频率的改变,此时信号源所对应的输出频率即为上限频率fH或下限频率fL。
6.观察静态工作点对输出波形的影响
在RL=∞情况下,将频率为中频段的正弦信号加在放大器的输入端,增大输入信号幅度,监视输出电压Vo保持最大不失真的正弦波(输出正弦波幅度尽量大)。
(1) 将电位器RW1的滑动端向下端调,可使静态电流ICQ下降,用示波器观察输出波形是否出现失真、记录此时的波形,并测出相应的集电极静态电流 (测量集电极静态电流时,需要断开放大器的输入正弦信号 )。
若失真不够明显,可适当增大输入信号。
(2) 将电位器RW1的滑动端向上端调,可使静态电流ICQ 增大,观察输出波形失真的变化,记录此时的波形,并测出相应的集电极静态电流 。
记录两种情况下的输出波形和相对应的集电极静态电流。
说明截止失真与饱和失真的形状有何区别和集电极偏置电流的大小对放大电路输出动态范围的影响。
四、实验内容 (1)
计算值:U BE =U B -U E = U CE =U C -U E = I C ≈I E =E
EQ R U ==
(2)电压放大倍数测量
在放大电路输入端加入频率为1KH Z ,有效值为5mV 的正弦信号u i ,同时用示波器观察放大电路输出电压u o 的波形。
在u o 波形不失真的条件下,测量当R L =Ω和开路时的U i 和U O 值,计算电压放大倍数A u 。
Ic = Vi =
计算式:Av=V 0 / Vi
(3)观测静态工作点对电压放大倍数的影响
置Rc = 2K Ω,RL = ∞,Vi 适量,用示波器监视输出电压波形,在vo 不失真的条件下,测量数组Ic 和Vo 值,计入表中。
Rc = 2K Ω RL = ∞ Vi =
Ic (mA )
Vo (V )
Av
59
测量Ic 时,要先将信号源输出旋钮旋至零。
(即使Vi = 0) (4)观察静态工作点对输出波形失真的影响
置Rc = 2K Ω,R L = 2K Ω,vi = 0,调节Rw 使得Ic = 2mA ,测出Ic E 值,再逐步增大输入信号,使输出电压vo 足够大但不失真。
然后保持输入信号不变,分别增大和减小Rw ,使波形出现失真,绘出vo
Ω)
2 ∞
1 ∞ 2
2
的波形,并测出失真情况下的Ic和Vce值,计入表中。
每次测Ic和和Vce值时都要将信号源的输出旋钮旋至零。
Rc = 2KΩ R L = 2KΩ vi = 0
(5)测量最大不失真电压
置Rc = 2KΩ,R L = 2KΩ,按照实验原理(4)中所述方法,同时调节输入信号的幅度和电位器Rw,用示波器和交流毫伏表测量Vopp和Vo值,计入表中。
Rc = 2KΩ R L = 2KΩ
Ic (
mA
)
Vim
(
mV
)
Vom
(
V
)
Vo
(
p-p
)
(
V
)
(6)测量输入电阻和输出电阻
置Rc = 2KΩ,R L = 2KΩ,Ic = 2mA。
输入f = 1KHz的正弦信号,在输出电压vo不失真的情况下,用交流毫伏表测出Vs,Vi和V L,记
入表中。
保持Vs不变,断开RL,测量输出电压vo,记入表中。
(7)测量幅频特性曲线
取Rc = 2KΩ,R L = 2KΩ,Ic = 2mA。
保持输入信号vi的幅度不变,改变信号源频率f,逐点测出相应的输出电压Vo,记入表中。
Vi =
五、实验结论
1.列表整理测量结果,并把实测的静态工作点、电压增益、输入电阻、输出电阻之值与理论计算值比较,取一组数据进行比较,分析产生误差的原因。
比较输入电阻:
误差:()/ * 100% = %
误差原因:(1)三极管参数的离散性引起的;
(2)在实验中并没有r be,即估测时数值偏小;
(3)仪器测量数据浮动,可能造成偶然误差;
2.总结Rc,R L及静态工作点对放大器电压放大倍数、输入电阻、输出电阻的影响。
Rc越大,电压放大倍数越大、输入电阻不受影响、输出电阻越大。
Ri越大,电压放大倍数越小、输入电阻越小、输出电阻不受影响。
静态工作点中电流越大,电压放大倍数越大、输入电阻越小、输出电阻不受影响。
但静态工作点太大或太小容易导致三极管进入饱和或截止。